• Aucun résultat trouvé

Parkin-linked Parkinson's disease: From clinical insights to pathogenic mechanisms and novel therapeutic approaches

N/A
N/A
Protected

Academic year: 2021

Partager "Parkin-linked Parkinson's disease: From clinical insights to pathogenic mechanisms and novel therapeutic approaches"

Copied!
6
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Neuroscience

Research

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e/ n e u r e s

Review

article

Parkin-linked

Parkinson’s

disease:

From

clinical

insights

to

pathogenic

mechanisms

and

novel

therapeutic

approaches

Kobi

Wasner

a

,

Anne

Grünewald

a,b

,

Christine

Klein

b,∗

aLuxembourgCentreforSystemsBiomedicine,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg

bInstituteofNeurogenetics,UniversityofLübeck,Lübeck,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1August2020 Accepted4August2020 Availableonlinexxx Keywords: Parkin Parkinson’sdisease Mitochondria Inflammation Gene-specifictherapy Clinicaltrial

a

b

s

t

r

a

c

t

Withover7millionpatientsworldwide,Parkinson’sdisease(PD)isbecomingmoreprevalentaslifespan andindustrializationincrease.Whilethemajorityofcasesaresporadicandpresentinindividualsover 65,inheritedmutationsinParkincanmanifestinindividualsasyoungasteenagers.Theinvolvementof Parkininneurodegenerationhasbeenwidelyinvestigatedanditsroleinmitophagyisundeniable.In therecentyears,however,additionalfunctionsoftheproteinarebeginningtocometolight,whichin turnmayinfluencethewaypatientsharboringParkinmutationsaretreated.Inthepresentarticle,we discusstheclinicalandgeneticaspectsofParkin-linkedPD.Forthispurpose,weconsultedtheMDSGene database,whichcomprisestheliteratureofmorethan1000patientswithParkinmutations.Inaddition, weprovideinsightintoParkin’smultifacetedroleinmitochondrialclearanceandmaintenance.Finally, wediscusstreatmentstrategiessuchasbrainstimulation,smallmoleculedrugsanddopaminergiccell replacementthatcouldbetailoredtoimprovetheclinicalphenotypesinParkin-linkedPD.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction...00

2. Parkin-linkedPD:clinicalaspects...00

2.1. Parkin-linkedPD:geneticaspects...00

2.2. ProteinstructureofParkin...00

3. MitochondrialinvolvementinParkinson’sdisease...00

3.1. Parkinandmitophagy...00

3.2. Parkinandmitochondrialbiogenesis...00

4. Inflammation ... 00

5. Treatment...00

Acknowledgements ... 00

References...00

1. Introduction

While Parkinson’s disease (PD) was first systematically describedbytheBritishphysicianJamesParkinsonin1817,ittook almosttwocenturiesuntilthefirstrecessivelyinheritedformofPD wasdiscoveredbyKitadaandcolleaguesinJapanin1998(Kitada etal.,1998).Inhisworkentitled“AnEssayontheShakingPalsy”,

∗ Correspondingauthor:InstituteofNeurogenetics,UniversityofLübeck,

Maria-Goeppert-Str.1,23562Lübeck,Germany.

E-mailaddresses:kobi.wasner@uni.lu(K.Wasner),anne.gruenewald@uni.lu

(A.Grünewald),christine.klein@neuro.uni-luebeck.de(C.Klein).

JamesParkinsoncharacterizedthesymptomsofsixindividuals– includingsomepatientsandindividualsonthestreet-withwhat henamedparalysisagitans–amaladyresultingin,“involuntary tremulousmotion,withlessenedmuscularpower,inpartsnotin actionandevenwhensupported”(Parkinson,2002).This condi-tionwaslaternamedafterJamesParkinsonand,inreferenceto theterm‘Parkinson’sdisease’,Kitadaetal.chosetonametheir newlyidentifiedgene ‘Parkin’.Althoughthemoststriking clini-caldifferencebetweenParkinmutationcarriersandclassicalPD wastheveryearly,juvenileageatonset(AAO)intheformer,the clinicalpresentationcausedbyParkinmutationswascompatible withadiagnosisofPD,albeitcharacterizedbyastrong suscepti-bilitytodopa-induceddyskinesiaandmotorfluctuations.Further https://doi.org/10.1016/j.neures.2020.09.001

0168-0102/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

extendingtheclosephenotypiclinkofParkin-linkedPDand ‘idio-pathic’PD,i.e.PDofunknownoriginandtypicallylateAAO,Parkin mutationsweresoonidentified alsoina familywithlate-onset tremor-dominantPD(Kleinetal.,2000).

TheexactfrequencyofParkinmutationsiscurrentlyunknown, whichisespeciallytrueforthemostcommon,late-onsetpatient populationwheresystematicmutationalscreensarelacking. How-ever,Parkinmutationsareoverallrareand,evenintheyounger AAOgroups(<50years)accountfor∼2.6%ofthecasesonly(Tan etal.,2019).MutationfrequencyincreaseswithdecreasingAAO andishighestinthejuvenilegroup(AAO<20years)where bial-lelic Parkin mutations are found in up to77 %of thepatients (Luckingetal.,2000).Giventherecent‘PDPandemic’withPDbeing thefastestgrowingneurologicaldiseasewithacurrentestimated globalnumberof∼7millionPDpatients(DorseyandBloem,2018), onemayexpectatotalof35,000–70,000Parkincasesworldwide whenassuminganestimatedfractionofParkinmutationcarriers acrossallAAOgroupsof0.5–1%.

