• Aucun résultat trouvé

Weak analytic hyperbolicity of generic hypersurfaces of high degree in <span class="mathjax-formula">$\mathbb{P}^{4}$</span>

N/A
N/A
Protected

Academic year: 2022

Partager "Weak analytic hyperbolicity of generic hypersurfaces of high degree in <span class="mathjax-formula">$\mathbb{P}^{4}$</span>"

Copied!
16
0
0

Texte intégral

(1)

ANNALES

DE LA FACULTÉ DES SCIENCES

Mathématiques

ERWANROUSSEAU

Weak analytic hyperbolicity of generic hypersurfaces of high degree inP4

Tome XVI, no2 (2007), p. 369-383.

<http://afst.cedram.org/item?id=AFST_2007_6_16_2_369_0>

© Université Paul Sabatier, Toulouse, 2007, tous droits réservés.

L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram.

org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

(2)

pp. 369–383

Weak analytic hyperbolicity of generic hypersurfaces of high degree in

P4()

Erwan Rousseau(1)

ABSTRACT.—In this article we prove that every entire curve in a generic hypersurface of degree d 593 in P4C is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.

R´ESUM´E.—Dans cet article nous d´emontrons que toute courbe enti`ere dans une hypersurface g´en´erique de degr´e d 593 dans P4C est alg´e-

briquement d´eg´en´er´ee i.e il existe une sous-vari´et´e propre qui contient la courbe enti`ere.

1. Introduction

In 1970, S. Kobayashi conjectured in [8] that a generic hypersurfaceX in PnC is hyperbolic provided that d = deg(X) 2n1, for n 3. For n= 3, it was obtained by Demailly and El Goul in [4] thatd21 implies the hyperbolicity of very generic hypersurfacesX inP3C.

In this paper, we would like to prove the following:

Theorem 1.1. — LetX P4C be a generic hypersurface such that d= deg(X)593.Then every entire curvef :C→X is algebraically degener- ated, i.e there exists a proper subvarietyY ⊂X such thatf(C)⊂Y.

This result is a weaker version of the conjecture in dimension 3, because to obtain the full conjecture one needs to prove that the entire curve is constant.

The proof of the theorem is based on two techniques. Consider X ⊂ P4×PNd the universalhypersurface of degreedin P4.

(∗) Re¸cu le 21 juin 2005, accept´e le 3 novembre 2005

(1) epartement de Math´ematiques, IRMA, Universit´e Louis Pasteur, 7, rue Ren´e Descartes, 67084 Strasbourg, France.

rousseau@math.u-strasbg.fr

(3)

In the first section we construct meromorphic vector fields on the space J3v(X) of vertical3-jets ofX.This technique, initiated by Clemens [2], Ein [5], Voisin [14], was generalized by Y.-T. Siu [13] and detailed by M. Paun in dimension 2 [10]. Here we generalize M. Paun’s computations in dimension 3 and obtain that a pole order equal to 12 is enough to obtain a “large”

space of global sections of the twisted tangent bundle.

In the second section, we summarize the main facts about the bundle of jet differentials of orderkand degreem, Ek,mTX.The idea, in hyperbolicity questions, is that global sections of this bundle vanishing on ample divisors provide algebraic differential equations for any entire curve f : C X.

Therefore, the main point is to produce enough algebraically independent global holomorphic jet differentials. In the case of surfaces in P3 of degree d15,one can produce global jet differentials of order 2 vanishing on ample divisors using a Riemann-Roch computation and a Bogomolov vanishing theorem (see [3]). Y.-T. Siu, in [13], described a way to produce global jet differentials vanishing on ample divisors for hypersurfaces of sufficiently large degreedinPn,for anyn.One problem is that the bound obtained for dis quite high. If we are interested in the degreedfor smooth hypersurfaces of P4, an interesting result obtained in [12], is the existence of global jet differentials of order 3 vanishing on ample divisors ford97.

In the last section we complete the proof of the theorem using Siu’s approach [13], by taking the derivative of the jet differentialin the direction of the vector fields constructed in the first part, and an observation made by Mihai Paun in [10] to avoid the use of McQuillan results (cf. [9]).

Acknowledgements. We would like to thank Mihai Paun for his lec- tures about Siu’s ideas given at the summer schoolPragmatic in Catania, 2004.

2. Vector fields

In this first section, we generalize to dimension 3 the approach of Mihai Paun [10] which gives some precisions to Siu’s ideas [13] in dimension 2.

