• Aucun résultat trouvé

Numerical models in aquacultural engineering:two examples

N/A
N/A
Protected

Academic year: 2021

Partager "Numerical models in aquacultural engineering:two examples"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

8th Canadian Marine Hydromechanics and Structures Conference [Proceedings],

2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=2b4d1499-64e7-4bc7-86ed-aa33af8659c6 https://publications-cnrc.canada.ca/fra/voir/objet/?id=2b4d1499-64e7-4bc7-86ed-aa33af8659c6

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Numerical models in aquacultural engineering:two examples

Raman-Nair, W.; Colbourne, D. B.; Gagnon, M.; Bergeron, P.

(2)

∗ ∗ ! ∗∗ ! ∗∗ ∗ ! " ∗∗ # $%" & ' ( ' ) " ! " ! # $ " % &' () *+ &)' , , & - . - . / "* 01 1)'21&'0 3 0" 4 5 , & -6 + . , 2 1 + & 7 -. * + 7 7

(3)

Still Water Level

Seabed

Mussel Longline System (n=113)

0 A 2 A 108 A 113 A 6 Y Buoy Mussel sock Concrete block 113 = n m 5 . 15 m 142 m 5 . 15 Not to Scale 0 at Origin A x z 1 A 6 A 6 B 111 A 3 A 112 A 3 B B108 m 7 m 15 114 A 108 Y 111 B intervals m 1.392 at to NodesA6 A108 108 18 12 6, , ,..., nodes at blocks Concrete 18 AA A A Node m 14 14m 8 % + k A k b3 B k G B k e B k P B k Q k B Buoy k y3 Y k G Y k P Y k Q k Y Sock Mussel 1 − k A Ak+1 B Segment L Segment Y Segment R

Segment Main Line

R k t L k t B k t Y k t B k f Y k e Y k f 8 / Sk - . & , $ ! -$ 1 %9:;. 4 4 7 & # 7 " -+ %9:<. , 5 , & & ) 8 % O N −→N ,−→N ,−→N A An Sk k , . . . , n 8 / Sk Ak Bk - . Yk & Ak 7 k k AE ℓ A E ℓ = c c ζ × √ k × ζ . 7 > S , S , Sn− Sn + B Bn− A An− 7 > S Sn− B % / ? θi i , , -$ 1 1 %9:?. 5 , , − →b i −→Ni i , , B − → N ,−→N ,−→N θ , θ , θ , −→bi − → Ni    − →N − →N − → N    NCB    − →b − → b − → b    -%. , NCB % / ? , -$ 1 1 %9:?. NCB  c c s s c − s c c s c s s c s s s s c c c s s − c s −s s c c c   -/. si θi ci θi i , , & Bk Yk , , − →b ik −→yik i , , Sk • ' Ak qAik i , , • 5 Bk qBik θBik i , , qB i ,k i , , • " + Yk qYik θYik i , , qY i ,k i , , % / ? -$ 1

(4)

1 %9:?. • ' Ak uAik − →vA −→N i i , , −→vA Ak • 5 Bk uB ik −→ωB − →b ik i , , uB i ,k −→vB − →b ik i , , − →ωB −→vB Bk • " + Yk uY ik −→ωY −→yik i , , uY i ,k −→vY − →yik i , , −→ωY − →vY Yk. qS ik uS ik Sk qSik qAik uSik uAik i , , qS i,k qBik uS i,k uBik i , . . . , qS i,k qYik uS i,k uYik i , . . . , -?. $ & Ak @ # # - N N Ak F∗A r −→vAr −mAk−→aA -A. − →aA −→vA r mA k Ak − → F /A Ak # FrA −→F /A −→vAr r , . . . , -;. & Ak VkA Ak − →FGB/A ρ fVkA− mAk g − →N -B. g Ak 8 / L, R, B Y 8 , Ak− Ak ℓL k −−−−−→ AkAk− −→tLk ZL k Ak kLkZLk−→tLk kkL 7 ZL k , ZL k Z k− ℓLk Z k− ℓLk k , . . . , n -<. Ak− Ak Ak cLkZLk−→tLk cLk = ZL k Ak− Ak ZLk i uAi,k− − uAik tAik ZLk -:. k , . . . , n tA ik i −→tLk. * − →FT /A − →FSD/A A k − →FT /A kL kZLk−→tLk kRkZRk−→t Rk kB kZBk−→tBk kkYZYk−→tYk -9. − →FSD/A cL kZLk−→t Lk cRkZRk−→tRk cB kZBk−→t Bk cYkZYk−→tYk -%C. 4 B Y Ak # − →FD/A AkAk− AkAk − →