2. Parkin-linkedPD:clinicalaspects

The Movement Disorder Society Genetic mutation database (MDSGene;www.mdsgene.org)providesacomprehensiveonline resourcelinkingreportedgeneticmutationswithmovement dis-orderphenotypesaswellaswithdemographicandotherclinical informationincludingPARK-Parkin(Kastenetal.,2018).MDSGene currentlylists1000biallelicParkinmutationcarriers(44%female) withPDandamedianAAOof31years(25th/75thpercentile:23/39 years;range:3–73years).Themostcommonpresentingsignis tremor,followedbybradykinesiaanddystonia.Indeed,acrossall listedpatients,dystoniaisthemostcommonclinicalfeatureafter thecardinalPDsignsandispresentin65%ofthosewithavailable information.Underscoringtheimportanceofdystoniaasa promi-nentfeatureofParkin-linkedPDespeciallyintheveryearly-onset patients,thepercentageofpatientswithdystoniarisesto85%in thosewithajuvenileAAO,i.e.withanonsetofPDat20yearsor younger.Asalreadymentionedintheoriginaldescriptionofthe Parkingene(Kitadaetal.,1998),dyskinesiaisacommonfindingin Parkinmutationcarriersandfoundin78%ofallpatientswith avail-ableinformationonthisfeatureandineven90%ofthosewitha juvenileAAO.Likewise,motorfluctuationsoccurathighfrequency (87%)andareonlyslightlymorecommoninthejuvenileonset group(91%).Non-motorsignsdooccurinParkinmutation carri-ers,however,reportinghasbeeninconsistentanddatamissingness ishigh.

Asinformationonthepresenceorabsenceofnon-motorsigns andsymptomshasbeenprovidedfor100Parkinmutationcarriers (10%)orfewer,90%datamissingnessdoesnotallowformeaningful conclusionsonthefrequencyofthefollowingfeatures:autonomic signs orsymptoms, sleepbenefit, depression,anxiety,and psy-choticsignsandsymptoms.Bycontrast,previousmeta-analysesof publishedPDpatientswithParkinmutationsindicatedthat demen-tiaisveryrare,affectinglessthan3%ofcases(Grunewaldetal., 2013;Kastenetal.,2018).ThelargestfractionofParkinmutation carriersisofAsianorigin(37%overall;44%inthejuvenileAAO group), including10%fromJapan,followedbyWhiteEuropean (35%).

2.1. Parkin-linkedPD:geneticaspects

ToreviewthemutationalspectrumofParkin,wealsoconsulted MDSGeneandourin-housedatabaseonpublishedheterozygous Parkin mutation carriers. Todate,200different mutationshave beenpublished.Theseinclude18variationsinintrons,13nonsense mutations,69missensemutations,29smallinsertionsordeletions,

and71exonrearrangements(including42deletionsand26 multi-plications).Outof1155mutation-positiveindexpatients,778(67 %)carriedatleastoneexonrearrangementwithexon3deletions beingthemostcommonandaffecting120(10%)indexpatients(on oneortwomutantalleles).

Whenassessingtheimpactofdifferentmutationtypesonthe AAO,wedidnotobserveanysignificantgroupdifferencesacross indexpatientswithhomozygousmutations(variantsinintrons: AAO[SD],23.8[10.1]years,n=4;nonsensemutations:31.4[8.1] years,n=8;missensemutations:35.0[17.5]years,n=35;small insertions/deletions:31.0[11.3],n=75;exonrearrangements:32.9 [11.5]years,n=200).Thesameobservationwasmadewhen focus-ingexclusively onindex patientswithheterozygous mutations (variantsinintrons:n/a;nonsensemutations:AAO[SD],30.2[14.3] years,n=5;missensemutations:42.3[13.3]years,n=125;small insertions/deletions:35.6[12.3],n=27;exonrearrangements:AAO [SD],40.9[13.8]years,n=238).

Bycontrast,comparingthemeanAAOofallindexpatientswith biallelic(AAO[SD],31.3[12.0],n=663)vs.thosewithheterozygous mutations(40.7[13.7]years,n=409),wedeterminedadifference ofabouttenyears(p<0.0001).WithanAAOintheforties,Parkin heterozygotessufferfromPDabouttenyearsearlierthanidiopathic patientswhotypicallydevelopfirstsignsintheir6thdecadeoflife (Grunewaldetal.,2013).Toobtainanevenclearerpictureofthe influenceofheterozygousParkinmutationsontheonsetofPD,we repeatedtheaforementionedanalysisforexon3deletioncarriers only.Interestingly,inthishomogenous(albeitsmall)subset,the AAOwasaslowinheterozygotes(AAO[SD],33.1[6.3],n=10)as inhomozygotes(32.6[10.2],n=42).Ofnote,forallAAO analy-ses,individualswithknowndigenicinheritanceofPD-associated mutationswereexcluded.

2.2. ProteinstructureofParkin

Parkin is a 465-residue protein involved in the ubiquitin-proteasomesystem: a process which mediates thetargeting of proteinsfordegradation.AsanE3ubiquitinligase,Parkinrecruits an E2 conjugating enzyme to facilitate the transfer of a ubiq-uitinsubstrateontoitstargetprotein.Theadditionofubiquitin ontoaproteincanproduceavarietyofeffects including degra-dationviathe proteasome,alterationof itscellularlocation, or promote or prevent protein-protein interactions (Seirafi et al., 2015).