ConsiderX ⊂P4×PNd the universalhypersurface given by the equation

|α|=d

aαZα= 0,where[a]PNdand[Z]P4. We use the notations: for α = (α0, ..., α4) N5, |α| =

iαi and if Z = (Z0, Z1, ..., Z4) are homogeneous coordinates onP4,thenZα=

Zjαj. X is a smooth hypersurface of degree (d,1) in P4 ×PNd. We denote by

(4)

J3(X) the manifold of the 3-jets inX,andJ3v(X) the submanifold ofJ3(X) consisting of 3-jets inX tangent to the fibers of the projectionπ:X →PNd. Let us consider the set Ω0 := (Z0 = 0)×(a0d000= 0)⊂P4×PNd.We assume that global coordinates are given onC4 and CNd. The equation of X becomes

X0:= (z1d+

|α|d,α1<d

aαzα= 0)

Then the equations ofJ3v(X0) inC4×CNd×C4×C4×C4can be written:

|α|d,ad000=1

aαzα= 0 (2.1)

4

j=1

|α|d,ad000=1

aα∂zα

∂zjξj(1)= 0 (2.2)

4

j=1

|α|d,ad000=1

aα∂zα

∂zjξ(2)j +

4

j,k=1

|α|d,ad000=1

aα 2zα

∂zj∂zkξj(1)ξk(1)= 0 (2.3)

4

j=1

|α|d,ad000=1

aα

∂zα

∂zj

ξj(3)+

4

j,k=1

3

|α|d,ad000=1

aα

2zα

∂zj∂zk

ξj(2)ξk(1)

+

4

j,k,l=1

|α|d,ad000=1

aα 3zα

∂zj∂zk∂zl

ξ(1)j ξ(1)k ξl(1)= 0 (2.4)

Consider now a vector field

V =

|α|d,α1<d

vα

∂aα

+

j

vj

∂zj

+

j,k

wj,k

∂ξj(k)

on the vector spaceC4×CNd×C4×C4×C4.The conditions to be satisfied byV to be tangent toJ3v(X0) are

|α|d,α1<d

vαzα+

4

j=1

|α|d,ad000=1

aα

∂zα

∂zjvj= 0

4

j=1

|α|d,α1<d

vα

∂zα

∂zjξj(1)+

4

j,k=1

|α|d,ad000=1

aα

2zα

∂zj∂zkvjξk(1)

+

4

j=1

|α|d,ad000=1

aα∂zα

∂zj

w(1)j = 0

(5)

|α|d,α1<d

(

4

j=1

∂zα

∂zjξj(2)+

4

j,k=1

2zα

∂zj∂zkξ(1)j ξk(1))vα +

4

j=1

|α|d,ad000=1

aα(

4

k=1

2zα

∂zj∂zkξk(2)+

4

k,l=1

3zα

∂zj∂zk∂zlξk(1)ξ(1)l )vj

+

|α|d,ad000=1

(

4

j,k=1

aα 2zα

∂zj∂zk

(wj(1)ξk(1)+w(1)k ξj(1)) +

4

j=1

aα∂zα

∂zj

wj(2)) = 0

|α|d,α1<d

(

4

j=1

∂zα

∂zjξ(3)j + 3

4

j,k=1

2zα

∂zj∂zkξ(2)j ξk(1)

+

4

j,k,l=1

3zα

∂zj∂zk∂zl

ξ(1)j ξk(1)ξl(1))vα

+

4

j=1

|α|d,ad000=1

aα(

4

k=1

2zα

∂zj∂zkξk(3)+ 3

4

k,l=1

3zα

∂zj∂zk∂zlξk(2)ξ(1)l

+

4

k,l,m=1

4zα

∂zj∂zk∂zl∂zm

ξ(1)k ξl(1)ξm(1))vj

+

|α|d,ad000=1

(

4

j,k,l=1

aα

3zα

∂zj∂zk∂zl

(w(1)j ξ(1)k ξl(1)+ξj(1)w(1)k ξl(1)+ξj(1)ξ(1)k w(1)l ) +3

4

j,k=1

aα 2zα

∂zj∂zk(wj(2)ξk(1)+ξj(2)wk(1)) +

4

j=1

aα∂zα

∂zjwj(3)) = 0

Now we can introduce the first package of vector fields tangent toJ3v(X0).

