• Aucun résultat trouvé

The Ekedahl invariants for finite groups

N/A
N/A
Protected

Academic year: 2021

Partager "The Ekedahl invariants for finite groups"

Copied!
16
0
0

Texte intégral

(1)

The

Ekedahl

invariants

for

finite

groups

Ivan Martino1

Departmentof Mathematics,UniversityofFribourg,1700Fribourg,Switzerland

In2009Ekedahlintroducedcertaincohomologicalinvariantsoffinitegroupswhich are naturally related to the Noether Problem. We show that these invariants aretrivialfor every finite groupinGL3(k) and for thefifthdiscreteHeisenberg group H5. Moreover in the case of finite linear groups with abelian projective reduction,theseinvariants satisfya recurrencerelation inacertainGrothendieck groupforabeliangroups.

LetV beafinitedimensionfaithfullinearrepresentationofafinitegroupG overafieldk ofcharacteristic primeto theorderofG.InspiredbyaworkofBergström[1],Ekedahlin[4]and [5]investigatedamotivic versionofpointcountingoverfinitefields.OneapplicationofEkedahl’sresultsistostudywhentheequality

{GL(V )/G} = {GL(V )} (1)

holdsintheKontsevichvalueringK0(Vark) ofalgebraick-varieties.

Alltheknowncases wherethisequalityfailsarecounterexamplestotheNoetherProblem.Inthe begin-ningofthelastcentury,Noether[13]wonderedabouttherationalityofthefieldextensionk(V )G/k forany

finitegroupG andany fieldk,where k(V )G aretheinvariants ofthefieldofrationalfunctionsk(V ) over theregularrepresentationV ofG.(TheNoetherProblemcanbe statedforany arbitraryfield,butwewill notneedthefullgenerality.)

Thefirst counterexample,Q(V )Z/47Z/Q,was givenby Swanin[18] and it appearedduring1969. Inthe

1980s morecounterexamples werefound: for everyprime p Saltman[16] and Bogomolov [3] showed that there exists a group of order p9 and, respectively, of order p6 such that the extension C(V )G/C is not

rational.

Saltman used the second unramified cohomology group of the field C(V )G, H2

nr(C(V )G,Q/Z), as a

cohomological obstruction to rationality. Later, Bogomolov found a group cohomology expression for H2nr(C(V )G,Q/Z) whichnowbearshisnameand isdenotedbyB

0(G).

E-mailaddress:ivan.martino@unifr.ch.

1 PartialsupportbytheSwissNationalScienceFoundation:GrantNo. PP00P2_150552/1.

Published in -RXUQDORI3XUHDQG$SSOLHG$OJHEUD  ± which should be cited to refer to this work.

(2)

RecentlyHoshi,KangandKunyavskiiinvestigated thecasewhere|G|= p5.TheyshowedthatB

0(G)= 0

ifandonlyifG belongsto theisoclinismfamilyφ10;see[8].

In2009,Ekedahl[5]defines,foreveryintegerk, acohomological map

Hk: K

0(Vark)→ L0(Ab),

where L0(Ab) isthegroupgenerated bytheisomorphismclasses{G} offinitelygenerated abeliangroups

G under therelation{A⊕ B}={A}+{B}.

Let Li be theclass of theaffine space Ai

k in K0(Vark). Inparticular,L0 is theclass of apoint {∗}=

{Spec(k)}. We observe that Li is invertible in K

0(Vark). To define Hk on K0(Vark) is enough to set

Hk({X}/Lm) = {Hk+2m(X;Z)} for everysmooth and proper k-variety X (for more details see Section 3

in[11]).

The class {BG} ofthe classifyingstack of G isan element of K0(Vark) (seeProposition 2.5.bin[11])

andso onecan define:

Definition1.2.Foreveryintegeri,thei-thEkedahlinvariant ei(G) ofthegroupG isH−i({BG}) inL0(Ab).

WesaythattheEkedahlinvariantsofG aretrivial ifei(G) = 0 forallintegers i= 0.

InProposition2.5.aof[11],theauthor rephrasestheequality(1)intermsof algebraicstacks, usingthe expression

{BG} = {GL(V )/G}

{GL(V )} ∈ K0(Vark).

Since {GL(V )} is invertible inK0(Vark),the equation(1) holds ifand onlyif{BG}={∗} and, ifthis is

thecase,thentheEkedahlinvariantsofG aretrivial, becauseH0({∗})={Z} andHk({∗})= 0 for k= 0.

These new invariants seema naturalgeneralization of the Bogomolov multiplierB0(G) because of the

following result.

Theorem 1.3. (SeeThm. 5.1of [4].) Assume char(k)= 0. If G isa finite group, thenei(G) = 0 forevery

i < 0, e0(G) = {Z}, e1(G) = 0 and e2(G) = {B0(G)∨}, where B0(G)∨ is the Pontryagin dual of the

Bogomolov multiplierof thegroupG.

Moreover, for i > 0, the invariant ei(G) is an integer linear combination of classes of finite abelian

groups.

Using that e2(G) = {B0(G)∨}, one finds some groups with non-trivial Ekedahl invariants (and so

{BG} = {∗}).

Corollary. If G is one of the group of order p9 defined in [16], of order p6 defined in [3] or of order

p5 belonging to the isoclinism family φ

10 (see [8]), then the second Ekedahl invariant is non-zero and so

{BG}= {∗}.

ItisnotclearifhigherEkedahlinvariantsareobstructions totherationalityoftheextensionk(V )G/k.

InCorollary5.8of[4],itisalsoprovedthat{BZ/47Z}= {∗}∈ K0(VarQ),butitisunknownif{BG}= {∗}

impliesanegativeanswertotheNoetherproblem.

Totheauthor’sknowledge,therearenoexamplesoffinitegroupG suchthatB0(G)= 0 (i.e.e2(G) = 0)

ande3(G)= 0.ItisworthmentioningthatPeyre[14]showedaclassoffinitegroupshavingB0(G)= 0,but

non-trivialthirdunramifiedcohomology:itisnotcleartotheauthorifthisisconnectedtothenon-triviality ofhigherEkedahlinvariants.

(3)

TherearealotofclassesoffinitegroupsthathavetrivialEkedahlinvariants(seeSection4of[11]).We wantto mentiononeexamplerelevantforthis work:ifG⊂ GL1(k),then {BG}={∗}∈ K0(Vark), under

the condition thatk contains a primitive root of unity of degree the exponent of G [4, Proposition 3.2]. Since, everyabeliangroupA is adirectproduct ofcyclic groups,{Bμn}={∗} impliesthat{BA}={∗}:

thiswillbe usefulintheproofofTheorem 3.2.

Inthis paperwefirstgeneralizethejustmentionresult.

Theorem2.4.Assumechar(k)= 0 andassumethatk containsaprimitiverootofunityofdegreetheexponent

ofG. If G isafinite subgroup ofGL3(k),then {BG}={∗} inK0(Vark) andtheEkedahl invariantsofG

aretrivial.

