• Aucun résultat trouvé

Dynamical Systems/Ordinary Differential Equations

N/A
N/A
Protected

Academic year: 2023

Partager "Dynamical Systems/Ordinary Differential Equations"

Copied!
6
0
0

Texte intégral

(1)

Dynamical Systems/Ordinary Differential Equations

Birth control in generalized Hopf bifurcations

Marc Chaperon

Institut de mathématiques de Jussieu & Université Paris 7, UFR de mathématiques, case 7012, 2, place Jussieu, 75251 Paris cedex 05, France Received 20 August 2007; accepted after revision 17 September 2007

Available online 22 October 2007 Presented by by Étienne Ghys

Abstract

We state a very general lemma ensuring, at partially elliptic rest points of families of vector fields or transformations, the birth of normally hyperbolic invariant compact manifolds. A few examples follow.To cite this article: M. Chaperon, C. R. Acad. Sci.

Paris, Ser. I 345 (2007).

©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Contrôle des naissances dans les bifurcations de Hopf généralisées. Nous énonçons un lemme très général garantissant, aux points stationnaires partiellement elliptiques de familles de champs de vecteurs ou de transformations, la naissance de variétés compactes invariantes normalement hyperboliques. Quelques exemples suivent.Pour citer cet article : M. Chaperon, C. R. Acad.

Sci. Paris, Ser. I 345 (2007).

©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Cette Note annonce un travail [2] fondé sur la ferme conviction que, dans le couplage d’oscillateurs, apparaissent d’autres phénomènes intéressants que des mouvements quasi-périodiques.

Hypothèses dans le cas des champs de vecteurs

Soit(u, x)Zu(x)Rmune famille assez différentiable de champs de vecteurs à paramètreuRk, définie au voisinage d’un point de Rk×Rmque l’on peut supposer être 0, telle queZ0(0)=0 et que les valeurs propres de DZ0(0)soient imaginaires pures, simples et différentes de 0, d’oùm=2n.

Les valeurs propres de partie imaginaire positive de DZ0(0) étant notées iβ1, . . . ,n, on suppose que, pour 1jn, l’équationβj =n

1(pq avec(p, q)(Nn)2et

(p+q)4 n’a que les solutions évidentes pj=qj+1 etp=qpour=j.

Un changement(u, x)(u, gu(x)) de coordonnées locales permet de supposer queZu(0)≡0, queRm=Cn, queDZ0(0)est de la formez(iβ1z1, . . . ,nzn)et queZu=Nu+Ru, oùRu s’annule à l’ordre 4 en 0 etNuest

E-mail address:chaperon@math.jussieu.fr.

1631-073X/$ – see front matter ©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.crma.2007.09.016

(2)

donnée par(1). Dans cette formule,z=(z1, . . . , zn)Cnetλj, μj, aj , bj sont des fonctions réelles différentiables telles queλj(0)=0 etμj(0)=βj. Il en résulte que l’applicationρdeCnsurRn+définie parρ(z)=(|z1|, . . . ,|zn|) envoieNusur

jj(u)

aj (u)r2)rj∂r

j.

À chaque vRk on associe le champ de vecteurs Xv(x)=

jxj(Dλj(0)v

aj (0)x2)∂x

j surRn. Il est invariant sous l’action deO(1)nengendrée par les symétries par rapport aux hyperplans de coordonnées. On suppose v0Sk1 tel queXv0(x)admette une variété invariante compacte Σv0 normalement hyperbolique [4,6], invariante parO(1)net dont l’intersection avec l’orthant positifRn+est connexe, d’où la propriété suivante :

(P) SiRJ,J⊂ {1, . . . , n}, est le plus petit sous-espace de coordonnées contenantΣv0, alorsΣv0est transversedans RJ aux sous-espaces de coordonnées contenus dansRJ.

Par stabilité de l’hyperbolicité normale, il existe un voisinage ouvertVv0 dev0dans Sk1tel que chaqueXv avec vVv0 ait une variété invariante normalement hyperboliqueΣvdifféomorphe à Σv0 et proche de celle-ci, unique, doncO(1)n-invariante et possédant la propriété(P )avec le mêmeJ. Il en résulte queS0,v:=ρ1v)CJ est une sous-variété compacteU(1)n-invariante, de mêmes différentiabilité et codimension queΣv.