We denote byδj N4the multi-index whose j-component is equal to 1 and the other are zero.

Forα14 :

Vα4000:=

∂aα 4z1

∂aαδ1

+ 6z12

∂aα1

4z13

∂aα1

+z14

∂aα1

.

(6)

Forα13, α21 : Vα3100 : =

∂aα 3z1

∂aαδ1

−z2

∂aαδ2

+ 3z1z2

∂aαδ1δ2

+3z12

∂aα−2δ1 3z12z2

∂aα−2δ1−δ2 −z13

∂aα−3δ1 +z13z2

∂aα−3δ1−δ2.

Forα12, α22 : Vα2200 : =

∂aα−z2

∂aαδ2

−z1

∂aαδ1

+z1z22

∂aαδ12

+z12z2

∂aα−2δ1−δ2 −z12z22

∂aα−2δ1−2δ2.

Forα12, α21, α31 : Vα2110 : =

∂aα−z3

∂aαδ3

−z2

∂aαδ2

2z1

∂aαδ1

+z2z3

∂aαδ2δ3

+2z1z3

∂aα−δ1−δ3 + 2z1z2

∂aα−δ1−δ2 +z12

∂aα−2δ1

−2z1z2z3

∂aαδ1δ2δ3

−z12z3

∂aα1δ3

−z12z2

∂aα1δ2

+z12z2z3

∂aα−2δ1−δ2−δ3.

Forα11, α21, α31, α41 : Vα1111 : =

∂aα −z1

∂aαδ1

−z2

∂aαδ2

−z3

∂aαδ3

−z4

∂aα−δ4 +z2z3z4

∂aα−δ2−δ3−δ4 +z1z3z4

∂aα−δ1−δ3−δ4

+z1z2z3

∂aαδ1δ2δ3

+z1z2z4

∂aαδ1δ2δ4

−z1z2z3z4

∂aα−δ1−δ2−δ3−δ4.

Similar vector fields are constructed by permuting the z-variables, and changing the index α as indicated by the permutation. The pole order of the previous vector fields is equal to 4.

(7)

Lemma 2.1. — For any (vi)1i4C4, there existvα(a),with degree at most 1 in the variables (aγ), such that V :=

αvα(a)∂a

α +

jvj∂z

j is tangent to J3v(X0)at each point.

Proof. — We impose the additionalconditions of vanishing for the coeffi- cients of ξ(1)j in the second equation (respectively of ξj(1)ξk(1) in the third equation andξj(1)ξ(1)k ξl(1) in the fourth equation) for any 1jkl4.

Then the coefficients ofξj(2)(respectivelyξj(2)ξk(1)andξj(3)) are automatically zero in the third (respectively fourth) equation. The resulting 35 equations

are

|α|d,α1<d

vαzα+

4

j=1

|α|d,ad000=1

aα

∂zα

∂zjvj= 0

|α|d,α1<d

vα

∂zα

∂zj

+

4

k=1

|α|d,ad000=1

aα

2zα

∂zj∂zk

vk= 0

α

2zα

∂zj∂zkvα+

4

l=1

|α|d,ad000=1

aα 3zα

∂zj∂zk∂zlvl= 0

α

3zα

∂zj∂zk∂zlvα+

4

m=1

|α|d,ad000=1

aα 4zα

∂zj∂zk∂zl∂zmvm= 0

Now we can observe that if thevα(a) satisfy the first equation, they au- tomatically satisfy the other ones because thevαare constants with respect to z. Therefore it is sufficient to find (vα) satisfying the first equation. We identify the coefficients ofzρ =z1ρ1 zρ22 z3ρ3 z4ρ4 :

vρ+

4

j=1

aρ+δjvjj+ 1) = 0

Another family of vector fields can be obtained thanks to the generaliza- tion to dimension 3 of a lemma (cf. [10]) given by Mihai Paun in dimension 2. Consider a 4×4-matrixA= (Akj)∈ M4(C) and let V :=

j,k

w(k)j

∂ξ(k)j , wherew(k):=(k),fork= 1,2,3.

(8)

Lemma 2.2. — There exist polynomialsvα(z, a) :=

|β|3vαβ(a)zβwhere each coefficient vβα has degree at most 1 in the variables(aγ)such that

V :=

α

vα(z, a)

∂aα +V is tangent to J3v(X0)at each point.