ThecasewhenG isafinitesubgroupofGL4(k) ismorecomplicatedbecauseitinvolvesthestudyofthe

classinK0(Vark) ofresolutionofsingularitiesoftheaffinevarietiesA3/A,forafinite groupA⊂ GL3(k).

Nevertheless,wecan stilltacklethisproblemifweassumethegroundfieldtobe thecomplexfield(and weusethetoricvarietiestools).Indeed,inhigherdimensionweareabletoprovethattheEkedahlinvariants satisfyakindofrecurrenceequationinL0(Ab).

Theorem 3.2. Let G be a finite subgroup of GLn(C) and let H be the image of G under the canonical

projectionGLn(C) → PGLn(C).

IfH isabelianandifPn−1

C /Hhasonlyzerodimensionalsingularities,theneachsingularityistoroidaland

foreveryinteger k

ek(G) + ek+2(G) +· · · + ek+2(n−1)(G) ={H−k(X;Z)},

whereX Pn−1

/H isasmoothandproper resolutionwithnormal crossing toric exceptionaldivisors.

Wefocus,then,onthep-discreteHeisenberggroupHp,whereweonlydealwithcyclicquotient

singular-ities.This is aninterestingcandidate for thestudy of theEkedahl invariants,because B0(Hp)= 0 (using

Lemma4.9in[3])andsothefirstunknownEkedahlinvariantise3(Hp).

Theorem4.4. TheEkedahl invariantsofthefifthdiscrete HeisenberggroupH5 are trivial.

Kanghasproved thattheNoetherproblem fortheHeisenberg groupHp hasapositiveanswer.Indeed

usingTheorem1.9 of[9]oneshowsthattheextension C(xg,g∈ Hp)Hp/C isrational.

We show a general approach for the study of the Ekedahl invariants of Hp, butwe narrow down our

investigationtop= 5 becauseofthedifficultiestoextendthetechnicalresultinTheorem 4.7.Therefore,it isnaturalto conjecturethat:

Conjecture.TheEkedahl invariantsof theHeisenberggroupHp of order p3 are trivial.

Afterapreliminarysectionwherewereview thetheory oftheEkedahlinvariants,inSection2weprove thatthesearetrivialforallfinitesubgroupsofGL3(k).Then,inSection3,westudythefinitelineargroups

withabelianprojectivequotientand inthelastsectionwedealwiththefifthHeisenberg group.

Notation.Alongthewholework,weconsiderfinitelineargroups.InSection2wealsoassumethatk contains aprimitiveroot ofunityofdegreetheexponentofG.InSection3andSection4thegroundfieldisC.

Weset = Spec(k).

Finally,ifX is ascheme with aG-action, then wedenote by X/G theschematic quotient andby [X/G]

thestackquotient.

(4)

1. Preliminaries

InthissectionwereviewthebackgroundandthedefinitionoftheEkedahlinvariants.Amorecomplete and self contained introduction to these new invariants can be found in [11]. In this section we consider finite lineargroupandweworkoverafieldk ofcharacteristic primetotheorder ofG.

TheGrothendieckringofalgebraicvarietiesK0(Vark) isthegroupgeneratedbytheisomorphismclasses

{X} ofalgebraic k-varietiesX,subjectto therelation{X}={Z}+{X \ Z}, forallclosedsubvarietiesZ

of X.ThegroupK0(Vark) hasaringstructure givenby{X}· {Y }={X × Y }.LetL betheclass ofthe

affineline.ThecompletionofK0(Vark)[L−1] withrespectto thedimensionfiltration

FilnK0(Vark)[L−1]



={{X}/Li: dim X− i ≤ n}

iscalled theKontsevichvalueringanddenotedbyK0(Vark).

In[5],EkedahlintroducedtheconceptofGrothendieckgroupofalgebraicstacks.

Definition 1.1.Wedenote byK0(Stackk) theGrothendieckgroupof algebraick-stacks.This isthegroup

generatedbytheisomorphismclasses{X} ofalgebraick-stacksX offinitetypeallofwhoseautomorphism groupscheme areaffine(algebraic k-stacks offinite typewithaffine stabilizers,inshort).Theelements of thisgroupfulfillthefollowingrelations:

1. for eachclosed substackY ofX,{X}={Y }+{Z}, whereZ is thecomplementofY inX;

2. for eachvectorbundle E ofconstantrankn overX,{E}={X × An}.

Similarly to K0(Vark), K0(Stackk) has a ring structure. In Theorem 4.1 of [5] it is proved that

K0(Stackk)= K0(Vark)[L−1,(Ln− 1)−1,∀n∈ N].Moreoverweobserve inLemma 2.2of[11]the

comple-tionmapK0(Vark)[L−1]→ K0(Vark) factorsthrough

K0(Vark)[L−1]→ K0(Stackk)→ K0(Vark).

Theclassifyingstackof thegroupG isusuallydefinedasthestack quotientBG= [/G] and,viathismap,

oneseestheclassoftheclassifyingstack{BG} asanelement ofK0(Vark) (seeProposition2.5.bin[11]).

Using theBittner presentation(see[2]),given an integerk, Ekedahldefines in[5]acohomological map

fortheKontsevichvaluering,sending{X}/Lmto{Hk+2m(X;Z)},foreverysmoothandproperk-varietyX:

Hk: K

0(Vark)→ L0(Ab)

{X}/Lm→ {Hk+2m(X;Z)}.

Ifk = C,itisnaturaltoassigntoeverysmoothandproperk-varietyX theclassofitsintegralcohomology

group Hk(X;Z). If instead k isdifferent from C, then we send {X} to the class {Hk(X;Z)} defined as dim Hk(X;Z) {Z}+p{tor Hk(X;Zp)}.Thismapcan beextendedto K0(Vark).InSection3of[11], we

provethatthismap iswelldefined.

Notation.Everycohomologygroup(ifnotexplicitlyexpresseddifferently)isthesingularcohomologygroup withintegercoefficients,thatisHk(−) = Hk(−; Z).

Definition1.2.Foreveryintegeri,thei-thEkedahlinvariant ei(G) ofthegroupG isH−i({BG}) inL0(Ab).

WesaythattheEkedahlinvariantsofG aretrivial ifei(G) = 0 forallintegersi= 0.

(5)

2. ThefinitesubgroupsofGL3(k)

Inthissectionweassumethatchar(k) isprimewiththeorderofG andthatk containsaprimitiveroot ofunityofdegreetheexponentofG.LetV beann-dimensionalk-vectorspace.WeassumeG tobeafinite subgroupGLn(k) andH beitsquotientinPGLn(k):

0 K G H 0

0 Gm GLn(k) PGLn(k) 0.

WesometimesuseforsimplicityPn−1 fortheprojectivespaceP(V ).

Togetinformationabout{BG},westudy theclassofthestackquotient{[P(V )/G]}.

Lemma2.1. (SeeLemma2.4of [11].){BG}(1 +L + · · · + Ln) ={[P(V )/G]} in K

0(Vark).