Théorème 1(lemme de naissance). Sous ces hypothèses, il existe un ouvertUv0 de Rk adhérent à 0dont le cône tangent1 en0est un cône ouvert de sommet0contenantR+Vv0, tel que chacun des Zu avecuUv0 admette une variété invariante compacte normalement hyperboliqueSudifféomorphe àS0,v0, de mêmes indice et co-indice que la variété invarianteΣv0 deXv0, dépendant de manière au moinsC1+α deuet tendant vers{0}quandu→0. Plus précisément, pour tout chemin lisseγ:(R+,0)→(Rk,0)vérifiantγ (0)˙ ∈Vv0, on aγ (ε)Uv0pourε >0assez petit etlimε0ε1/2Sγ (ε)=S0,γ (0)˙ au sens au moinsC1.

Exemple 0.SiJ= ∅et doncΣv0= {0}, l’hypothèse signifie que lesj(0)v0sont tous non nuls et lesSu= {0}sont des zéros hyperboliques.

Exemple 1 (bifurcations de Hopf). Pour J = {}, l’hypothèse signifie que l’on a j(0)v0=0 pour j =, a(0)Dλ(0)v0>0, Σv0 = {xRJ: |x| =

(0)v0

a(0) }etS0,v0 = {zCJ: |z| =

(0)v0

a(0) }. Les Su sont donc des orbites périodiques et l’on obtient une version un peu faible de la bifurcation de Hopf.

Exemple 2 (naissance de tores invariants de dimensiond n).Pour #J =d >1, l’hypothèse est vérifiée avec dimΣv0 =0 si et seulement si l’on a les trois conditions suivantes : la matriceA=(aj )j,J est inversible, le pointyv0 :=A1(Dλj(0)v0)jJRJ est à coordonnées strictement positives et le zéroxv0RJ deXv0 défini par xv0j= √yv0j,jJ, est hyperbolique. Dans ce cas,Σv0 =O(1)nxv0 etS0,v0=ρ1(xv0)est un toreTd ainsi (donc) que lesSu.

Exemple 3(naissance de sphères invariantes de dimension 2d−1, 2dn).Pour #J =d >1, il peut arriver [7,8,2] queΣv0 soit une sphèreSd1entourant l’origine dansRJ, cede manière structurellement stable pourkn (et mêmekd) [2]. LesSu sont alors des sphèresS2d1. Sid=n, elles entourent l’origine dansCnet le résultat ressemble plus à la bifurcation de Hopf que la naissance de tores invariants.

Exemple 4(naissance d’autres variétés de López de Medrano–Meersseman [9,1] invariantes).Le lemme précédent permet (entre autres) de traiter facilement les cas où Mathilde Kammerer-Colin de Verdière avait mis en évidence la naissance de produits de sphères [7] et ceux où nous avions mis en évidence avec elle la naissance de sommes connexes de tels produits [3].

Remarque.Ces exemples ne s’excluent pas mutuellement. Ils seront développés dans [2], qui contiendra aussi la preuve du lemme de naissance. Celui-ci vaut pour les applications : voir ci-après.

1 Ensemble des vitessesγ (0)˙ de chemins dérivablesγ:(R,0)(Rk,0)vérifiantγ (ε)Uv0pourε >0.

(3)

This is an account of work [2] based on the firm belief that, when coupling oscillators, interesting phenomena occur beyond quasiperiodic motions.

1. The birth lemma for vector fields

Hypotheses.Let(u, x)Zu(x)Rmbe a smooth enough family of vector fields with parameteruRk, defined in the neighbourhood of a point ofRk×Rmwhich we may assume to be 0, such thatZ0(0)=0 and that the eigenvalues ofDZ0(0)are pure imaginary, simple and different from 0, hencem=2n.

Denoting by iβ1, . . . ,nthe eigenvalues with positive imaginary part, we assume that, for 1jn, the equation βj=n

1(pqwith(p, q)(Nn)2 and

(p+q)4 admits only the obvious solutionspj=qj+1 and p=qfor=j.