ParkinbelongstotheRING-between-RINGfamilyofE3ligases, whichgenerallycomprisesoftwoRINGfingerdomainsandan in-between-RINGregion.RING1servesasthebindingsiteforanE2 ubiquitinconjugatingenzyme,whileRING2containsanactivesite cysteineresidue,whichacceptsandcleavesubiquitinfromtheE2 enzymeandtransfersitontoitssubstrates.Aubiquitin-likedomain isalsopresentattheN-terminusofParkinandplaysarolein sub-straterecognition.

AnampleamountofstudieshavefoundthatParkinislargelya cytosolicproteinmediatingubiquitinationinthecytosol.However, severalstudieshavealsoshownsmallpoolsofParkinlocalizedto mitochondria(Kurodaetal.,2006;Narendraetal.,2008;Rothfuss etal.,2009).

3. MitochondrialinvolvementinParkinson’sdisease

(3)

adminis-teredtheonlyknowneffectivetreatment–L-DOPA–and“unfroze” thepatients.

Thepatientswerefoundtobedruguserswhoingested“China White”–asyntheticopioidanalgesicproducedbydrugdealers. Analysisof thedrugdeterminedits chemicalname: 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).Unbeknownsttothem, this toxic compoundwastheperfect inhibitorofmitochondrial respiration.

3.1. Parkinandmitophagy

Damagedmitochondriaarequicklydegradedandreplacedin thehealthybrain.Oneofthemostprominentandstudiedfunctions ofParkinisitsroleinmitophagy–theselectivedegradationof mal-functioning mitochondria by autophagy. Mitochondrial damage results in the depolarization of the outer mitochondrial mem-brane(OMM),therebypreventingPINK1importthroughtheOMM transmembraneproteincomplexes(Narendraetal.,2008).PINK1 subsequently accumulatesalong the OMMand begins to phos-phorylateitstargets,includingubiquitinandParkinatserine65 (Shiba-Fukushimaetal.,2012).Phosphorylationatthesesites acti-vatesandrecruitsParkintotheOMMwhereParkinsubsequently beginstotransferubiquitinontoitstargetsincludingmitofusins, VDACsandBAK(Fig.1)(Bernardinietal.,2019;Geisleretal.,2010;

Kaneetal.,2014;Sarrafetal.,2013).Ubiquitinchainlinkageson K48primesdegradationoftheproteinsbytheproteasome,while K63 ubiquitination isrecognized byautophagyadaptors,which eventuallyformtheautophagasome,leadingtoitsdestructionby lysosomes.

Mitochondriaare highlydynamic organelles,whereby a bal-anceofdegradationandbiogenesisismediatedbymorphological changesthroughfissionandfusion(Dengetal.,2008).Mitofusin1 and2(MFN1/2),whicharedownstreamtargetsofParkin,facilitate thefusionoftheOMM,whileDynamin-relatedprotein1(Drp1) regulatesthefissionoftheinnermitochondrialmembrane(IMM). Animal modelslacking Parkinshowstrikingmitochondria mor-phologicalphenotypesincludingswelling,herniationandbroken cristae(Dengetal.,2008).

Mitophagyisaprocessperformedbythecellinordertocombat dysfunctionandasaresorttopreventcelldeath.Oncepastacertain thresholdandcommittingtoacelldeathfate,intrinsicapoptosis ismediatedbythepermeabilizationofmitochondrialmembranes andreleaseofpro-apoptoticfactorssuchascytochromeC. Perfo-ration ofthemitochondrialmembranesisexecutedbyBAKand BAX,whicharerecruitedtotheOMMandformoligomers,which puncture the membranes(Fig.1).Parkinreduces BAX localiza-tiontotheOMMthroughanindirectinteractionandalsodirectly ubiquitinatesBAK,preventingitsdevelopmentintooligomersand subsequent destructionof theOMM andrelease of cytochrome C(Bernardinietal.,2019).Thus,Parkin-mediatedmitophagyalso servestopreventapoptosis.

During oxidativestressandmitophagy,mitochondriarelease signals to other organelles in response to a variety of stim-uli. Mitochondrial-derived vesicles (MDVs) are filled with oxidized cargo that bud off mitochondria (independently of mitochondrial fission).Parkincolocalizes withMDVs and stim-ulates their formation in response to ROS (McLelland et al., 2014).

RecentevidencerevealedParkin’smanyfunctionsotherthan governing mitophagy;Parkinubiquitinates hundredsoftargets, whichplayotherrolesinmitochondrialpathways,itcontainsthe structuralarchitecturecommoninseveraltranscriptionfactorsand associateswiththemitochondrialgenome(AlvesdaCostaetal., 2018).

3.2. Parkinandmitochondrialbiogenesis

Peroxisome proliferator-activated receptor gamma coactiva-tor1-alpha (PGC-1␣) is a transcriptional coactivatorknown as themasterregulatorofmitochondrialbiogenesis,whereit tran-scribesa multitudeof downstreamtarget genesresponsiblefor mitochondrialmaintenanceandrespirationincludingnuclear res-piratory factors (NRFs) and estrogen-related receptors (ERRs). OverexpressionofPGC-1leadstoanincreaseof thesetargets, mitochondrial-encodedproteinsandmitochondrialDNA(mtDNA) copynumber(Zhengetal.,2017).