Bydefinition H acts on P(V ) and P(V )/G = P(V )/H. Their stack quotients are not isomorphic, butthe

classesof theirstack quotientsareequalinK0(Vark).

Proposition 2.2. Let L → X be a G-equivariant line bundle over a smooth scheme X, where the group

G acts faithfully on L. Assume that the kernel K of such action on X is cyclic and set H =G/K. Then

{[X/G]}={[X/H]}∈ K

0(Vark).

As a consequence, if G is a subgroup of GL(V ) and H is its quotient in PGL(V ), then {[P(V )/G]} =

{[P(V )/H]}∈ K0(Vark).

Proof. Thenaturalmap[L/G]→ [X/G] isak-torsorandusingProposition1.1ii in[5]oneobtains{[L/G]}=

(L− 1){[X/G]}. Similarlyfrom[(L/K)/H]→ [X/H], one gets{[(L/K)/H]}= (L− 1){[X/H]}.The first partof

thestatementfollowsfrom[(L/K)/H]= [L/G].

ThesecondpartofthestatementfollowsbysettingL= V \{O},X =P(V ) withthenaturaltautological bundle. 2

Wenowset upnotations, definitionsandremarks regardingthequotient ofalgebraic varietiesbyfinite groups.(Thisisnecessary tointroducenextlemma.)

LetY beasmoothcomplexquasi-projectivealgebraicvarietyandletA beafinitegroupofautomorphisms ofY .LetY →Y/Abethequotientmap andy be¯ theimageofy.

A nontrivial element of G ⊂ GL(V ) is a pseudo-reflection if it fixes pointwise a codimension one hy-perplaneinV . (Intheliteraturepseudo-reflectionsaresometimescalledreflections.)Thepseudoreflection subgroup, Pseudo (G), of G ⊂ GL(V ) is its subgroup generated by pseudo-reflections. The Chevalley– Shephard–ToddTheorem saysthatthequotientV/G issmoothifandonlyifG= Pseudo (G).

ThewellknownCartan’s Lemmasaysthatforallthepointsy ofY ,theactionofthestabilizerStaby(A)

of y on Y induces an action of Staby(A) on the tangent space on y, TyY . Moreover the analytic germ

(Y/A,y) is¯ isomorphicto (TyY/A,O),¯ where O is¯ theimage ofthe originO∈ TyY under thequotient map

TyY TyY/A. Aneasy consequence is thatfor allthe points y ofY , Staby(A)⊆ GLdim(Y ) and onealso

provesthatp isasingularpoint ofV/G,p∈ Sing (V/G),ifand onlyifPseudo (Stab

p(G))= Stabp(G).

Comparingthe classes {[P(V )/H]} and {P(V )/H}, we are going to prove thatthe Ekedahl invariants for

everyfinitesubgroup G inGL3(k) aretrivial.Weproveitbyinductiononn,where G isafinitesubgroup

ofGLn(k), andn= 1,2,3.Thebasecase,n= 1,iscoveredbyProposition3.2in[4].

(6)

Proposition 2.3. If G is a finite subgroup of GL2(k) then {BG} = {∗} in K0(Vark) and the Ekedahl

invariantsof G are trivial.

Proof. LetU be thenon-empty opensubsetofP1where H actsfreely.Weset I =P1\ U,thefiniteset of

non-trivial stabilizerpoints. Usingproperty1)inDefinition 1.1,wewrite

{[P1 /H]} = {U/H} +  p∈I/H {[p/Stab p(H)]} = {U/H} +  p∈I/H {B Stabp(H)}.

Weobservethatthesumistakenovertheorbitsofthenon-trivial stabilizerpoints.Similarly,intheclassical quotient, {P1 /H} = {U/H} +  p∈I/H {∗}.

Therefore,comparing thelatterexpressions:

{[P1

/H]} = {P1/H} +



p

({B Stabp(H)} − {∗}).

Using (inorder) that{[P1/G]}= (1 +L) {BG},Proposition 2.2,theprevious formulaand P1/

H∼=P1,one

has

{BG}(1 + L) = {P1} +

p

({B Stabp(H)} − {∗}).

Using Cartan’s Lemma, Stabp(H) is a subgroup of GL1 and, hence, for Proposition 3.2 in [4],

{B Stabp(H)}={∗} for everyp ∈I/H. Hence,{BG}(1+L)= {P1} andthis implies {BG} = 1,because

Ln− 1 isinvertible inK

0(Vark),L2− 1= (L− 1)(L+ 1) andso 1+L isinvertible too. 2

Notethatweactuallyprovedthat{[P1

/H]}={P1} inK0(Vark) andinasimilarwaywetacklethenext

case. We are goingto useresolution of singularities and for this we requirethe characteristic of thebase fieldtobezero.

Theorem 2.4. Assume char(k)= 0. If G is a finite subgroup of GL3(k) then{BG} = 1 in K0(Vark) and

theEkedahl invariantsofG are trivial.

Proof. Using equation {[P2/G]} = 1 +L + L2{BG} and Proposition 2.2, we know that {BG}{P2} =

{[P2

/H]}.Since{P2} isinvertibleinK0(Vark),itissufficienttoprovethat{[P2/H]}={P2}.

LetU betheopensubsetofP2whereH actsfreelyandletC bethecomplementofU inP2.Wedenoteby

C0andC1respectivelythedimensionzeroandthedimensiononeclosedsubsetsofC sothatC = C0 C1.

Oneobservesthat[C0/H] isthedisjointunionofafinitenumberofquotientstacks[Oi/H] whereOiarethe

orbitsof Pi ∈ C0 undertheaction ofH.We note that[Oi/H]= [Pi/StabPi(H)]=B StabPi(H).ByCartan’s

Lemma,StabPi(H) isasubgroupofGL2(k) and then,byusingProposition 2.3,

{[Oi/H]} = {B StabPi(H)} = {Oi/H} = {∗}.

Therefore{[C0/H]}={C0/H}.

Weobservethat{[S/H]}={S/H} holdsforeveryfinite stablesubsetS ofP2 withthesameargument.

ThesetC1 istheunionofafinitenumberoflinesLi.WedenotebyI theunionofpairwiseintersections

Li∩ Lj,fori= j.WealsodenotebyC1 thecomplementof I inC1.

(7)

LetL be aline inC1 andSL = StabL(H).Byachange ofcoordinate we can assumeL to be the line

at infinity of P2 and so S

L ⊂ GL2. Another way to rephrase this is to observe that StabL(PGL3(k)) =

GL2(k) k2.UsingSL⊂ GL2(k) andProposition 2.3,onegets{[L/SL]}={L/SL}.

We set L = L∩ C1. Then [L/SL] = [L 

/SL]∪ [L\L



/SL]. By whatwe said in the zero-dimensional case

{[L\L /SL]}={L\L  /SL} and so {[L  /SL]}={L 

/SL}. We call Oj theorbit of Lj under H. Since C1 is the

disjointunionofafinite numberof orbitsOj,then

{[C1/H]} = {[C1∗/H]} + {[I/H]} =  j {[Oj/H]} + {[I/H]} = j {[Lj/S Lj]} + {[I/H]} = j {Lj/H} + {I/H} = {C1/H}.