Via a local change of coordinates(u, x)(u, gu(x)), we can suppose thatRm=Cn,Zu(0)≡0, thatL:=DZ0(0) is of the formLz=(iβ1z1, . . . ,nzn)and thatZu=Nu+Ru, whereRu vanishes to order 4 at the origin andNuis a (real) polynomial vector field of degree 3 onCnwhich commutes withLand therefore (by the above hypothesis) is invariant under the natural action ofU(1)n. In other words,

Nu(z)=

zj

λj(u)+iμj(u)n

=1

aj (u)+ibj (u)

|z|2

1jn

, (1)

wherez=(z1, . . . , zn)Cn andλj, μj, aj , bj are differentiable real functions withλj(0)=0 andμj(0)=βj. In particular, the mappingρ:CnRn+ defined byρ(z)=(|z1|, . . . ,|zn|)sendsNu onto the vector field

jj(u)

aj (u)r2)rj∂r

j.

To eachvRk we associate the vector fieldXv(x)=

jxj(Dλj(0)v

aj (0)x2)∂x

j onRn. It is invariant under the action ofO(1)ngenerated by the symmetries with respect to coordinate hyperplanes. We assumev0Sk1 such thatXv0(x)admits a compact normally hyperbolic [4,6] invariant manifoldΣv0, invariant byO(1)nand whose intersection with the non-negative orthantRn+is connected, hence the following property:

(P) IfRJ,J⊂ {1, . . . , n}, is the smallest coordinate subspace which containsΣv0, thenΣv0 is transversalinRJ to the coordinate subspaces lying inRJ.

As normal hyperbolicity is open, there exists an open neighbourhood Vv0 of v0 inSk1 such that every Xv with vVv0 has a normally hyperbolic invariant manifoldΣvdiffeomorphic toΣv0 and close to it, unique and therefore O(1)n-invariant, such thatΣv satisfies (P ) with the sameJ. It follows that S0,v :=ρ1v)CJ is a compact U(1)n-invariant submanifold with the same smoothness and codimension asΣv.

Remarks.For positiveε, the submanifoldε1/2Σv0 is a normally hyperbolic invariant manifold ofXεv0.Thus, if the mappingu1(u), . . . , λn(u))is a submersion at 0 (which is generically the case ifk=n), the existence ofΣv0 is equivalent to that ofνRnsuch that the vector field

jxjj

aj (0)x2)∂x

j has a compact normally hyperbolic invariant manifold as before.

Using diagonal changes of coordinates inCn, one can see that, for each, the functionsaj +ibj are defined up to multiplication by the same positive function ofu.

Theorem 1(birth lemma). Under those hypotheses, there exists an open subsetUv0 ofRk, whose closure contains 0 and whose tangent cone2at0is an open cone with vertex0containingR+Vv0, such that every Zu withuUv0 has a compact normally hyperbolic invariant manifoldSudiffeomorphic toS0,v0, with the same index and co-index as the invariant manifoldΣv0 ofXv0, depending at leastC1+α onuand tending to{0}whenu→0. More precisely, for each smooth path γ:(R+,0)→(Rk,0)withγ (0)˙ ∈Vv0, one hasγ (ε)Uv0 for small enough positiveεand limε0ε1/2Sγ (ε)=S0,γ (0)˙ in the at leastC1sense.

2 Set of all velocitiesγ (0)˙ of differentiable pathsγ:(R,0)(Rk,0)satisfyingγ (ε)Uv0for all positiveε.

(4)

Example 1.0.IfJ= ∅and thereforeΣv0= {0}, the hypothesis means that everyj(0)v0is non-zero, and the lemma does select values ofufor whichSu= {0}is a hyperbolic rest point ofZu.

Example 1.1(Hopf bifurcations).IfJ = {}, the hypothesis means that one hasa(0)Dλ(0)v0>0,j(0)v0=0 forj=v0= {xRJ:|x| =

(0)v0

a(0) }andS0,v0= {zCJ:|z| =

(0)v0

a(0) }. Therefore, theSu’s are periodic orbits and we get a somewhat weak version of the Hopf bifurcation.

Example 1.2 (birth of invariant tori of dimension d n). For #J =d > 1, the hypothesis is satisfied with dimΣv0 =0 if and only if the following three conditions hold: the matrix A=(aj )j,J is invertible, the point yv0:=A1(Dλj(0)v0)jJRJhas all its coordinates positive and the zeroxv0RJofXv0 defined byxv0j= √yv0j, jJ, is hyperbolic. Then,Σv0=O(1)nxv0 andS0,v0=ρ1(xv0)is ad-dimensional torus, hence so are theSu’s.