Oneof Parkin’s targetsfor ubiquitination, Parkininteracting substrate(PARIS),isatranscriptionalrepressorofPGC-1␣(Fig.1). PARISisubiquitouslyexpressedthroughoutthebodyand hetero-geneouslyexpressedthroughoutthebrain,where itislocalized toneurons,includingmidbraindopaminergicneuronsofthe sub-stantia nigra (SN) pars compacta. Consequently, PARIS protein accumulatesinthebrainofpatientswithautosomalrecessive juve-nilePD.MutationstoParkinresultintheaccumulationofPARISand successiveinhibitionofthetranscriptionofPGC-1␣andits down-streamtargets(Shinetal.,2011;Zhengetal.,2017).Thus,Parkinis notonlyresponsibleforthedegradationofdamagedmitochondria, butalsoplaysaroleinthemitochondrialbiogenesispathway.

Thegenerationof newmitochondriarequiresthereplication andtranscriptionofthemitochondrialgenome,whicharemainly regulatedbynuclear-encodedproteins.PGC-1␣targetsNRF1and NRF2 - transcription factors, which activate the expression of moleculesmaintainingmtDNA(Gugnejaetal.,1996).NRF-1and NRF-2transcribeTFAMand TFB2M, twomoleculesrequired for theinitiationoftranscriptionandreplicationofthemitochondrial genome.

NRF-1abundancehasbeenshowntobereducedincellswhich lackParkin(Shinetal.,2011;Stevensetal.,2015),and interest-ingly,NRF-1wasshowntocontainbindingsitesinbothParkinand PINK1promoterregionsinsilico,invitroandinvivo(Sulimanetal., 2017).ThiswassupportedbyoverexpressionofNRF-1,whichlead toanincreaseinParkinandPINK1geneandproteinexpression, whilesilencingofNRF-1leadtoParkinandPINK1downregulation. Moreover,Parkinmutationsandconsequentialdownregulationof PGC-1␣causeslossofNRF-1andTFAM.

TFAM is crucial for the maintenance of the mitochondrial genome.ItsfunctionsincludetheregulationofmtDNAcopy num-ber, initiation of mtDNA transcription, participation in mtDNA replication and compaction of the mitochondrial genome into protein-richstructurestermednucleoids.Uponactivationby regu-latoryproteins,suchasNRF-1,TFAMtranslocatesfromthecytosol tothenucleoidandregulatesmitochondrialtranscription(Fig.1).

The mitochondrial genome is located in the mitochondrial matrixandincloseproximitytotheelectrontransportchain(ETC) proteincomplexes.In theprocessofproducing ATPfor thecell, toxicby-products,likereactiveoxygenspecies,arealsogenerated andcanharmmtDNAmolecules(Mecoccietal.,1993).Moreover, deletionsinmtDNAaccumulatewithnormalagingintheSNand occurmorefrequentlyinPDpatientsthanin age-matched con-trols(Benderetal.,2006;Kraytsbergetal.,2006).mtDNAdepletion anddownregulationofTFAMandmtDNAtranscriptionhavealso beenfoundinpost-mortemtissueofPDpatients(Grunewaldetal., 2016).

(4)

SH-Fig.1. CellularfunctionsofParkin.ParkinisrecruitedtothemitochondrialoutermembraneafterphosphorylationbyPINK1.Parkinthenbeginstoaddphospho-ubiquitin

toitstargets,includingMFN2.Ubiquitinchainsarerecognizedbyadaptorproteinsthatformautophagosomes,whicharethenredirectedtothelysosomefordegradation

andrecycling.Duringmitophagy,ParkinubiquitinatesBAXandBAKwhich,intheabsenceofParkin,formoligomersandpunctureholesintheOMM,allowingthereleaseof

mitochondrialDNAandcytochromeC.CytochromeCinthecytosolpropagatesintrinsicapoptosis,andmtDNAreleaseisrecognizedbycytosolicDNAsensors,whichmediate

inflammation.Inaddition,ParkininfluencestranscriptionofmtDNAviaitsdirectinteractionwithTFAMoritsinhibitionofPARIS,thetranscriptionalrepressorofPGC1-␣,the

masterregulatorofmitochondrialbiogenesis.Fig.1wasdesignedusingcomponentsfromServierMedicalArt(http://smart.servier.com/),whichislicensedunderaCreative

CommonAttribution3.0GenericLicense.

Fig.2. ParkininfluencesmtDNAmaintenanceiniPSC-derivedneuronalprogenitorcells.(A)Patientandcontrol-derivediPSCsweredifferentiatedintosmallmoleculeneural

precursorcells(smNPCs).ImmunoscytochemistryshowedthatsmNPCsstainedpositivelyfortheneuralprogenitormarkersNestinandPax6.Real-timepolymerasechain

reactionquantificationofmtDNAsequencesintheD-LOOP,theminorarcgeneMT-ND1andthemajorarcgeneMT-ND4iniPSC-derivedneuralstemcellsfromthree

controlsandthreeParkin-mutationcarriers.(B)TheMT-ND4:MT-ND1ratioisindicativeoftheproportionofwildtypemtDNAmoleculeswithoutsomaticmajorarcdeletions.

ComparingneuralcellsfromParkin-mutantpatientsandcontrols,nodeletionaccumulationwasobserved.(C)Theabundanceof7SDNAintheD-loopofthemitochondrial

genomeisindicativeofmtDNAtranscriptionandreplicationinitiation.StatisticalanalysisrevealedsignificantlyreducedD-loop:MT-ND1ratiosincellsfromParkinmutation

carrierscomparedtohealthycontrols.*p<0.05.ND1=NADHdehydrogenase1.