Summarizingtheprovenfacts,onehas

{[P2

/H]} = {[U/H]} + {[C0/H]} + {[C1/H]} = {U/H} + {C0/H} + {C1/H} = {P2/H}.

Therefore there remains to provethat {P2

/H}= {P2}. For this purpose let X be aresolution of the

sin-gularities of P2

/H, π : X P2/H. Castelnuovo’s theorem implies every unirational surface is rational in

characteristiczero(see Chapter Vof [7])andonecan construct abirational morphism, π : X → P2.The

quotientsingularitiesofP2

/H are rationalsingularitiesand theexceptionaldivisorDy ofy ∈ SingP2/His

atreeof P1 (seefor instance [17]).This impliesthatD

y = ny

j=1P1,where ny isthenumberof irreducible

componentsofDy.Then{Dy}= ny{P1}−{∗}.(Thesumrunsovertheintersectionpointsofthecopies

ofP1.)

Since the graphof the resolution is atree, then there are exactly ny− 1 intersection points in {∗}.

Hence{Dy}= ny{P1}− (ny− 1){∗}= nyL+{∗}.Then, {P2 /H} = {X} −  y ({Dy} − {y}) = {X} −  y (nyL + {∗} − {∗}) ={X} − L y ny={X} − Ln,

where n = yny is the number of irreducible components in the full exceptional divisor D = ∪yDy.

Similarly,onegets{P2}={X}−Lm,wherem isthenumberofirreduciblecomponentsinthefullexceptional divisorE oftheresolution X−→ Pπ 2.

Weshallprovethatm= n.Letusconsider thefollowing spectralsequencefromthemap π : X→P2

/H:

E2i,j= HiP2/

H; Rjπ.QX



⇒ Hi+j(X;Q) .

Since the map is an isomorphism away from a finite number of points, Rjπ.Q

X is zero elsewhere

but those points. If y is one of those points, then HiP2/H; (Rjπ.QX)y



equals Hiπ−1(y);Q and so

H0π−1(y);Q=Qn and for i > 0, Hi

π−1(y);Q = 0. The spectral sequence degenerates and then we obtain

0→ Q → H2(X;Q) → Qn → 0.

This implies H2(X;Q) = Qn+1. Similarly, for π : X → P2, one gets H2

(X;Q) = Qm+1 and, thus, the

equalitym= n. 2

(8)

ItisnaturaltoaskiftheprevioustheoremremainsvalidifGL3(k) isreplacedbyGLn(k),forn≥ 4.For

largeenoughn,itwillfail.Forn= 4 onecanmodifythefirstpartoftheproofofTheorem 2.4toshowthat

{[P3/

H]}={P3/H}∈ K0(Vark). We donot know whetheror not{P3/H}= {P3} or whetherTheorem 2.4

remains valid for n = 4. Indeed, proving that{P3

/H}= {P3} involves the study of the resolution of the

quotientsA3

k/AforcertainA⊂ GL3(k).

3. Finitegroupswith abelianprojectivequotient

InthissectionthegroundfieldisassumetobeC.Inwhatfollowswearegoingtousethefollowingfact. Lemma 3.1. Let Y be a smooth quasi-projective complex algebraic variety and let A be a finite group of

automorphisms ofY .LetY →Y/A bethecanonicalquotientmapandy be¯ theimageof y.

Lety¯∈Y/A.Thegerm(Y/A,y) is¯ asimplicialtoroidalsingularity(i.e.locallyisomorphic,intheanalytic

topology,totheorigininasimplicialtoricaffine variety)ifandonlyifthequotientStaby(A)/Pseudo(Staby(A))

in TyY isabelian.

Aproof canbe found,forinstance,inthelemmainSection1.3of[15].

AsintheprevioussectionG isasubgroupofGLn(C) andH isitsquotientinPGLn(C).IfH isabelian

and ifthesingularitiesofPn−1

/H arezerodimensional,then,for thepreviouslemma, suchsingularitiesare

toroidal.Underthisconditions,theEkedahlinvariantssatisfyarecursiveequation. Theorem3.2.If H isabelian andifPn−1

C /H hasonlyzero dimensionalsingularities,thenforeveryintegerk

ek(G) + ek+2(G) +· · · + ek+2(n−1)(G) ={H−k(X;Z)}, (2)

where X→Pn−1

/H isasmoothandproperresolutionwith normal crossingtoric exceptionaldivisors.

Wefirstshowatechnicallemma.WedenotebypX(t)=i≥0βi(X)tithevirtualPoincarépolynomialof

acomplexalgebraicscheme X,where βi(X)= dim(Hi(X;Q)) isthei-th BettinumberofX (herewe use

thenotationofSection4.5of[6]).ForeverysmoothprojectivetoricvarietyY ,pY(t) isanevenpolynomial

(seeSection5.2of[6]). WeobservethatHPn−1

/H;Q= HPn−1;QHbecauseH isafinitegrouponthesmoothschemePn−1

andthecardinalityofH isinvertibleinQ.WeremarkthatHPn−1;Q= HPn−1;Z⊗ Q.Anyelement

of HPn−1;Q can be written as ni=1−1aihi where h is the first Chern class of OPn−1(1) and ai ∈ Q.

Now,weobserve theactionistrivialonthecoefficientsai anditcomes fromalinearactioninGLn andso

HPn−1;QH

= HPn−1;Q. Hence,ifG isafinite subgroupofGL

n,then pPn−1/H(t)= pPn−1(t).

Lemma 3.3.LetG, H, Pn−1

/H andX satisfythehypothesis ofTheorem 3.2.Then:

i) {BG}(1+L+· · · + Ln−1)={Pn−1

/H} and,in particular,

ek(G) + ek+2(G) +· · · + ek+2(n−1)(G) =H−k{Pn−1/H}. (3)

ii) Every singularityof Pn−1

/H isatoroidalsingularityand

{Pn−1 /H} = {X} −  y ({Dy} − {y}) , (4)

http://doc.rero.ch

(9)

where the sum runs over y ∈ SingPn−1

/H; Dy = π−1(y) is the exceptional toric divisor of

the resolution of y with irreducible components decomposition Dy = D1y ∪ · · · ∪ Dyr; {Dy} =

 q≥1(−1)q+1i1<···<iq{D i1 y ∩ · · · ∩ D iq y }.

iii) Ifk is non-zero andeven,onehas

1 = βk(X)− y  q≥1 (−1)q+1  i1<···<iq βk(Di1 y ∩ · · · ∩ Diyq) and,fork = 0, 1 = β0(X)− y  q≥1 (−1)q+1  i1<···<iq  β0(Di1 y ∩ · · · ∩ Diyq)− 1  . iv) βodd(X)= 0.