FDL/A −→FDR/A & −vf

k # Ak # Ak −→v(k −→vfk − −→vA AkAk− − →v( /t k −→v(k −→tLk −→v( /nk −→v(k −−→v( /tk -%%. 4 AkAk− − →FDL/A ρ fATCDT −→v( /tk −→v( /tk ρfANCDN −→v( /nk −→v( /nk -%/. CDT CDN = AT πd ZLk AN d ZLk − →FDR/A Ak − →

FD/A −→FDL/A −→FDR/A -%?.

(5)

− →t k . − → Tk & - −→N . TkV, > -− → N −→N . TkH, 8 TkH, 'sTkV, 'sW -%A. 's = W Ak - . Ak − →FC/A $ $ & , -4 - . Yk Fr∗NH/Y −→ωYr −→T∗Y −→v G r −mY k−→aG − →T∗Y Yk −→ωYr −→v G r − →aG mY k F∗NH/Y r −VrkYu S rk φYrk r , . . . , -%;. Yk − →HA/Y Y k -5 %9:/D 1 1 > %9;9. HA − A {aY} -%B. A , Yk {aY} Yk Fr∗A/Y −→HA/Y −→vGr F∗A/Y r −WrkYu S rk ψYrk -%<. r , . . . , k , . . . , n Yk F∗Y r Fr∗NH/Y Fr∗A/Y -%:. r , . . . , k , . . . , n Yk FrGB/Y −→vGr ρfVkY − mY k g − →N QY k Yk fY k , −→y k hYk CY,kqYk CY,kqYk CY,k qYk fkY -%9. CY ij,k i − j , / Yk RY k − →N RYk kE hYk − hYk -/C. kE 7 -. 4 RY k > hYk > FrT D/Y RYk−→N −→vQr , PY k Ak * Yk FrT SD/Y −kYkZYk− cYkZYk −→tYk −→vPr -/%. # Yk − →U( k Uik( −→yik -//. U( ik 7 # Yk , Yk − →y k − →y k −→U( k − →y k = CDT CDN AT -π× × . AN -× . Yk − →FD/Y i αYik−→yik -/?. FrD/Y −→FD/Y − →vG r − →HY Y k # − →HI/Y -5 %9:/D 1 1 > %9;9. HI ρfVkY I A {aF} -/A. A , Yk VY k Yk I × , {aF} # Yk # FrI/Y −→HI/Y −→vGr

(6)

$ ! ./ , Sk -8 /. F∗S rk Fr∗A Fr∗B Fr∗Y FS rk FrA FrB FrY -/;. r , . . . , k , . . . , n A, B Y S Sk & F∗S rk −MrkSu S rk bSrk -/B. r , . . . , k , . . . , n - sys. -$ 1 %9:;. F∗sys r Frsys r , . . . , n -/<. ur sys Mrsys Fsys r bsysr r , . . . , n -/:. 4 n × {x} {x} {q} sys {u}sys -/9. 7 x {f t, {x}} f qr sys -/:. " 1 5 ( $ A; ? 0 E()510" 4 8 ? 0 OA, AB, BC 7 k L WY WA FB ! ./ ( + 0 1 2 F FB− WA WY . φ c d c O A B C Buoy Sock Mussel 8 ? E -n . φ OA BC > F kL d − L L φ − φ -?C. T OA, BC T F φ ! $ , -a b θ weight submerged = W speed current = v x R z R

Mussel sock modelled as cylinder of length b and diameter a

O

x

z

8 A + + b a W O v 8 A θ = - # . CDN AN ab = -# . CDT. AT πab 4

(7)