SY5Ycells;ChIPonchipanalysesshowedthatParkinassociates withseveralmitochondrialgenomicsequencesincludingATPase 6,COXII,ND1,ND2andD-LOOP.Moreover,ParkinandTFAM co-associateatseveralofthesamemtDNAsequencesinpost-mitotic neuronsandinvivo,andParkinwasshowntoprotect mitochon-drialgenomeintegrity(Rothfussetal.,2009).Bycontrast,Parkin’s putative role in mtDNA maintenance hasnot yet been investi-gatedinpatient-derivedneuronalmodelswithParkinmutations.

(5)

fur-therimplicatesimpairedmtDNAhomeostasisinthepathogenesis ofParkin-linkedPD.

Whilemousemodelshaveunraveledanextraordinaryamount ofbiologicalmechanismsregardingPD,Parkin-knockout(KO)mice donotdisplaysignsofnigrostriatalneurodegenerationorany sig-nificantmotorphenotypestypicalofPD.AsvariationsintheDNA polymerase (POLG)genehavebeenidentifiedasriskfactorsin PD,PickrellandcolleagueshypothesizedthatlackofParkininmice withincreasedmutagenicstressmayprovideabettermodelto studyParkin-relatedPD.Themutator-Parkin-KOmousecombines amutationtotheonlymtDNAproofreadingfactorPOLGandParkin KO,subjectingthemicetobothmutagenicandlossofParkin.These miceexhibitPDsymptomsandtheselectivelossofdopaminergic neuronsoftheSN.Inthesemice,mtDNAdepletionandmutation ratewassignificantlyincreasedcomparedtoWTmice.Moreover, loss ofParkin expressionduringmutagenicstressincreasedthe predictedpathogenicityoftheincurredmutations(Pickrelletal., 2015).

4. Inflammation

Inthelastdecade,anexcitingandnovelthemehasemergedin thepathophysiologyofageandaging-relateddisorders:theroleof mitochondriaasatriggerfortheimmunesystem.Once indepen-dentbacteria,mitochondriacontaintheirownDNAlocatedwithin themitochondrialmatrix.Iffoundoutsidethematrix,suchasthe cytosolorextracellularspace,mtDNAcanbeperceivedasforeign andpotentiallytoxic.Suchmoleculesreleasedfromtheirnatural compartmentsasaresultofcellularstressand/orinjuryaretermed damage-associatedmolecularpatterns(DAMPs)andcaninitiatea non-infectiousinflammatoryresponse,wherebycytosolicand/or extracellular patternrecognitionreceptors(PRRs)recognizeand activateinflammatorypathwaystopromptinnateimmunity(Roh andSohn,2018).

TFAM is the majorprotein comprising nucleoids, and TFAM downregulation hasbeenshown in postmortem idiopathicPD brainsandcorrelateswithalossof7SDNA-associatedmtDNA tran-scriptionanddepletion(Grunewaldetal.,2016).InTFAM-knock downmouseembryonicfibroblasts,lossofTFAMleadstomtDNA escapeintothecytoplasmpromptingits“foreign”recognitionand subsequentactivationofthecyclicGMP-AMPsynthase-stimulator ofinterferongenes(cGAS-STING)innateimmuneresponse,thereby resultinginproinflammatorycytokinesignaling(Fig.1)(Westetal., 2015).

Asmitophagyselectively degradesmalfunctioning mitochon-dria,itisplausiblethatmitophagymayreducetheexpulsionof DAMPsfrommitochondria.Comparedtowildtypemice, Parkin-deficientmicepresentedwithsignificantlyhigherconcentrations ofIL-6,IFN␤1,IL-12p70,IL-13,CXCL1,CCL2andCCL4inserum, which wasdependentoncGas-STING activation.Human serum frombiallelicParkin-mutationcarriers alsoshowedsignificantly higherlevelsofIL-6,IL-1␤,andCCL4comparedtohealthycontrols, suggestingthatlackofParkinresultsinanincreaseincytokines preceding symptomatic neurodegeneration (Sliter et al., 2018). IFN␤1,a type 1interferon, is produced upon STING activation. In similar fashion, in ourrecent biomarker study, serum from Parkin-mutationcarriersshowedhigherlevelsofcell-free circulat-ingmtDNAandIL-6levelscomparedtobothidiopathicPDpatients andhealthycontrols.Moreover,IL-6levelscorrelatedwithdisease durationinParkinmutationcarriers(Borscheetal.,2020).

5. Treatment

TheoverwhelmingmajorityofParkinmutationcarriersrespond favorablytoLevodopatreatment(>98%).Ofthosewithreported

information,93%respondwelltoLevodopaandonlyasmall minor-ityshowsamoderate(4%)orminimal(3%)response,respectively (www.mdsgene.org).Althoughprospectivestudiesarestilllacking, itappearsthatdeepbrainstimulationisaseffectiveinParkin muta-tioncarriersasinidiopathicPDpatients(deOliveiraetal.,2019;

Kimetal.,2014;Rizzoneetal.,2019).