Proof. AsintheproofofProposition 2.3andofTheorem 2.4,weconsiderallthesubvarietiesofPn−1globally fixedbycertainsubgroupA ofH.ThissubgroupisabelianandbyProposition3.2in[4]{BA}={∗}.Thus,

{[Pn−1

/H]}={Pn−1/H}.Using inorder,{BG}(1 +L + · · · + Ln) ={[P(V )/G]} inK0(Vark),Proposition 2.2

andthelatterequality,weobtainthefirstpartof i).

Forthesecondpartof i),wenote thatapplying thecohomologicalmapH−k onthelefthandside, one has:

H−k{BG}(1 + · · · + Ln−1)=H−k({BG}) + · · · + H−k{BG}Ln−1

=H−k({BG}) + · · · + H−k−2(n−1)({BG})

= ek(G) +· · · + ek+2(n−1)(G) .

Regardingitem ii):EverystabilizergroupofH isabelianandsoitisforthequotientofStabx(H) modulo

Pseudo (Stabx(H)) in TxX. Then, by Lemma 3.1, each singularity of {Pn−1/H} is an isolated simplicial

toroidal singularity. One produces a toric resolution X with normal crossing toric exceptional divisors (see Section2.6 of [6]). This means that each intersectionDi1

y ∩ · · · ∩ D

iq

y is asmooth toric variety.The

resolution X Pn−1

/H restricted to the pull back of Pn−1/H\ SingPn−1/H is an isomorphism and then

{X}−y{Dy}={P

n−1

/H}−y{y}.

Therefore,pDy(t)=



q≥1(−1)q+1i1,...,iqpDi1y ∩···∩Dyiq(t) and theodddegree coefficientsof pDy(t) are

zero.

Finally,wewanttocomputethevirtualPoincarépolynomialofX via formula(4)andusingpPn−1/H(t)=

pPn−1(t),

pPn−1(t) = pX(t)−



y

(pDy(t)− 1).

Comparing,degreebydegree,thepolynomialinthelefthandsideandintherighthandside,onegetsthe Bettinumbersequalities anditem iv). 2

ProofofTheorem 3.2. Fromthefirst itemofthe previouslemma, weknowthat(3) holds.We shallshow thatH−k{Pn−1

/H}={H−k(X;Z)}.Using theprevioustechnicallemmawe express{Pn−1/H} in (4)as a

sumof smoothandpropervarietiesandsmoothtoricvarieties{Di1

y ∩ · · · ∩ D

iq

y}.

Ifk > 0 or k <−2(n− 2), H−k({Dy} − {y}) = 0 fordimensional reasonand so the recurrenceholds.

Thesame holds, if k is oddintegerbetween 0 and −2(n− 2), because the cohomology of asmooth toric varietyistorsion freebySection5.2in[6].

(10)

It remains to consider thecase 0≤ k = 2j ≤ −2(n− 2). For these values,inthe left handside of(3), therearecertainEkedahlinvariantswithnegativeindices(sozero),e0(G) andsomepositiveevenEkedahl

invariants e2(G) +· · · + e2j+2(n−1)(G) that are an integer linear combination of classes of finite abelian

groups(weusethesecond partofTheorem 1.3).

Ontherighthandsideof(3)theonlypossibletorsionpartis{tor H−k(X;Z)},becausethecohomologies of a smooth toric varietyis torsion free.Hence, what remains to proveis that the free partscancel each other: thisisequivalentto item iii) ofthepreviouslemma. 2

4. Thediscrete HeisenberggroupHp

Letp beanodd.Thep-discreteHeisenberg groupHpisthefollowing subgroupofGL3(Fp):

Hp= ⎧ ⎪ ⎨ ⎪ ⎩M (a, b, c) notation = ⎛ ⎜ ⎝ 1 a b 0 1 c 0 0 1 ⎞ ⎟ ⎠ : a, b, c ∈ Fp ⎫ ⎪ ⎬ ⎪ ⎭.

WeobservethatHpisgeneratedbyX = M(1,0,0),Y = M(0,0,1) andZ = M(0,1,0) modulotherelations

ZYX = X Y,Zp=Xp =Yp= M (0,0,0),ZX = X Z andZY = YZ.ThecenterofH

p,Z Hp,iscyclicand

generated byZ. Wedenote byAp the group quotient Hp/Z Hp = Z/pZ×Z/pZ. Moreover, Hp is the central

extension ofZ/pZbyZ/pZ×Z/pZ:

1Z/pZ→ Hp φ

−→Z/pZ×Z/pZ→ 1. (5)

UsingLemma 4.9in[3], oneproves thattheBogomolovmultiplierB0(Hp) iszeroforeveryprimep.

We alsoremark thatthediscrete Heisenberg grouphas p2+ p− 1 irreduciblecomplexrepresentations:

p2of themareonedimensionalandtheremainingp− 1 are faithfulandp-dimensional.

Let V bea faithfulirreducible p-dimensional complexrepresentation ofHp, Hp ρ

−→ GL(V ).There is a

naturalactionofHponV anditinducesanactiononthecomplex(p− 1)-dimensional spacePp−1.Oneso

defines thequotient Pp−1

/Hp.

Since Z belongsto the center,ρ(Z) = e2πip Id, for some0< i < p,where Id is theidentity element of

GL(V ). Hence,thecenteractstriviallyonPp−1 andPp−1

/Hp∼=P

p−1

/Ap.From Lemma 3.1,we knowthatif

Pp−1

/Aphassingularities,thentheyaretoroidal.WestudythesesingularitiesandsowefocusonStabx(Ap).

Proposition 4.1.Letx∈ Pp−1.If theaction ofAp atx isnotfree, then|Stabx(Ap)|= p.

Proof. Call Wx the one dimensional subvector-space of V corresponding to x. By assumption, the

sta-bilizer of x is a nontrivial subgroup of Ap and, by Lagrange’s Theorem, it could have order p or p2. If

Stabx(Ap) = Ap,thenforeveryg∈ Ap,gWx= WxandApWx= Wx.ThenHpWx= Wx.Therefore,Wx is

a onedimensionalirreducibleHp-subrepresentationofV contradictingthefactthatHpactsirreducibly. 2

Thereareexactlyp+ 1 subgroupsoforderp inAp.LetB beoneofthem.WedefineB to beasubgroup

ofHp suchthatthesurjectionin(5)restrictedto it,φ| B,isagroupisomorphism:B ∼=Z/pZ⊂ φ−1(B). WerestricttherepresentationHp

ρ

−→ GLp(C) tothesubgroupB = Z/pZandwewriteV asadirectsumof

onedimensionalirreduciblerepresentations:V =⊕χ∈Z/pZVχ,where ={v ∈ V : g ·v = χ(g)·v,∀g ∈Z/pZ}.

In other words, B fixes p one dimensional linear subspaces and so B fixes p points ∈ Pp−1, with

StabPχ(Ap)= B,thatis (P

p−1)B={P

χ0,. . . ,Pχp−1}.

Proposition 4.2.If B and B are twodistinct p-subgroupsof Ap,then(Pp−1)B∩ (Pp−1)B



=∅.