Example 1.3(birth of invariant spheres of dimension 2d−1,2d n).For #J =d >1, the submanifold Σv0 can be [7,8,2] a sphereSd1around the origin inRJ, a situationwhich can be structurally stable forkn(in fact, kd) [2]. Then, theSu’s are spheresS2d1. Ifd=n, they lie around the origin inCnand the result is much more reminiscent of the Hopf bifurcation than the birth of invariant tori.

In contrast with the latter case, the existence of such a sphere Σv0 is non-trivial. To introduce more familiar objects, one can remark that the change of variablesy=π(x):=(x12, . . . , xn2)sendsXv0 onto the Lotka–Volterra fieldYv0(y)=2

jyj(Dλj(0)v0

aj (u0)y)∂y

j onRn+. The sphereΣv0 is simply the inverse image byπ of the carrying simplexσv0 ofYv0, whose existence can follow from Hirsch’s theorem [5]. For example, ifσv0 is the standard simplex

yj=1 ofRn+, thenΣv0=π1v0)is the unit sphere

xj2=1 ofRnandS0,v0 is the unit sphere |zj|2=1 ofCn. Details will be given in [2].

Example 1.4(birth of other invariant López de Medrano–Meersseman manifolds [9,1]).The birth lemma enables one (among other things) to treat easily the cases where Mathilde Kammerer-Colin de Verdière had established the birth of products of spheres [7] and those where we had established together the birth of connected sums of such products [3].

Note that those examples do not exclude each other.

2. The birth lemma for maps

Hypotheses.LetRk×Rm(u, x)hu(x)Rmbe a smooth enough family of maps, defined in the neighbourhood of a point ofRk×Rmwhich we may assume to be 0, such thath0(0)=0 and that the eigenvalues ofDh0(0)are of modulus 1, simple and different from 1, hence eitherm=2nwith no real eigenvalue, orm=2n−1 with the sole real eigenvalue−1.

Denoting the eigenvalues by e±1, . . . ,e±n, 0< β1<· · ·< βnπ, we assume that, for 1jn, the equation ej = n1ei(pq with(p, q)(Nn)2 and

(p+q)4 admits only the obvious solutionspj =qj+1 and p=qfor=j.

Via a local change of coordinates(u, x)(u, gu(x)), we can suppose thatRm=CnorCn1×R,hu(0)≡0, that Dh0(0)is the mapz(e1z1, . . . ,enzn)and thathu=σgN1

u+Ru, whereRuvanishes to order 4 at the origin, σ (z)=

z ifm=2n, (z1, . . . , zn1,zn) ifm=2n−1, andgNt

uis the flow of a vector fieldNuof the form(1)withλj(0)=0 and μj(0)=βj ifm=2n,

μj(0)=βj forj < nand (of course)μn(u)=bn(u)=0 ifm=2n−1.

As in Section 1, we associate toNu the vector fieldsXv onRn, and we assume that Xv0 has a compact normally hyperbolic invariant manifoldΣv0, invariant byO(1)n and such thatΣv0Rn+is connected. With the notation of Section 1, we have the same result and similar examples:

(5)

Theorem 2(birth lemma). Under those hypotheses, there exists an open subsetUv0 ofRk, whose closure contains0 and whose tangent cone at0is an open cone with vertex0containingR+Vv0, such that everyhu withuUv0 has a compact normally hyperbolic invariant manifoldSu diffeomorphic to S0,v0, with the same index and co-index as the invariant manifoldΣv0 ofXv0, depending at least C1+α onuand tending to {0}whenu→0. More precisely, for each smooth path γ:(R+,0)→(Rk,0)withγ (0)˙ ∈Vv0, one hasγ (ε)Uv0 for small enough positiveεand limε0ε1/2Sγ (ε)=S0,γ (0)˙ in the at leastC1sense.

Example 2.0.IfJ= ∅, the lemma selects values ofufor whichSu= {0}is a hyperbolic rest point ofhu.

Example 2.1 (Poincaré–Andronov and “Hopf ” bifurcations). Of course, if #J =1, the hypothesis has the same meaning forXv0 as in example 1.1.