Morerecently,therapeuticapproachesarebeingexploredthat targetspecificParkinmutation-induced(dys-)functionincluding mitophagy.Asmallmoleculeactivatorofmitophagy,either acti-vatingParkinorPINK1directlyorinhibitingParkin’scounterpart, the ubiquitin-specific protease USP30, are in preclinical devel-opment(Miller and Muqit,2019).It hasalso beenargued that Parkin-PDpatientswouldbeparticularlywell-suitedcandidates fordopaminergiccellreplacementtherapiesbasedonthefrequent confinementoftheirneurodegenerationtothenigrostriatal path-way and ontheir overall younger age and rarer occurrence of comorbidities(Kunathetal.,2019).Inthiscontext,itisexcitingto notethatpatient-derivedmidbraindopaminergicprogenitorcells, differentiated in vitrofrom autologous iPSCs, were successfully implantedinapatientwithidiopathicPD.Thecellswere demon-stratedtohave thephenotypicproperties ofSN parscompacta neuronsandwereimplantedintobothputaminawithouttheneed forimmunosuppression.Positron-emissiontomographywiththe useoffluorine-18-L-dihydroxyphenylalanineindicatedgraft sur-vivalwhichwasparalleledbystabilizationorevenimprovement ofPDsigns andsymptoms at18–24monthsafter implantation (Schweitzeretal.,2020).Itremainstobeexploredwhether implan-tationof (mutation-corrected)autologousiPSC-derived neurons wouldbeanequallyviabletherapeuticstrategyforParkin-linked PD.

Finally,thedetectionofelevatedcytokinelevelsintheserum ofpatientswithParkinmutationssuggeststhatanti-inflammatory treatmentscouldbeconsideredtomodulatetheprogressionofPD inthesecases(Borscheetal.,2020).

Acknowledgements

CKreceivesfundingwithintheframeworkofSysMedPD (Euro-pean Union’s Horizon 2020 research and innovation program). CK and AG are funded by the German Research Foundation (FOR2488,GR3731/5-1).AGandKWaresupportedbythe Lux-embourgNationalResearchFund(ATTRACTcareerdevelopment grant,FNR9631103;INTERgrant,FNR11250962).

References

AlvesdaCosta,C.,Duplan,E.,Rouland,L.,Checler,F.,2018.Thetranscriptionfactor

functionofParkin:breakingthedogma.Front.Neurosci.12,965.

Bender,A.,Krishnan,K.J.,Morris,C.M.,Taylor,G.A.,Reeve,A.K.,Perry,R.H.,Jaros,E.,

Hersheson,J.S.,Betts,J.,Klopstock,T.,Taylor,R.W.,Turnbull,D.M.,2006.High

levelsofmitochondrialDNAdeletionsinsubstantianigraneuronsinagingand Parkinsondisease.Nat.Genet.38,515–517.

Bernardini,J.P.,Brouwer,J.M.,Tan,I.K.,Sandow,J.J.,Huang,S.,Stafford,C.A.,

Banko-vacki,A.,Riffkin,C.D.,Wardak,A.Z.,Czabotar,P.E.,Lazarou,M.,Dewson,G.,2019.

ParkininhibitsBAKandBAXapoptoticfunctionbydistinctmechanismsduring mitophagy.EMBOJ.,38.

Borsche,M.,König,I.R.,Delcambre,S.,Petrucci,S.,Balck,A.,Brüggemann,N.,

Zim-prich,A.,Wasner,K.,Pereira,S.L.,Avenali,M.,Deuschle,C.,Badanjak,K.,Ghelfi,J.,

Gasser,T.,Kasten,M.,Rosenstiel,P.,Lohmann,K.,Brockmann,K.,Valente,E.M.,

Youle,R.J.,Grünewald,A.,Klein,C.,inpress.Mitochondrialdamage-associated

inflammationhighlightsbiomarkersinPRKN/PINK1parkinsonism.Brain.

deOliveira,L.M.,Barbosa,E.R.,Aquino,C.C.,Munhoz,R.P.,Fasano,A.,Cury,R.G.,2019.

DeepbrainstimulationinpatientswithmutationsinParkinson’sdisease-related genes:asystematicreview.Mov.Disord.Clin.Pract.6,359–368.

Deng,H.,Dodson,M.W.,Huang,H.,Guo,M.,2008.TheParkinson’sdiseasegenes

pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila.Proc.Natl.Acad.Sci.U.S.A.105,14503–14508.

Dorsey,E.R.,Bloem,B.R.,2018.TheParkinsonPandemic-Acalltoaction.JAMA

Neu-rol.75,9–10.

Geisler,S.,Holmstrom,K.M.,Skujat,D.,Fiesel,F.C.,Rothfuss,O.C.,Kahle,P.J.,Springer,

W.,2010. PINK1/Parkin-mediatedmitophagyis dependentonVDAC1 and

(6)

Grunewald,A.,Kasten,M.,Ziegler,A.,Klein,C.,2013.Next-generationphenotyping usingtheparkinexample:timetocatchupwithgenetics.JAMANeurol.70, 1186–1191.

Grunewald,A.,Rygiel,K.A.,Hepplewhite,P.D.,Morris,C.M.,Picard,M.,Turnbull,D.M.,

2016.MitochondrialDNAdepletioninrespiratorychain-deficientparkinson

diseaseneurons.Ann.Neurol.79,366–378.

Gugneja,S.,Virbasius,C.M.,Scarpulla,R.C.,1996.Nuclearrespiratoryfactors1and2

utilizesimilarglutamine-containingclustersofhydrophobicresiduestoactivate transcription.Mol.Cell.Biol.16,5708–5716.

Kane,L.A.,Lazarou,M.,Fogel,A.I.,Li,Y.,Yamano,K.,Sarraf,S.A.,Banerjee,S.,Youle,

R.J.,2014.PINK1phosphorylatesubiquitintoactivateParkinE3ubiquitinligase

activity.J.CellBiol.205,143–153.