(11)

Proof. Trivially,underthehypothesis,Ap= B⊕ B andifP∈ (Pp−1)B∩ (Pp−1)B



,thenStabP(Ap)= Ap,

contradictingProposition 4.1. 2

WeobservethatAp/Bactsregularlyon(Pp−1)B.Thus,thesepointslieinthesameorbitundertheaction

ofAp/B andthismeansthattheycorrespond toauniquepoint yB inPp−1/Ap.

Theorem4.3. ThequotientPp−1/Ap has p+ 1 simplicial toroidalsingularpoints.

Proof. Thereareexactlyp+ 1 subgroups,B, oforderp in Ap.Eachof themcorresponds toapointyB in

Pp−1

/Ap.ByProposition 4.2,thesepointsaredistinct.

Lety∈ Pp−1 suchthaty = y¯

B. Weconsidertheactionof Staby(Ap) onthetangentspace TyPp−1.The

pseudo-reflection groupPseudo (Staby(Ap)) = {e}, because it is asubgroup of Staby(Ap)=Z/pZand, so,

itiseitherthetrivialgrouporStaby(Ap). Thelatterisnotpossible becauseStaby(Ap) stabilizes onlythe

originof the vector space TyPp−1. Thus, Pseudo (Staby(Ap))= Staby(Ap) in TyPp−1 and by Lemma 3.1

thesesingularitiesarealsotoroidalandsimplicial. 2

We now outline a method to calculate the Ekedahl invariants for Hp: we write {Pp−1/Ap} as a sum of

classesof smoothandpropervarietiesandweuseTheorem 3.2. LetXp

f

−→Pp−1

/Apbe theresolutionofthep+ 1 toroidalsingularitiesof P p−1

/Ap.Onehasthefollowing

geometricalpicture: P(V ) π U π|U Xp f Pp−1 /Ap Up f|Up Up

whereU istheopensubsetofP(V ) whereAp actsfreely;Up=U/Ap.

SinceAp isabelian,using Theorem 3.2onegets

ek(G) + ek+2(G) +· · · + ek+2(p−1)(G) ={H−k(Xp;Z)}.

BecauseofTheorem 1.3,e0(Hp) ={Z} ande1(Hp) = e2(Hp) = 0.Thus,wefocusone3(Hp).Wearegoing

toshowthate3(H5) = e4(H5) = 0.Wesetp= 5 becauseofthedifficultyincomputingtor(H∗(Xp;Z)) for

p> 5.

Claim.tor(H5(X5;Z))= 0.

Usingthisclaim,weprovethemainresult.

Theorem4.4. TheEkedahl invariantsofthefifthdiscreteHeisenberg groupH5 are trivial.

Proof. Byusing Theorem 3.2 for G= H5, n= 5, k =−2· 5+ 5 and X = X5 and also by applying the

secondpartofTheorem 1.3,wehavee3(H5) ={tor

 H5(X5;Z)  }.ByPoincaréduality, e3(H5) ={tor  H5(X5;Z)  } = {torH4(X5;Z)  }

http://doc.rero.ch

(12)

andthis iszerobytheclaim.Similarly,fork =−2· 5+ 6, e4(H5) ={tor  H2·5−6(X5;Z)  } = {torH4(X5;Z)  }.

Moreover, ei(H5) = 0 for i ≥ 5. Indeed, e5(H5) = {tor

 H3(X5;Z)  } = e2(H5) = 0 and e6(H5) = {torH2(X5;Z) 

}= e1(H5) = 0.Inaddition,ei(H5) = 0 for i> 6 fordimensionalreason. 2

Weobserve thatthesameproof wouldfollow forHp forp> 5 if wehad enoughinformation aboutthe

vanishing of the torsion in thecohomology of Xp. This factand the recentproof (byKang in[9]) of the

rationality oftheextensionC(xg,g∈ Hp)Hp/C suggest thefollowingconjecture:

Conjecture.The Ekedahlinvariants oftheHeisenberggroupHp of orderp3 aretrivial.

4.1. Proof oftheclaim

To obtaintheclaimitsuffices toshow thatHodd(U5;Z) = 0 andH5E(X5;Z) = 0, whereE is theunion

ofexceptionaldivisorsoftheresolutionX5−→f P5−1/A5.

Theorem4.5. The cohomologyof thesmoothopensubset Up of P(V )/Ap fork < 2p− 2 is

Hk(Up;Z) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Z if k = 0; 0 if k is odd; Z ⊕ (Z/pZ)k2+1 if k= 0 and even.

Proof. Since Ap acts freely on U , let us consider the Cartan–Leray spectral sequence (see Section 5 or

Theorem 8bis.9 in[12])relativeto thequotientmapπ : U → U p: Ei,j2 = H i Ap; Hj(U ;Z)  ⇒ Hi+j (Up;Z) .

Let Sp = Pp−1\ U. One sees that Hi(U ;Z) ∼= Hi(P(V ); Z) for i < 2p− 3, H2p−3(U ;Z) = Z[Sp]0 and

H2p−3(U ;Z) iszero otherwise.Here Z[Sp] is thegroup freely generated bythe p(p+ 1) pointsin Sp and

Z[Sp]0is thekernel oftheargumentationmap.

Toread theEi,j2 -termsweobserve thatthecohomologyofAp hasaZ-algebrastructure:

H∗(Ap;Z) ∼= Z[x1

, x2, y]

(y2, px

1, px2, py)

,

where deg(x1) = deg(x2) = 2 and deg(y) = 3. Indeed the Z-algebrastructure comes fromthe Bockstein

operatorforH(Z/pZ;Fp).(Thereadermayfindadetailedproof inAppendixAof[10].)

Inthisproof, weonlycareaboutthetermsE2i,j withj < 2p− 3 wherethedifferentialdi,j2 iszero. Let h be the first Chern class of OPp−1(1) (hence hk generates H2k



Pp−1). Using this notation one

writesanelementofE2i,2k(for2k < 2p− 3)ashk· α whereα∈ HiA

p; H2k(U ;Z)



.Thiskeepstrackofthe differentialHPp−1;Z-algebrastructure(seeChapter2in[12]):for2k < 2p−3,d

3(hk)= k·hk−1d3(h).In

addition,d3(h) isanon-zero multipleofy inH3(Ap;Z).Thus,thedifferentiald3isadegree3 homomorphism

fromH∗(Ap;Z) toitself:

di,2k3 : H

i

(Ap;Z) → Hi+3(Ap;Z)

1→ αy,

fori,k > 0.Then,onecomputesthatfor0≤ j < 2p− 4,onehas

(13)

E4i,j∼= ⎧ ⎪ ⎨ ⎪ ⎩

Hi(Ap;Z) for i even and j = 0;

Z for j≤ 2p − 4 even and i = 0;

0 otherwise

andE40,2p−4 =Z andE 1,2p−4

4 = 0.