Proof. — We impose the additionalconditions of vanishing for the coeffi- cients of ξ(1)j in the second equation (respectively of ξj(1)ξk(1) in the third equation andξ(1)j ξk(1)ξl(1) in the fourth equation) for any 1jkl4.

Then the coefficients ofξj(2)(respectivelyξj(2)ξk(1)andξj(3)) are automatically zero in the third (respectively fourth) equation. The resulting 35 equations

are

|α|d,α1<d

vαzα= 0 (5)

|α|d,α1<d

vα

∂zα

∂zj +

4

k=1

|α|d,ad000=1

aα

∂zα

∂zkAjk= 0 (6j)

α

2zα

∂zj∂zkvα+

α,p

aα 2zα

∂zj∂zpAkp+

α,p

aα 2zα

∂zk∂zpAjp= 0 (7jk)

α

3zα

∂zj∂zk∂zlvα+

α,p

aα

3zα

∂zp∂zk∂zlAjp+

α,p

aα

3zα

∂zj∂zp∂zlAkp

+

α,p

aα

3zα

∂zj∂zk∂zp

Alp= 0 (8jkl)

The equations for the unknownsvαβ are obtained by identifying the coef- ficients of the monomialszρin the above equations. We can do the following reductions: using equations 6j vβα = 0 if |α|+|β| d+ 1, and using the equation of X0, we can assume that degree in the z1 variable is at most d−1.

The monomialszρin (5) arez1ρ1z2ρ2z3ρ3zρ44with

ρidandρ1d−1.

If all the components ofρare greater than 3, then we obtain the following system

(9)

9. The coefficient ofzρ in (5) impose the condition

α+β=ρ

vβα= 0

10j.The coefficient of the monomialzρδj in (6j) impose the condition

α+β=ρ

αjvαβ =lj(a)

wherelj is a linear expression in thea-variables.

11jj. For j = 1, ...,4 the coefficient of the monomial zρj in (7jj) impose the condition

α+β=ρ

αjj1)vβα=ljj(a)

11jk. For 1 j < k 4 the coefficient of the monomial zρ−δj−δk in (7jk) impose the condition

α+β=ρ

αjj1)vαβ =ljk(a)

12jjj. For j = 1, ...,4 the coefficient of the monomial zρj in (8jjj) impose the condition

α+β=ρ

αjj1)(αj2)vβα=ljjj(a)

12jjk. For 1 j < k 4 the coefficient of the monomial zρ−2δj−δk in (8jjk) impose the condition

α+β=ρ

αjj1)αkvαβ =ljjk(a)

12jkl.For 1j < k < l4 the coefficient of the monomialzρδjδkδl in (8jjk) impose the condition

α+β=ρ

αjαkαlvαβ =ljkl(a)

(10)

As in the case of dimension 2 (cf. [10]) we obtain that the determinant of the matrix associated to the system is not zero. Indeed, for eachρthe matrix whose column Cβ consists of the partialderivatives of order at most 3 of the monomialzρ−βhas the same determinant, at the pointz0= (1,1,1,1), as our system. Therefore if the determinant is zero, we would have a non- identically zero polynomial

Q(z) =

β

aβzρβ

such that allits partialderivatives of order less or equalto 3 vanish atz0. Thus the same is true for

P(z) =zρQ(1 z1

, ..., 1 z4

) =

β

aβzβ.

But this impliesP 0.

Finally, we conclude by Cramer’s rule. The systems we have to solve are never over determined as well. The lemma is proved.

Proposition 2.3. — Let Σ0 :={(z, a, ξ(1), ξ(2), ξ(3)) J3v(X) / ξ(1) ξ(2)∧ξ(3)= 0}. Then the vector spaceTJv

3(X)⊗ OP4(12)⊗ OPNd() is gen- erated by its global sections on J3v(X)\Σ, whereΣis the closure of Σ0. Proof. — From the preceding lemmas, we are reduced to consider V =

|α|3

vα

∂aα

.The conditions forV to be tangent toJ3v(X0) are

|α|3

vαzα= 0

4

j=1

|α|d,α1<d

vα

∂zα

∂zj

ξj(1)= 0

|α|3

(

4

j=1

∂zα

∂zj

ξ(2)j +

zj∂zk

ξj(1)ξk(1))vα= 0

|α|3

(

4

j=1

∂zα

∂zj

ξj(3)+ 3

zj∂zk

ξ(2)j ξk(1)+

4

j,k,l=1

3zα

∂zj∂zk∂zl

ξj(1)ξ(1)k ξl(1))vα= 0

(11)