Kasten,M.,Hartmann,C.,Hampf,J.,Schaake,S.,Westenberger,A.,Vollstedt,E.J.,

Balck,A.,Domingo,A.,Vulinovic,F.,Dulovic,M.,Zorn,I.,Madoev,H.,Zehnle,H.,

Lembeck,C.M.,Schawe,L.,Reginold,J.,Huang,J.,Konig,I.R.,Bertram,L.,Marras,

C.,Lohmann,K.,Lill,C.M.,Klein,C.,2018.Genotype-phenotyperelationsforthe

Parkinson’sdiseasegenesparkin,PINK1,DJ1:MDSGenesystematicreview.Mov. Disord.33,730–741.

Kim,H.J.,Yun,J.Y.,Kim,Y.E.,Lee,J.Y.,Kim,H.J.,Kim,J.Y.,Park,S.S.,Paek,S.H.,Jeon,B.S.,

2014.Parkinmutationanddeepbrainstimulationoutcome.J.Clin.Neurosci.21,

107–110.

Kitada,T.,Asakawa,S.,Hattori,N.,Matsumine,H.,Yamamura,Y.,Minoshima,S.,

Yokochi,M.,Mizuno,Y.,Shimizu,N.,1998.Mutationsintheparkingenecause

autosomalrecessivejuvenileparkinsonism.Nature392,605–608.

Klein,C.,Pramstaller,P.P.,Kis,B.,Page,C.C.,Kann,M.,Leung,J.,Woodward,H.,

Castel-lan,C.C.,Scherer,M.,Vieregge,P.,Breakefield,X.O.,Kramer,P.L.,Ozelius,L.J.,

2000.Parkindeletionsinafamilywithadult-onset,tremor-dominant

parkin-sonism:expandingthephenotype.Ann.Neurol.48,65–71.

Kraytsberg,Y.,Kudryavtseva,E.,McKee,A.C.,Geula,C.,Kowall,N.W.,Khrapko,K.,

2006.MitochondrialDNAdeletionsareabundantandcausefunctional

impair-mentinagedhumansubstantianigraneurons.Nat.Genet.38,518–520.

Kunath,T.,Natalwala,A.,Chan,C.,Chen,Y.,Stecher,B.,Taylor,M.,Khan,S.,Muqit,

M.M.K., 2019. ArePARKINpatients idealcandidates fordopaminergic cell

replacementtherapies?Eur.J.Neurosci.49,453–462.

Kuroda,Y.,Mitsui,T.,Kunishige,M.,Shono,M.,Akaike,M.,Azuma,H.,Matsumoto,

T.,2006.Parkinenhancesmitochondrialbiogenesisinproliferatingcells.Hum.

Mol.Genet.15,883–895.

Lucking,C.B.,Durr,A.,Bonifati,V.,Vaughan,J.,DeMichele,G.,Gasser,T.,Harhangi,

B.S.,Meco,G.,Denefle,P.,Wood,N.W.,Agid,Y.,Brice,A.,2000.FrenchParkinson’s

DiseaseGeneticsStudy,G.,EuropeanConsortiumonGeneticSusceptibilityin Parkinson’s,D,Associationbetweenearly-onsetParkinson’sdiseaseand muta-tionsintheparkingene.N.Engl.J.Med.342,1560–1567.

McLelland,G.L.,Soubannier,V.,Chen,C.X.,McBride,H.M.,Fon,E.A.,2014.Parkin

andPINK1functioninavesiculartraffickingpathwayregulatingmitochondrial qualitycontrol.EMBOJ.33,282–295.

Mecocci,P.,MacGarvey,U.,Kaufman,A.E.,Koontz,D.,Shoffner,J.M.,Wallace,D.C.,

Beal,M.F.,1993.OxidativedamagetomitochondrialDNAshowsmarked

age-dependentincreasesinhumanbrain.Ann.Neurol.34,609–616.

Miller,S.,Muqit,M.M.K.,2019.TherapeuticapproachestoenhancePINK1/Parkin

mediatedmitophagyforthetreatmentofParkinson’sdisease.Neurosci.Lett. 705,7–13.

Narendra,D.,Tanaka,A.,Suen,D.F.,Youle,R.J.,2008.Parkinisrecruitedselectivelyto

impairedmitochondriaandpromotestheirautophagy.J.CellBiol.183,795–803.

Parkinson,J.,2002.Anessayontheshakingpalsy.1817.J.NeuropsychiatryClin.

Neurosci.14,223–236,discussion222.

Pickrell,A.M.,Huang,C.H.,Kennedy,S.R.,Ordureau,A.,Sideris,D.P.,Hoekstra,J.G.,

Harper,J.W.,Youle,R.J.,2015.Endogenousparkinpreservesdopaminergic

sub-stantianigralneuronsfollowingmitochondrialDNAmutagenicstress.Neuron 87,371–381.

Rizzone,M.G.,Martone,T.,Balestrino,R.,Lopiano,L.,2019.Geneticbackgroundand

outcomeofDeepBrainStimulationinParkinson’sdisease.ParkinsonismRelat. Disord.64,8–19.

Roh,J.S.,Sohn,D.H.,2018.Damage-associatedmolecularpatternsininflammatory

diseases.ImmuneNetw.18,e27.

Rothfuss,O.,Fischer,H.,Hasegawa,T.,Maisel,M.,Leitner,P.,Miesel,F.,Sharma,

M.,Bornemann,A.,Berg,D.,Gasser,T.,Patenge,N.,2009.Parkinprotects

mito-chondrialgenomeintegrityandsupportsmitochondrialDNArepair.Hum.Mol. Genet.18,3832–3850.

Sarraf,S.A.,Raman,M.,Guarani-Pereira,V.,Sowa,M.E.,Huttlin,E.L.,Gygi,S.P.,Harper,

J.W.,2013.LandscapeofthePARKIN-dependentubiquitylomeinresponseto

mitochondrialdepolarization.Nature496,372–376.