-πa / 7 # # ρf α α W ρfabCDNv -?%. θ θ − −α √ α -?/. > Rx, Rz O Rx W −α β θ θ -??. Rz W α β θ θ − θ θ -?A. β πCDT CDN -?;. 4 α -?%. θ -?/. Rx Rz -??. -?A. ! ! + 0 * ( +2 -. m mm . kg/m, MP a d m 0 Bk Yk m, . m. Bk kg/m Yk kg/m = CDN . , CDT . . 7 k . N/m F . N 8 c -8 ?. . m . m φ . rad T 7 , T . m -?C. φ . rad T F φ . N 8 m/s x − →y . , , − . -?/. θ . θ, , − θ . , , − . ! 3 * + 5 6 5 , & 5 , 8 % m . m - . . kg/m GP a n Ak, k , . . . , n . 5 Bk Yk A A + - kg kg/m . A , A , A , . . . , A kg f . 0 Yk m . m - B B . " . kg . m = . . kg , 5 , , , . . . , . kg . m = . . kg - . kg kg. - . B B ) B B . kg . m = . . kg . m kg/m kg. = 's . . m/s y 8 ; -A;C

(8)

0 50 100 150 200 250 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 16 18 20 x axis (m) 3D profile at equilibrium : Main Line and Bottom of Mussel Masses

y axis (m)

z axis (m)

Current : 0. 21 m/s in y direction

Main Line

Bottom of Mussel Masses

8 ; 0 . -x, y z . T   . . .   × N -?B. T  − .. .   × N -?<. m y -Y Y . . m " Y . 1 1 -?/. m , . , . m . x 8 B 8 < A ") 01 )8 8& F '0 Lα α , . . . , ν Jk k , . . . , n - . Akα 8 -:. -. A ,α, An ,α α , . . . , ν Ak, , Ak,ν k , . . . , n . + t. 4 + 0 50 100 150 200 250 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 20 x axis (m) 3D profile at 100 sec : Main Line and Bottom of Mussel Masses

y axis (m)

z axis (m)

Wave propagating at 67.5 deg. to x axis

Wave height = 3 m, wave period = 8.5 sec, wavelength = 99.6 m

Main Line

Bottom of Mussel Masses

8 B & %CC 10 20 30 40 50 60 70 80 90 100 0 500 1000 1500 2000 2500 3000

Magnitude of Tension at Left Anchor

Time (s) Tension (N) 10 20 30 40 50 60 70 80 90 100 0 500 1000 1500 2000 2500 3000

Magnitude of Tension at Right Anchor

Time (s)

Tension (N)

Tension due to wave propagating at 67.5 deg. to x axis

Tension due to wave propagating at 67.5 deg. to x axis Wave height = 3 m, wave period = 8.5 sec, wavelength = 99.6 m

Wave height = 3 m, wave period = 8.5 sec, wavelength = 99.6 m

8 < 4 Akα ckα i k , . . . n α , . . . ν i , , qr r , . . . , nν ckαi t q n α− k− i k , . . . n α , . . . ν i , , -?:. ur qr r , . . . nν . - . > 4 nν {x} /9. x {f t, {x}}

(9)

α L Line al Longitudin k J Line Transverse SegmentSkα α k A Node α k R Segment ) ,..., 1 (α = ν ) ,..., 1 (k= n α , 0 A α , 1 + n A 0 , k A 1 ,+ ν k A 8 : ' " 0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 x−axis (m) y−axis (m) z−axis (m) 20 x 20 net profile Current : 2 m/s in x direction

Wave height = 2 m, wavelength = 3 m, water depth = 7 m, travelling in x direction

8 9 ' 8 -9. , × -. m/s x m m x 7 ; +)'+1* &)' ' $ ! = 5 , & 6 + 4 , > , , & ) @ G G !& 6 G - ) &". -6 + . EH -" E 6. G G & 0, -" 0&0.

(10)

(

5 + 0 %9:/ ( " 8 & 8 ( +( :/ C%C ' + 0 1 E F + + $ %9:< F )7 - I . $ ( 1 %9:; - " 2 F & . $ ( 1 E 4 1 %9:? -" 2 F & . ?C 1 1 1 > 0 " %9;9 8 " -E E . ?; " 1 5 /CC< " 4 & ' " * ( ' 4 + 5 /CC? I /< " 1 0 %9% /%/

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