IfJ= {n},m=2n−1, thenS0,v0 =Σv0 = {zCn1×R: z1= · · · =zn1=0,|zn| =

n(0)v0

ann(0) }. Therefore, theSu’s are 2-periodic orbits and we get a (bad) version of the period doubling bifurcation.

IfJ = {}(with < nifm=2n−1), the hypothesis implies thatS0,v0= {zCJ: |z| =

(0)v0

a(0) }. Therefore, theSu’s are invariant closed curves and we get the “Hopf” bifurcation for maps.

Example 2.2(birth of invariant tori of dimensiondn).For #J=d >1 and dimΣv0=0, as in Example 1.2, the hypothesis implies thatΣv0 =O(1)nxv0. It follows that theSu’s ared-dimensional tori except if m=2n−1 and nJ, in which case they consist of a pair of(d−1)-tori exchanged byhu.

Example 2.3(birth of invariant spheres).For #J =d >1, ifΣv0 is a sphereSd1around the origin inRJ, then the Su’s are(2d−1)-spheres except form=2n−1 andnJ, in which case they are(2d−2)-spheres. Ifd=n, we get a very natural generalization of the Hopf bifurcation for maps.

Example 2.4 (birth of other invariant López de Medrano–Meersseman manifolds).As for vector fields, the birth lemma enables one (among other things) to establish quite easily the birth of products of spheres [7,8] and that of connected sums of such products [3,8].

Again, those examples do not exclude each other. The advantage of maps is that form=3 one can draw pictures.

The content of the present Note will be developed in the forthcoming paper [2].

Acknowledgements

I thank Jean Diebolt for asking me whether the invariant circles of the Hopf bifurcation can generalize as invariant spheres of codimension 1. This work is part of a research project with Santiago López de Medrano. It owes much to conversations with Mathilde Kammerer-Colin de Verdière and Alain Chenciner. I am grateful to François Laudenbach, Robert Moussu and Eduard Zehnder for their encouragement.

References

[1] F. Bosio, L. Meersseman, Real quadrics inCn, complex manifolds and convex polytopes, Acta Math. 197 (1) (2006) 53–127.

[2] M. Chaperon, S. López de Medrano, Generalized Hopf bifurcations, in press.

[3] M. Chaperon, M. Kammerer-Colin de Verdière, S. López de Medrano, More compact invariant manifolds appearing in the non-linear coupling of oscillators, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 301–305.

[4] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971) 193–225.

[5] M.W. Hirsch, Systems of differential equations that are competitive or cooperative. III: Competing species, Nonlinearity 1 (1988) 51–71.

[6] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977.

[7] M. Kammerer-Colin de Verdière, Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions, C. R. Acad.

Sci. Paris, Ser. I 335 (2004) 625–629.

(6)

[8] M. Kammerer-Colin de Verdière, Bifurcations de variétés invariante, Thèse, Université de Bourgogne, décembre 2006.

[9] S. López de Medrano, The space of Siegel leaves of a holomorphic vector field, in: Dynamical Systems, Lecture Notes in Mathematics, vol. 1345, Springer-Verlag, 1988, pp. 233–245.

Références

Documents relatifs

Campāpuraparameśvara in C.96 B, l. In My Son inscription C.96, at his coronation, when he took the reign title Vikrantavarman, we find his entire genealogy. My Son was then the

Mais Max ignore ce que cela implique, et les nouvelles péripéties vécues par le petit garçon dans le film sont toutes liées aux relations qu’il entretient avec les

in  Marathon.  The  section  on  influences  asked  about  the  relative  importance  of  various  personal  and  sys- temic  factors  in 

Official Journal of the European Union 2008 Directive 2008/115/EC of the European Parliament and of the Council of 16 December 2008 on common standards and procedures in Member

– It divide the phase plane into two domains: one domain (i.e. Initial conditions) is attracted by one point and the other domain is attracted to the other equilibrium

Introducing asymptotic operators and asymptotic series at a characteristic direction, we reduce to the study of complexes of differential operators on spaces of

Ceci est dû au fait que le signe négatif de la vorticité relative qui apparaît lorsque l'écoulement va vers le Nord est consistent avec la distribution du profil de vitesse dans

As revealed by photography and cinema, this common “soul” possessed by animal and plant life forms alike, this porosity between plants and animals speaks to