Schweitzer,J.S.,Song,B.,Herrington,T.M.,Park,T.Y.,Lee,N.,Ko,S.,Jeon,J.,Cha,Y.,

Kim,K.,Li,Q.,Henchcliffe,C.,Kaplitt,M.,Neff,C.,Rapalino,O.,Seo,H.,Lee,I.H.,

Kim,J.,Kim,T.,Petsko,G.A.,Ritz,J.,Cohen,B.M.,Kong,S.W.,Leblanc,P.,Carter,

B.S.,Kim,K.S.,2020.PersonalizediPSC-Deriveddopamineprogenitorcellsfor

Parkinson’sdisease.N.Engl.J.Med.382,1926–1932.

Seirafi,M.,Kozlov,G.,Gehring,K.,2015.Parkinstructureandfunction.FEBSJ.282,

2076–2088.

Shiba-Fukushima,K.,Imai,Y.,Yoshida,S.,Ishihama,Y.,Kanao,T.,Sato,S.,Hattori,

N.,2012.PINK1-mediatedphosphorylationoftheParkinubiquitin-likedomain

primesmitochondrialtranslocationofParkinandregulatesmitophagy.Sci.Rep. 2,1002.

Shin,J.H.,Ko,H.S.,Kang,H.,Lee,Y.,Lee,Y.I.,Pletinkova,O.,Troconso,J.C.,Dawson,

V.L.,Dawson,T.M.,2011.PARIS(ZNF746)repressionofPGC-1alphacontributes

toneurodegenerationinParkinson’sdisease.Cell144,689–702.

Sliter,D.A.,Martinez,J.,Hao,L.,Chen,X.,Sun,N.,Fischer,T.D.,Burman,J.L.,Li,Y.,

Zhang,Z.,Narendra,D.P.,Cai,H.,Borsche,M.,Klein,C.,Youle,R.J.,2018.Parkin

andPINK1mitigateSTING-inducedinflammation.Nature561,258–262.

Stevens,D.A.,Lee,Y.,Kang,H.C.,Lee,B.D.,Lee,Y.I.,Bower,A.,Jiang,H.,Kang,S.U.,

Andrabi,S.A.,Dawson,V.L.,Shin,J.H.,Dawson,T.M.,2015.Parkinlossleadsto

PARIS-dependentdeclinesinmitochondrialmassandrespiration.Proc.Natl. Acad.Sci.U.S.A.112,11696–11701.

Suliman,H.B.,Keenan,J.E.,Piantadosi,C.A.,2017.Mitochondrialquality-control

dys-regulationinconditionalHO-1(-/-)mice.JCIInsight2,e89676.

Tan,M.M.X.,Malek,N.,Lawton,M.A.,Hubbard,L.,Pittman,A.M.,Joseph,T.,Hehir,

J.,Swallow,D.M.A.,Grosset,K.A.,Marrinan,S.L.,Bajaj,N.,Barker,R.A.,Burn,

D.J.,Bresner,C.,Foltynie,T.,Hardy,J.,Wood,N.,Ben-Shlomo,Y.,Grosset,D.G.,

Williams,N.M.,Morris,H.R.,2019.GeneticanalysisofMendelianmutationsin

alargeUKpopulation-basedParkinson’sdiseasestudy.Brain142,2828–2844.

West,A.P.,Khoury-Hanold,W.,Staron,M.,Tal,M.C.,Pineda,C.M.,Lang,S.M.,

Best-wick,M.,Duguay,B.A.,Raimundo,N.,MacDuff,D.A.,Kaech,S.M.,Smiley,J.R.,

Means,R.E.,Iwasaki,A.,Shadel,G.S.,2015.MitochondrialDNAstressprimesthe

antiviralinnateimmuneresponse.Nature520,553–557.

Zheng,L.,Bernard-Marissal,N.,Moullan,N.,D’Amico,D.,Auwerx,J.,Moore,D.J.,

Knott,G.,Aebischer,P.,Schneider,B.L.,2017.Parkinfunctionallyinteractswith

Références

Documents relatifs

Etienne Dufranc 1 , Arnaud Del Bello 1,2 , Julie Belliere 1,3,4 , Nassim Kamar 1,2,3 , Stanislas Faguer 1,3,4* on behalf of the TAIDI (Toulouse Acquired Immune Deficiency and

-Langatte et Jack Muller, Economie de l’entreprise ,Dunod,3 ème édition,2001. -Robert Reix , traitement des informations ,édition

(Here M* is used to denote the complex conjugate transpose of the complex matrix or vector M.) The reason for the terminology is that the domain of strongly stable

Notre étude met en évidence une dérégulation de Flt3 et des MAPKs p38 dans les PH CD34 + et les MK des patients atteints de MFP et ceci, quelque soit leur statut mutationnel

(C) Histogram showing fold-changes in the expression of the selected genes following mechanical stimulation (7% strain), electrical stimulations (5 V/cm) and electromechanical

We propose a generalized notion of an AMLE for a large class of isometric Lipschitz extension problems, and prove a general theorem for the existence of what we call a quasi-AMLE..

Si vous êtes frileuses, vous trouverez Aux Trois Tours, pour la maison, des robes de chambres — tenues d'intérieur mœlleuses à souhait, en rouge, violet ou bleu, qui mettent de

In the present study, changes in extreme precipita- tion and streamflow processes in the Dongjiang River Basin in southern China are investigated with several nonparamet- ric