Moreover, the spectral sequence degenerates, Ei,j

= E4i,j, for j = 0 with i < 2p− 2, 0< j < 2p− 4

and j = 2p− 4 with i = 0,1. We onlyremark thatfrom the E∞-level, one reads the information about

H∗(Up;Z) viaEi,j = gr



Hi+j(Up;Z)



. 2

Thefollowing resultisalsotrueforeveryprimep.

Theorem 4.6. Each singularity of Pp−1

/Ap is locally isomorphic to the origin of the toric affine

vari-ety Ap−1

/Z/pZ. Moreover it is of the type 1p(1,2,. . . ,p − 1), that is Z/pZ acts on Ap−1 diagonally via

j→ diag(ζj,ζ2j,. . . ,ζ(p−1)j) where ζ isaprimitivep-root ofunity.

Proof. InTheorem 4.3 we havealreadyshown thatPp−1

/Ap has p+ 1 zero dimensionalsimplicialtoroidal

singularities.Wekeepusing thenotationinthebeginningofSection2.

LetV decomposeasadirectsumofonedimensionalirreduciblerepresentations,V =⊕χ∈Z/pZVχ.Apoint

Pχ in(Pp−1)B correspondstosomeVχ forsomecharacterχ and soV/Vχ=χ∈ B.

Theaction of Ap/B on(Pp−1)B isregular and using Cartan’s Lemma, thegerm (Pp−1/Ap,yB) is locally

isomorphicto (TPχPp−1

/Stab(Ap),O),¯ where O is¯ the image of theorigin ofTPχPp−1 underthe quotient

map

TPχPp−1→TPχPp−1/StabPχ(Ap).

Without loss of generality letχ = 1. Using those factswe obtain TPχPp−1 =1=χ∈Z/pZCeχ. Thus, the

action of Z/pZ on thetangent space is given by g· v = χ(g)v forany v ∈ Vχ. Therefore Z/pZ acts viathe homomorphismZ/pZ → (C∗)p−1 sending j to(ζj,ζ2j,. . . ,ζ(p−1)j),whereζ isap-rootofunity. 2

Toproceedweneedaresolutionforsuchtoroidalsingularitiesand forthisreasonwehaveto setp= 5. Weconstruct the toric resolution of A4

/Z/5Z using the computeralgebra program Magma.The resolution

is made by adding a suitable number of rays to the single cone of the fan of A4

/Z/5Z (see Exercise on

page 35 of [6]). The new fan is denoted by Δ5 and consists of 10 rays and 21 maximal cones. To each

ray one associated a toric divisor, Di = V (Star(ri)), in the resolution of A4/Z/5Z. There are 6 new rays

thatcorrespond to 6 exceptional divisors Di for1≤ i ≤ 6. LetD be the unionof them.One hasthatif

k > 3,thenDi1∩ · · · ∩ Dik =∅ (thatisthere existnomaximalconesofΔ5,generated onlybyexceptional

divisors).WewillnotwritedowntheraysandtheconesinΔ5;thedetailsofthiscomputationcanbefound

inChapters 6and7of[10].AnexampleoffanofD1isinFig. 1.

Theorem4.7. H5E(X5;Z) = 0.

Proof. LetE = f−1(SingP4

/A5) betheunionofexceptionaldivisorsfromtheresolutionofthesixtoroidal

singularitieslocally isomorphicto A4

/Z/5Z.ThenE =

y∈SingP4/A5E

(y),withE(y)= f−1(y), and eachE(y)

isisomorphictoD.Thus HE(X5;Z) =  y∈SingP4/A5 H D(X5;Z) = H∗D(X5;Z)⊕6.

SincewewanttoprovethatH5E(X5;Z) = 0,fromnow onwe focusonH∗D(X5;Z).

(14)

Fig. 1. ThefanofthethreedimensionaltoricvarietyD1.Thefaniscompleteandweshowtheassociatedtriangularizationofthe 2-dimensionalsphere(thesimplexr4,r3,r6closesthesphere).Weshowashellingorderofthistriangulationthatisanordering ofthemaximalconeinthefanofD1satisfyingproperty(∗) onpage101of[6].The2-simplexhavingverticesr4,r3andr6isσ13.

Table 1

TheE1-termsandthedifferentialsd1.

0 0 0 9 ⊕ H2(D i1∩ Di2∩ Di3) d3,81 −−−→ ⊕ H4(D i1∩ Di2) d2,81 −−−→ ⊕ H6(D i1) 8 0 0 0 7 ⊕ H0(D i1∩ Di2∩ Di3) d3,61 −−−→ ⊕ H2(D i1∩ Di2) d2,6 1 −−−→ ⊕ H4(D i1) 6 0 0 0 5 0 ⊕ H0(Di1∩ Di2) d2,61 −−−→ ⊕ H2(D i1) 4 0 0 0 3 0 0 ⊕ H0(Di1) 2 0 0 0 1 0 0 0 0 −3 −2 −1 −ki

We denote Di1 ∩ Di2 ∩ · · · ∩ Dik by Di1,i2,...,ik. To compute H

D(X5;Z), we use the second quadrant

spectral sequence E−k,i1 =  i1<···<ik HiD i1,i2,...,ik(X5;Z) ⇒ H D(X5;Z) .

TheE1-termsaredefinedforeveryi andfork > 0.

We first observe that Di1,i2,...,ik is a smooth toric variety corresponding to the star of the cone

ri1,. . . ,rik,so

HD

i1,...,ik(X5;Z) = H

∗−2 dim( ri1,...,rik)(Di

1,...,ik;Z) .

Recallingthatthereareat mosttriple intersections,weimmediately havethatE1−k,i= 0 ifk > 3.

Table 1 shows the E1-termsof thespectral sequence and the non-zero differentials. All the indexes of

the direct sums run over the indicies of the exceptional divisors Di. All the cohomologies are integral

cohomologies.

Now,we focusonthehomomorphism

⊕ H2

(Di1,i2)

d2,61

−−−→ ⊕ H4

(Di1) .

Let us assume thatKer(d2,61 ) = 0. Then E 2,6

2 = 0 and so E∞2,6 = E22,6 = 0. We remark that thespectral

sequenceconverges toHk+i+1D (X5;Z),thatis

Ek,i = grHk+i+1D (X5;Z)



.

(15)

Table 2

Thematrixofthedifferentiald2,61 .Wedecoratecolumnsandrowswiththebasiselements.