We denote byWjkl the wronskian operator corresponding to the vari- ables zj, zk, zl.We can supposeW123:= det(ξj(i))1i,j3= 0.Then we can solve the previous system withv0000, v1000, v0100, v0010as unknowns. By the Cramer rule, each of the previous quantity is a linear combination of the vα, |α| 3, α = (0000), (1000), (0100), (0010) with coefficients rational functions in z, ξ(1), ξ(2), ξ(3). The denominator isW123 and the numerator is a polynomial whose monomials verify either:

i) degree inz at most 3 and degree in eachξ(i) at most 1.

ii) degree inzat most 2 and degree in ξ(1) at most 3, degree inξ(2) at most 0, degree inξ(3) at most 1.

iii) degree inz at most 2 and degree inξ(1) at most 2, degree inξ(2) at most 2, degree inξ(3) at most 0.

iv) degree inzat most 1 and degree inξ(1) at most 4, degree inξ(2) at most 1, degree inξ(3) at most 0.

ξ(1) has a pole of order 2,ξ(2) has a pole of order 3 andξ(3) has a pole of order 4, therefore the previous vector field has order at most 12.

Remark 2.4. — If the third derivative of f : (C,0) → X lies inside Σ0

then the image off is contained in a hyperplane section ofX.

3. Jet differentials

In this section we recall the basic facts about jet differentials following J.-P. Demailly [3].

Let X be a complex manifold. We start with the directed manifold (X, TX). We defineX1:=P(TX), andV1⊂TX1:

V1,(x,[v]):={ξ∈TX1,(x,[v]);πξ∈Cv}

whereπ:X1→X is the naturalprojection. Iff : (C,0)(X, x) is a germ of holomorphic curve then it can be lifted toX1as f[1].

By induction, we obtain a tower of varieties (Xk, Vk). πk :Xk X is the natural projection. We have a tautological line bundle OXk(1) and we denoteuk:=c1(OXk(1)).

Let’s consider the direct imageπk(OXk(m)). It’s a vector bundle over X which can be described with local coordinates. Let z = (z1, ..., zn) be

(12)

local coordinates centered in x ∈X. A local section of πk∗(OXk(m)) is a polynomial

P =

|α1|+2|α2|+...+k|αk|=m

Rα(z)dzα1...dkzαk

which acts naturally on the fibers of the bundle JkX X of k-jets of germs of curves inX, i.e the set of equivalence classes of holomorphic maps f : (C,0)(X, x) with the equivalence relation which identifies two such maps if their derivatives agree up to orderk, and which is invariant under reparametrization i.e

P((f ◦φ), ...,(f◦φ)(k))t=φ(t)mP(f, ..., f(k))φ(t)

for every φ G, the group of k-jets of biholomorphisms of (C,0). The vector bundle πk∗(OXk(m)) is denoted Ek,mTX. This bundle of invariant jet differentials is a subbundle of the bundle of jet differentials, of order k and degree m,Ek,mGGTX →X whose fibres are complex-valued polynomials Q(f, f, ..., f(k)) on the fibers ofJkX,of weightmunder the action ofC:

Q(λf, λ2f, ..., λkf(k)) =λmQ(f, f, ..., f(k)) for anyλ∈C and (f, f, ..., f(k))∈JkX.

It turns out that we have an embeddingJkregX/Gk ,→Xk,whereJkregX denotes the space of non-constants jets.

Fork= 1, E1,mTX =SmTX.

IfX is a surface we have the following description of E2,mTX. Let W be the wronskian,W =dz1d2z2−dz2d2z1,then every invariant differential operator of order 2 and degree mcan be written

P =

|α|+3k=m

Rα,k(z)dzαWk.

The following theorem makes clear the use of jet differentials in the study of hyperbolicity:

Theorem 3.1 ([7], [3]). — Assume that there exist integers k, m > 0 and an ample line bundle Lon X such that

H0(Xk,OXk(m)⊗πkL−1)H0(X, Ek,mTX ⊗L−1)

has non zero sectionsσ1, ..., σN. Let Z⊂Xk be the base locus of these sec- tions. Then every entire curve f : C X is such that f[k](C) Z. In

(13)

other words, for every global Gk−invariant polynomial differential opera- tor Pwith values in L1, every entire curve f : C X must satisfy the algebraic differential equationP(f) = 0.