τ25,6 τ22,4 τ22,3 τ32,3 τ21,3 τ21,4 τ21,6 τ21,5 τ31,5 τ21,2 τ31,2 τ41,2 τ51,2 τ3(4) 0 1 0 0 0 1 0 0 0 0 0 0 0 τ3(6) ±1 0 0 0 0 0 1 0 0 0 0 0 0 τ4(3) 0 0 0 1 0 0 0 0 0 0 0 0 0 τ5(3) 0 0 1 0 1 0 0 0 0 0 0 0 0 τ4(5) 0 0 0 0 0 0 0 0 1 0 0 0 0 τ5(5) 1 0 0 0 0 0 0 1 0 0 0 0 0 τ6(2) 0 −2 0 0 0 0 0 0 0 0 0 0 1 τ7(2) 0 −1 1 0 0 0 0 0 0 0 0 1 0 τ8(2) 0 0 0 0 0 0 0 0 0 0 1 0 0 τ9(2) 0 +1 0 1 0 0 0 0 0 1 0 0 0 τ5(1) 0 0 0 0 0 0 −2 1 −2 0 0 0 0 τ6(1) 0 0 0 0 0 0 −3 0 −3 0 0 0 0 τ10(1) 0 0 0 0 0 −2 0 0 0 0 0 0 1 τ11(1) 0 0 0 0 1 −1 2 0 2 0 0 1 0 τ12(1) 0 0 0 0 0 0 4 0 4 0 1 0 0 τ13(1) 0 0 0 0 0 1 3 0 3 1 0 0 0

(Since columns are counted from k = −1, there is a shift by one.) The terms of the spectral sequence involvedingrH5D(X5;Z)



areE−1,5,E−2,6 andE−3,7 andallofthemarezero.Thus,H5D(X5;Z) = 0.

ItremainstoprovethatKer(d2,61 )= 0.Byusing,essentially,thetheoremonpage102of[6],onecomputes

fromthefan Δ5 a basis{τj(i1,i2)} forthe cohomologies H

2(D i1,i2) andabasis (i1) j } for H 4(D i1). Using

thetools of intersection theory fortoric varieties (see Chapter 5in [6]),one constructsthe matrix of the homomorphismd2,61 :thisisinTable 2.Thedetailsofthecomputationofsuchhomomorphismcanbefound

inChapter 7of[10]. Thismatrixhasazerodimensionalkernelover Z. 2 Theorem4.8. tor(H5(X5;Z))= 0.

Proof. Letusconsider thelongexactsequence

· · · → H∗E(X5;Z) → H∗(X5;Z) → H∗(U5;Z) → . . .

FromLemma 3.3iii),weknowthatβodd(X

5)= 0 andhenceHodd(X5;Z) = tor



Hodd(X5;Z)



.Theorem 4.5 showsthatHodd(U5;Z) = 0 andhenceweobtain

· · · → H5

E(X5;Z) → tor(H5(X5;Z)) → 0.

Theorem 4.7saysthatH5E(X5;Z) = 0 andonehastor(H5(X5;Z))= 0. 2

Acknowledgements

I would like to thank to Torsten Ekedahl for suggesting me this problem and for his advice. I thank Anders Björner and Angelo Vistoli for the priceless help and great support.I am very grateful to Fabio Toniniforhissuggestions.

Finally, my deep gratitude goes to Zinovy Reichstein for the comments on the paper. I have really appreciatedthesuggestedimprovementsonSection2.Inparticular,Proposition 2.2hasthisformbecause ofhiscomments.

(16)

The author is partially supported by the Swiss National Science Foundation, Grant No. PP00P2_ 150552/1.

References

[1]JonasBergström, Cohomologyof modulispacesofcurvesof genusthreeviapointcounts, J.Reine Angew. Math.622 (2008)155–187.

[2]Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004) 1011–1032.

[3]F.A.Bogomolov, TheBrauer groupof quotient spacesof linearrepresentations, Izv.Akad. NaukSSSR, Ser.Mat.51 (1987)485–516,688.

[4]TorstenEkedahl,Ageometricinvariantofafinitegroup,arXiv:0903.3148v1,2009.

[5]TorstenEkedahl,TheGrothendieckgroupofalgebraicstacks,arXiv:0903.3143v2,2009.

[6]WilliamFulton,Introductiontotoricvarieties,in:TheWilliamH.RoeverLecturesinGeometry,in:AnnalsofMathematics Studies,vol. 131,PrincetonUniversityPress,Princeton,NJ,1993.

[7]RobinHartshorne,AlgebraicGeometry,GraduateTextsinMathematics,vol. 52,Springer-Verlag,NewYork–Heidelberg, 1977.

[8]AkinariHoshi,Ming-ChangKang,BorisE.Kunyavskii,Noether’sproblemandunramifiedBrauergroups,AsianJ.Math. 17(2013)689–713.

[9]Ming-Chang Kang,RetractrationalityandNoether’sproblem,Int.Math.Res.Not.IMRN(2009)2760–2788.

[10] Ivan Martino, The Ekedahl invariants for finite groups, Licentiate/Half PhD thesis, 2012, http://homeweb.unifr.ch/ martinoi/pub/documents/EkedahlInvariantIvanMartino.pdf.

[11]IvanMartino,IntroductiontotheEkedahlinvariants,toappearinMath.Scand.arXiv:1312.6496,2015.

[12]JohnMcCleary,AUser’sGuidetoSpectralSequences,seconded.,CambridgeStudiesinAdvancedMathematics,vol. 58, CambridgeUniversityPress,Cambridge,2001.

[13]EmmyNoether,GleichungenmitvorgeschriebenerGruppe,Math.Ann.78(1917)221–229.

[14]EmmanuelPeyre,Unramifiedcohomologyofdegree3andNoether’sproblem,Invent.Math.171(2008)191–225.

[15]NicolasPouyanne,Unerésolutionensingularitéstoriquessimplicialesdessingularités-quotientdedimensiontrois,Ann. Fac.Sci.Toulouse(6)1(1992)363–398.

[16]DavidJ.Saltman,Noether’sproblemoveranalgebraicallyclosedfield,Invent.Math.77(1984)71–84.

[17]MarkSpivakovsky,SandwichedsingularitiesanddesingularizationofsurfacesbynormalizedNashtransformations,Ann. Math.(2)131(1990)411–491.

[18]RichardG.Swan,InvariantrationalfunctionsandaproblemofSteenrod,Invent.Math.7(1969)148–158.

Figure

Fig. 1. The fan of the three dimensional toric variety D 1 . The fan is complete and we show the associated triangularization of the 2-dimensional sphere (the simplex r 4 , r 3 , r 6 closes the sphere)

Références

Documents relatifs

Show that the local ring O X,x is a discrete valuation ring.. Describe the valuation v and the uniformising

In [2, Section 1] we have proved that the order of the ^-invariants of connected infinite loop spaces is finite and we have given upper bounds for them.. The purpose of the

Iwasawa invariants, real quadratic fields, unit groups, computation.. c 1996 American Mathematical

One can capture all three structures using a modified version of (ϕ, Γ)-modules called Wach modules ; in case X is defined over Q , one can again modify the base ring for the

THEOREM 5.2: Let V be a threefold of general type, and suppose that for n sufficiently large, InKvl has no indeterminate locus and the.. fixed components are normal

Keywords: surface braid group, sphere braid group, projective plane braid group, configuration space, lower algebraic K-theory, conjugacy classes, virtually cyclic

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We say that a type ω ∈ T n is semisimple regular if it is the type of a semisimple regular adjoint orbit of G F (or the type of an irreducible Deligne-Lusztig character, see §6.6)..