Remark 3.2. — In fact, this theorem is true for global sections ofEk,mGGTX vanishing on an ample divisor.

A complex compact manifold is hyperbolic if there is no non constant entire curve f : C X. Thus, the problem reduces to produce enough independant algebraic differential equations.

IfX⊂P4is a smooth hypersurface,we have established the next result:

Theorem 3.3 [12]. — Let X be a smooth hypersurface of P4 such that d = deg(X) 97, and A an ample line bundle, then E3,mTX ⊗A−1 has global sections for m large enough and every entire curve f :C→X must satisfy the corresponding algebraic differential equation.

The proof relies on the filtration ofE3,mTX [11]:

GrE3,mTX =

0γm5

(

{λ1+2λ2+3λ3=mγ;λiλjγ,i<j}Γ123)TX) where Γ is the Schur functor. This filtration provides a Riemann-Roch com- putation of the Euler characteristic [11]:

χ(X, E3,mTX) = m9

81648×106d(389d320739d2+185559d358873)+O(m8).

In dimension 3 there is no Bogomolov vanishing theorem (cf. [1]) as it is used in dimension 2 to controlthe cohomology groupH2, therefore we need the following proposition:

Proposition 3.4 [12] . — Letλ= (λ1, λ2, λ3)be a partition such that λ1> λ2> λ3 and|λ|=

λi>4(d5) + 18. Then : h2(X,ΓλTX)g(λ)d(d+ 13) +q(λ) where g(λ) = 3|λ2|3

λij

i−λj)and q is a polynomial inλ with homoge- neous components of degrees at most 5.

This proposition provides the estimate

h2(X, GrE3,mTX)Cd(d+ 13)m9+O(m8) where C is a constant.

(14)

4. Proof of the theorem

Let us consider an entire curvef :C→X in a generic hypersurface of P4.By Riemann-Roch and the proposition of the previous section we obtain the following lemma:

Lemma 4.1. — Let X be a smooth hypersurface of P4 of degree d,0 <

δ < 181 thenh0(X, E3,mTX ⊗KX−δm)α(d, δ)m9+O(m8), with α(d, δ) = 1

408240000000d(−1945d3784080δ2d3+ 105030d3δ+ 1058400δ3d3+ 103695d2+ 7075491d+ 105837083 +322256880δ2d−1260083250δ

−435002400δ3d−6819271200δ3+ 5051827440δ2

−2255850d2δ−15876000δ3d281814050δd+ 11761200δ2d2).

Proof. —E3,mTX ⊗KXδm admits a filtration with graded pieces Γ123)TX ⊗KXδm= Γ1−δm,λ2−δm,λ3−δm)TX

forλ1+ 2λ2+ 3λ3=m−γ;λi−λjγ, i < j,0γm5.We compute by Riemann-Roch

χ(X, E3,mTX ⊗KXδm) =χ(X, GrE3,mTX ⊗KXδm).

We use the proposition of the previous section to control h2(X, E3,mTX ⊗KXδm) :

h2(X,Γ1δm,λ2δm,λ3δm)TX) g(λ1−δm, λ2−δm, λ3−δm)d(d+ 13) +q(λ1−δm, λ2−δm, λ3−δm) under the hypothesis

λi3δm >4(d5) + 18. The conditions verified byλimply

λim6 therefore the hypothesis will be verified if m(1

6 3δ)>4(d5) + 18.

We conclude with the computation

χ(X, E3,mTX⊗KXδm)−h2(X, GrE3,mTX⊗KXδm)h0(X, E3,mTX⊗KXδm).

Références

Documents relatifs

On peut noter que, d’après les résultats de régularité analytique microlocale, il suffit de majorer Il Tk u Il pour obtenir le résultat, puisque ab est elliptique

REMARK. Besana proves in [Bes], using Mori theory, that the base surface of a smooth adjunction theoretic conic bundle is smooth.. PROPOSITION 4.7... PROOF..

Bompiani a étudié dans [2] un problème de géométrie différentielle projective dont il a réduit la solution, et cette réduction occupe presque tout l’article, à la

Pour presque tout nombre premier/?, décomposé dans X, on donne une construction de la fonction L p-adique à deux variables attachée à la courbe E/F, généralisant celle de Yager

Les fibres ainsi contruits permettent de démontrer des résultats sur les fibres stables (^ 5), par exemple (5.2): le fibre stable générique de rang deux sur P2 possède au plus un

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention