• Aucun résultat trouvé

Attenuation of smoke detector alarm signals in residential buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Attenuation of smoke detector alarm signals in residential buildings"

Copied!
13
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Institute for Research in

Construction); no. IRC-P-1372, 1986

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=a2765522-73ad-4aab-b62b-b757083b60b0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=a2765522-73ad-4aab-b62b-b757083b60b0

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

https://doi.org/10.4224/40001797

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Attenuation of smoke detector alarm signals in residential buildings

Halliwell, R. E.; Sultan, M. A.

(2)

- - .-

Ser

,

National Research

Conseil national

TH1

Council

Canada

de

recherches

Canada

N21d

Institute for

lnstitut de

no,

1372

Research in

recherche en

c.

2

Construction

construction

BLDG

% . -

Attenuation of Smoke Detector

Alarm Signals in Residential

Bulldings

Reprinted from

Fire Safety Science

-

Proceedings

of

the

First International Symposium

Gaithersburg, MD, 4 1

1 October 1985

p. 689

-

697

(IRC Paper No. 1372)

b

NRC

-

CISTI

BLDG.

RES.

Price $2.00

NRCC 25897

L I B R A R Y

86-

07-

1

5

I

B I S L ~ O T H ~ Q U E

Rcch.

Bbtirn.

(3)

On

a 6tudiB la, propagation, dans des imrneubles rgsidentiels, du

son provenant de detecteurs de fumee en considgrant l'effet de

l'ameublement, du type d'installation de chauffage et du nombre

de portes ferdes.

Ce

document decrit

un

modele simple

representant

la

voie de propagatton c o m e une sgrie de pieces

attenantes, chacune d'elles modifiant l'intensits du son les

attenuations calcul6es ont St6 comparees

B

celles mesurges dans

11 habitations. Ce modsle peut servir

B determiner le nombre

et l'emplacement ideals des ddtecteurs de fum6e.

(4)

Attenuation of Smoke Detector Alarm

gignals in Residential Buildings

,

R. E. HALLIWELL and M.

A.

SULTAN Division of Building Research National Research Council of Canada Ottawa, Canada K I A OR6

ABSTRACT

The p r o p a g a t i o n of sound from smoke d e t e c t o r alarms through r e s i d e n t i a l b u i l d i n g s h a s been i n v e s t i g a t e d w i t h r e s p e c t t o t h e e f f e c t of f u r n i s h i n g s , t y p e of h e a t i n g system, and number of c l o s e d doors. A simple model r e p r e s e n t i n g t h e p r o p a g a t i o n p a t h a s a s e r i e s of l i n k e d rooms, each modifying t h e sound l e v e l , is d e s c r i b e d and compared w i t h measured a t t e n u a t i o n s i n 11 houses. The model c a n be used t o determine t h e optimum number and l o c a t i o n of smoke d e t e c t o r alarms. INTRODUCTION

It i s e s t i m a t e d 1 t h a t 40 t o 50% of t h e p e o p l e k i l l e d i n f i r e s e a c h y e a r could be saved i f adequate e a r l y - w a r n i n g f i r e d e t e c t i o n d e v i c e s were i n s t a l l e d .

A s t u d y by

e ones^

of m u l t i p l e d e a t h f i r e s i n t h e U.S. i n d i c a t e s t h a t 81.4% of f i r e s occur between 8:00 p.m. and 8:00 a.m., w i t h t h e l a r g e s t number (40.5%) between midnight and 4:00 a.m.

Smoke d e t e c t o r s a r e g e n e r a l l y c o n s i d e r e d t o be more e f f e c t i v e t h a n p e o p l e i n d e t e c t i n g f i r e a e r o s o l s , and because t h e y can be used t o monitor unfrequented a r e a s t h e y a r e e f f e c t i v e e a r l y - w a r n i n g d e v i c e s f o r f i r e . It i s i m p o r t a n t t o remember t h a t i n many c a s e s t h e sound of t h e smoke d e t e c t o r i s t h e only means of a l e r t i n g a s l e e p i n g p e r s o n t o t h e e x i s t e n c e of f i r e . D e t e c t o r s c a n s a v e l i v e s only i f people h e a r them.

The f i r e d e t e c t o r h a s two main components: a combustion a e r o s o l d e t e c t o r t h a t determines t h e e x i s t e n c e of f i r e , and an alarm d e v i c e t o a l e r t t h e occupants. A breakdown i n e i t h e r component w i l l prevent a f i r e warning.

r

I n t h e l a s t two decades a e r o s o l d e t e c t i o n h a s r e c e i v e d world-wide a t t e n t i o n and i s now reasonably w e l l understood, But t h e problem of producing a

s u f f i c i e n t l y loud a l a r m s i g n a l h a s r e c e i v e d s c a n t c o n s i d e r a t i o n . Defining t h e a l a r m l e v e l d i s t r i b u t i o n throughout a r e s i d e n t i a l home i s i m p o r t a n t , however, i f t h e s e l f - c o n t a i n e d d e t e c t o r a l a r m i s t o be a n e f f e c t i v e warning device.

The sound power o u t p u t of a smoke d e t e c t o r u u s t be such t h a t a f t e r a t t e n u a t i o n a s i t p r o p a g a t e s through a b u i l d i n g t h e sound l e v e l i s s t i l l

s u f f i c i e n t l y h i g h t o waken a s l e e p i n g occupant. The Underwriters L a b o r a t o r i e s s t a n d a r d ~ ~ 2 1 7 ~ r e q u i r e s t h a t such a d e v i c e must provide an A-weighted sound p r e s s u r e l e v e l of a t l e a s t 85 dB a t 3.05 m when mounted n e a r t o two r e f l e c t i n g s u r f a c e s . Nober e t a ~ concluded t h a t an a l a r m l e v e l of 55 dBA a t t h e e a r . ~ p o s i t i o n i n a q u i e t background i s a d e q u a t e t o waken a college-age p e r s o n w i t h

(5)

normal h e a r i n g , b u t t h a t 70 dB i s r e q u i r e d i f a window a i r c o n d i t i o n e r i s

o p e r a t i n g i n t h e bedroom. I n a n o t h e r s t u d y , ~ a h n ~ s u g g e s t e d t h a t 70 dB i s t h e minimum l e v e l r e q u i r e d a t t h e e a r i n a q u i e t background t o waken college-age

4

p e r s o n s w i t h normal h e a r i n g . C l e a r l y , t h e minimum l e v e l t o waken p e o p l e i s n o t w e l l d e f i n e d and r e q u i r e s f u r t h e r s t u d y . Although i t is beyond t h e scope of the$ p r e s e n t i n v e s t i g a t i o n , t h e q u e s t i o n r e q u i r e s a t t e n t i o n i f t h e r e s u l t s of t h i s b s t u d y a r e t o be used e f f e c t i v e l y .

Once t h e a l a r m sound l e v e l h a s been e s t a b l i s h e d , t h e r e i s s t i l l t h e q u e s t i o n of where t o l o c a t e an a l a r m s o a s t o p r o v i d e maximum b e n e f i t . The answer t o t h i s q u e s t i o n r e q u i r e s a model t h a t can be used t o c a l c u l a t e t h e a t t e n u a t i o n of t h e a l a r m s i g n a l a s i t p r o p a g a t e s through a b u i l d i n g . The model would p e r m i t one t o determine t h e optimum l o c a t i o n f o r a n a l a r m t o a c h i e v e t h e r e q u i r e d s i g n a l l e v e l a t any l o c a t i o n i n t h e b u i l d i n g . It i s t h e purpose of t h e p r e s e n t s t u d y t o develop such a model.

To a s s e s s t h e a t t e n u a t i o n of t h e a l a r m s i g n a l from smoke d e t e c t o r s i n r e s i d e n t i a l b u i l d i n g s i t was n e c e s s a r y t o make measurements i n a number of b u i l d i n g s and from t h e d a t a t o develop a g e n e r a l model t o be a p p l i e d f o r any r e s i d e n t i a l b u i l d i n g . Eleven b u i l d i n g s were s t u d i e d , c o n s t i t u t i n g a r e a s o n a b l e c r o s s - s e c t i o n of t h e common t y p e s of dwelling: bungalows, s p l i t - l e v e l , and two-story houses. I n c l u d e d i n t h e s t u d y were both f u r n i s h e d and u n f u r n i s h e d homes

.

MEASUREMENT PROCEDURE

Measurements were made u s i n g a smoke d e t e c t o r (modified t o o p e r a t e c o n t i n u o u s l y ) a s a s o u r c e of a l a r m s i g n a l . It was mounted on a s t a n d 2.1 m i n h e i g h t s o a s t o s i m u l a t e a c e i l i n g - m o u n t e d d e t e c t o r and p l a c e d i n a number of l o c a t i o n s i n each d w e l l i n g : i n t h e basement n e a r t h e f u r n a c e room, i n t h e main hallway n e a r t h e k i t c h e n , and i n t h e hallway n e a r t h e bedrooms. From e a c h s o u r c e l o c a t i o n t h e a t t e n u a t i o n of n o i s e was measured t o e v e r y o t h e r room. T h i s was done f i r s t w i t h a l l doors i n t h e p r o p a g a t i o n p a t h open, t h e n w i t h them c l o s e d s u c c e s s i v e l y u n t i l a l l doors i n t h e p a t h were c l o s e d .

To determine t h e a t t e n u a t i o n a l o n g e a c h p a t h , t h e sound l e v e l was measured s i m u l t a n e o u s l y n e a r t h e s o u r c e and i n t h e r e c e i v i n g room. The s o u r c e microphone was i n a f i x e d p o s i t i o n 1 m from t h e smoke d e t e c t o r , w h i l e t h e r e c e i v i n g room microphone was moved about t h e room t o p r o v i d e an average sound l e v e l f o r t h e room. A two-channel FFT a n a l y s e r c o l l e c t e d d a t a from t h e two microphones s i m u l t a n e o u s l y . S i x t y - f o u r s p e c t r a were averaged and t h e r e s u l t a n t s p e c t r a f o r each microphone were s t o r e d f o r subsequent a n a l y s i s . A c a l i b r a t i o n s i g n a l was recorded on each microphone a t t h e beginning and end of e a c h measurement p e r i o d .

A s a c o u s t i c a l d a t a a r e u s u a l l y p r o v i d e d i n t h i r d - o c t a v e bands, t h e

narrow-band s p e c t r a provided by t h e FFT a n a l y s e r were c o n v e r t e d t o t h i r d - o c t a v e s p e c t r a by summing t h e energy w i t h i n t h e s t a n d a r d t h i r d - o c t a v e bands. T h i s was done by assuming a r e a l i s t i c f i l t e r shape and c o r r e c t e d u s i n g t h e c a l i b r a t i o n s i g n a l t o o b t a i n t h e a b s o l u t e sound l e v e l s i n t h i r d - o c t a v e bands. The a t t e n u a t i o n was t h e n c a l c u l a t e d a s t h e d i f f e r e n c e between s o u r c e and r e c e i v e r l e v e l s f o r each t h i r d - o c t a v e .

Sound power measurements were made f o r two smoke d e t e c t o r s of e a c h of s e v e n models i n accordance w i t h ANSI ~ 1 . 3 1 - 1 9 8 0 ~ i n t h e r e v e r b e r a t i o n chamber a t t h e D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada.

(6)

DISCUSSION OF RESULTS

1.

The r e d u c t i o n i n sound l e v e l t h a t i s p r o v i d e d by w a l l s , d o o r s , e t c . , w i t h i n \ a b u i l d i n g and t h e sound a b s o r p t i o n p r o v i d e d by f u r n i s h i n g s i n c r e a s e w i t h t i n c r e a s i n g f r e q u e n c y . To be most e f f e c t i v e i t would t h u s be r e a s o n a b l e f o r a &smoke d e t e c t o r t o have most of i t s a c o u s t i c a l o u t p u t a t low f r e q u e n c i e s , s a y

below 500 Hz. The human e a r , on t h e o t h e r hand, i s most a c u t e i n t h e 2000- t o 5000-Hz range. It i s a l s o more economical t o produce a n i n e x p e n s i v e a l a r m o p e r a t i n g i n a h i g h e r f r e q u e n c y r a n g e , b u t t h i s means t h a t s u c h a l a r m s mst

o p e r a t e a t a h i g h e r sound power i f t h e y a r e t o be a d e q u a t e a s warning d e v i c e s . Sound power measurements on a number of smoke d e t e c t o r s a r e l i s t e d i n T a b l e 1, which shows t h a t most smoke d e t e c t o r s o n l y p r o v i d e n o i s e o u t p u t i n a few bands, t h e two dominant o n e s b e i n g t h e 3150- and 4000-Hz bands. F o r t h e p u r p o s e of t h i s s t u d y o n l y t h e 3150-Hz band h a s been u s e d t o d e v e l o p a p r o p a g a t i o n model. The h i g h e r f r e q u e n c y band, which was n o t p r e s e n t f o r a l l smoke d e t e c t o r s , w i l l t e n d t o be a t t e n u a t e d more and t h u s w i l l be l e s s u s e f u l i n a l e r t i n g occupants. Where t h e r e i s e n e r g y i n l o w e r f r e q u e n c y bands, t h e model w i l l p r e d i c t t o o l i t t l e a t t e n u a t i o n and t h u s p r o v i d e a n e x t r a margin of s a f e t y .

Two d i f f e r e n t models were c o n s i d e r e d f o r p r e d i c t i n g t h e a t t e n u a t i o n of n o i s e from t h e alarms. The f i r s t was based on a model proposed by

err^.^

I t s

most a t t r a c t i v e f e a t u r e i s i t s s i m p l i c i t y , t h e b a s i c a t t e n u a t i o n b e i n g assumed t o be a f u n c t i o n of t h e s t r a i g h t - l i n e h o r i z o n t a l d i s t a n c e between s o u r c e and t h e m i d - p o i n t of t h e r e c e i v i n g room, w i t h o u t r e g a r d f o r changes i n e l e v a t i o n . Added t o t h i s b a s i c a t t e n u a t i o n a r e t h r e e c o r r e c t i o n s , one f o r t h e number of f l o o r changes i n e l e v a t i o n , a n o t h e r f o r e a c h c l o s e d d o o r a l o n g t h e p r o p a g a t i o n p a t h , and a t h i r d f o r e a c h open doorway a l o n g t h e p r o p a g a t i o n path.

TABLE 1. Maximum sound power output of smoke d e t e c t o r s

113 Octave Frequency Band, Hz

A1 0.203 38 39 39 39 63 57 73 96 84 63 50 A2 0.230 37 38 38 38 44 56 70 98 92 67 56 B1 0.877 82 82 60 71 74 81 79 95 95 95 88 B2 0.870 79 81 66 72 76 81 77 93 94 96 92 C 1 0.986 44 44 44 45 45 50 61 79 102 90 69 C2 0.989 44 44 44 45 45 50 62 79 102 91 70 D 1 0.844 46 46 46 46 47 52 63 80 103 93 71 D2 0.845 44 44 44 45 45 50 62 80 102 88 68 E 1 1 .O 84 70 69 85 76 92 88 96 92 91 80 I E 2 1.0 76 83 63 69 80 87 85 97 100 91 89 k F1 1.0 61 60 72 70 70 74 86 75 83 90 82 F2 1.0 58 61 69 70 72 77 90 81 82 89 82 / .

I

G1 G2 0.667 0.643 37 38 37 38 37 38 38 38 39 39 50 48 63 61 88 84 95 95 69 71 55 56 ' ~ e t e c t o r s with t h e same l e t t e r d e s i g n a t i o n a r e i d e n t i c a l models.

2 ~ h e duty c y c l e i s t h e f r a c t i o n of time during which t h e alarm i s operating. 10 l o g ( l / r ) was added t o t h e measured mean sound power l e v e l t o g i v e t h e maximum sound power l e v e l .

(7)

I 1 1 1 I ! I 1 I

-

-

-

1 I I I I I I I I I I

0

10

20

A T T E N U A T I O N .

d B

Figure

1.

Histogram of sound attenuation due to closure of single door in

propagation path.

Figure 1 shows a histogram of the increase in attenuation provided by

closing a single door in a propagation path. The wide range in attenuation is a

result of the wide variation in fit among doors, from doors with large gaps

beneath to those carefully weather-stripped. The mean value is

10

dB, and this

was used in the model as the correction for closed doors.

At

first glance this

result appears to be in conflict with NFPA* work, which suggests

15

dB, and with

that of Bradley and wheeler9 and of ~ o b e r , ~

who found 16.4 dB and 15 dB,

respectively. This is, however, the change in attenuation with a door closure

rather than an overall~transmission

loss of the wall-door system.

The best fit to the data was found with the following corrections:

10

dB

for each floor between the source and receiver, 3 dB for each open doorway along

the path, and

10

dB more for each closed door along the path. Figure

2

shows

the measured attenuation minus the three corrections plotted as a function of

distance from the source for the best fit values for these corrections. The

slope of the least squares fit line drawn through the points gives the

dependence on distance for this model. There is a very large range in the

scatter, making this a less than satisfactory model for sound attenuation. Some

of the scatter is a result of the range in measured attenuation of doors, but it

is insufficient to explain all of the scatter. The major weakness of the model

is its inability to make allowances for differing sound absorption in different

rooms.

(8)

0

5

10

15

2

0

D I S T A N C E F R O M S O U R C E ,

m

Figure 2. Measured a t t e n u a t i o n minus c o r r e c t i o n s f o r open d o o r s , c l o s e d doors, and number of f l o o r s between alarm and r e c e i v e r .

The second model considered t a k e s a s l i g h t l y d i f f e r e n t approach. I n i t ,

t h e propagstion p a t h i s viewed a s a s e r i e s of l i n k e d rooms, each of which modifies t h e sound l e v e l . The p a t h t o be used i s t h e most d i r e c t p a t h a s would be t r a v e r s e d by a person walking from t h e source t o t h e r e c e i v e r . Each space enclosed by w a l l s o r p a r t i t i o n s , i n c l u d i n g hallways, i s counted a s a room provided t h a t t h e opening l e a d i n g from t h e previous room i s a doorway o r e q u i v a l e n t . For t h e purpose of t h i s model, i t i s assumed t h a t l i t t l e , i f any, sound i s t r a n s m i t t e d through t h e p a r t i t i o n s o r f l o o r s . From r e v e r b e r a t i o n room theory, t h e sound l e v e l i n a room due t o t r a n s m i s s i o n of sound through a n opening o r p a r t i t i o n i n t o t h e room i s given by1'

S T6'

C

(1.086) LR =

L

-

R

+

10 l o g

[

60 vR

I

where R = t r a n s m i s s i o n l o s s of p a r t i t i o n , LS = sound p r e s s u r e l e v e l i n s o u r c e room, LR = sound p r e s s u r e l e v e l i n r e c e i v i n g room, S = a r e a of p a r t i t i o n (m2), TsO = r e v e r b e r a t i o n time, C = speed of sound (m/s), VR = volume of r e c e i v i n g room (m3).

(9)

I

T60

LR

= Ls

-

+

l o log

"R

I

(2)

'

I

It may be further simplified by assuming that sound enters the room only via an

open doorway of area 2 m2 with zero transmission loss, and that rooms are always

2.4 m high. A normally furnished room of average size, that is one with carpet

and furniture, has a reverberation time of about 0.4 s at 3150 Hz.*

The result

is that the receiving room level is given by

area

L

R

=

L

s

-

[lo

log

(m)

+ corr]

( 3 )

where 'area' is the floor area of the receiving room and 'corr' provides a

means of adjusting this correction for instances in which reverberation time

differs substantially from 0.4 s, as happens in a "hard," unfurnished room or in

*

an extremely "soft" room. This would have a value of -2 dB for hard rooms such

as bathrooms or kitchens, zero for normal rooms, and

+2

dB for very soft rooms

such as a bedroom with carpet, heavy drapes, and bedspread. Thus, the term

10 log

+ corr

(4)

may be viewed as a correction to the sound level due to absorption within the

room or, alternatively, as the room attenuation. Attenuation due to absorption

can thus be calculated for each room in the house, independent of where source

and receiver are located. The overall attenuation of the detector alarm is thus

the sum of the attenuations for all rooms in the propagation path plus 10 dB for

each closed door.

The derivation of Eq. (1) is based on the assumption that there is a

diffuse sound field in both source and receiving rooms, a condition very

unlikely to occur in a residential building. Similarly, the assumption of zero

transmission loss through the open doorway is an over-simplification because it

ignores any edge or interference effects of the doorway.

A comparison of the

sound attenuation predicted by this model with the measured attenuation

indicates that an additional

5 dB attenuation needs to be added for each room in

the propagation path. This may be viewed as the transmission loss associated

with an open doorway. Note that the addition of transmission loss for the open

doorway to the 10 dB insertion loss of the closed door gives a total attenuation

of 15 dB, which compares favourably with values quoted by other workers.

1

It is well established from field studies of transmission loss of walls and

floors that heating ducts can provide a flanking path that will short-circuit a

partition and result in lower noise reductions than would otherwise be obtained.

This was borne out in the present study; it was found that buildings that do not

*J.S. Bradley. Unpublished data.

(10)

have forced-air h e a t i n g provide an a d d i t i o n a l

6

dB a t t e n u a t i o n f o r each room i n

9 t h e propagation path.

These c o r r e c t i o n s can a l l be summarized i n t h e following expression:

n a r e a

Atten = [

1

{ l o l o g

(d)

+

5

+

c o r r r

+

K}]

+

10 (door) r = l

where a r e a = f l o o r a r e a of room 'r

'

(m2), door = number of c l o s e d doors i n p a t h , c o r r = -2 f o r hard rooms ( k i t c h e n , b a t h ) ,

= 0

f o r normal rooms,

= 2 f o r s o f t rooms ( r u g s , d r a p e r i e s ) ,

K = 0 f o r f o r c e d a i r h e a t i n g ,

= 6 f o r e l e c t r i c o r h o t water h e a t ,

n = number of rooms i n p a t h from smoke d e t e c t o r t o p o i n t of i n t e r e s t , n o t counting room c o n t a i n i n g smoke d e t e c t o r .

Figure 3 shows t h e a t t e n u a t i o n c a l c u l a t e d u s i n g t h i s model p l o t t e d a g a i n s t measured a t t e n u a t i o n s f o r a l l source-receiver c o n f i g u r a t i o n s i n t h e 11 houses s t u d i e d . The s o l i d l i n e i s t h e l e a s t - s q u a r e s f i t t o t h e d a t a , w i t h a s t a n d a r d d e v i a t i o n of 7.5 dB. Although some of t h i s s c a t t e r w i l l be due t o v a r i a t i o n i n t h e a t t e n u a t i o n f o r c l o s e d doors (shown i n Fig. l ) , much of i t appears t o be a s s o c i a t e d with measurement of t h e source room sound l e v e l . The source room sound p r e s s u r e l e v e l was measured a t a s i n g l e p o s i t i o n r a t h e r t h a n w i t h a moving microphone, a s was done i n t h e r e c e i v i n g room. The measured sound l e v e l w i l l be

- 1 0 0

10 20 30 40 5 0 6 0 70 80 9 0 1 0 0

MEASURED A T T E N U A T I O N , d B

(11)

more r e p r e s e n t a t i v e of t h e n e a r f i e l d of t h e alarm, a s modified by a d j a c e n t r e f l e c t i n g s u r f a c e s , r a t h e r t h a n t h e mean sound l e v e l i n t h e room. c

Obviously t h e r e a r e many o t h e r t r a n s m i s s i o n p a t h s i n r e a l b u i l d i n g s which could be included i n a more d e t a i l e d c a l c u l a t i o n . The i n c l u s i o n of such e x t r a

1

d e t a i l s would r e q u i r e extremely complicated c a l c u l a t i o n s and i s u n l i k e l y t o

*

provide a b e t t e r f i t t o t h e measured d a t a t h a n t h e semi-empirical method

d e s c r i b e d above.

The a t t e n u a t i o n c a l c u l a t e d by Eq. ( 5 ) , when s u b t r a c t e d from t h e i n i t i a l sound l e v e l provided by t h e alarm s i g n a l , g i v e s t h e alarm s i g n a l l e v e l a t t h e p o i n t of i n t e r e s t . The i n i t i a l sound l e v e l provided by t h e a l a r m s i g n a l can be obtained i n one of two ways. The most d i r e c t i s t o measure t h e mean sound l e v e l i n t h e room c o n t a i n i n g t h e smoke d e t e c t o r alarm. This i s n o t always p r a c t i c a l , however, e s p e c i a l l y i f one i s t r y i n g t o a s c e r t a i n t h e b e s t room i n which t o l o c a t e t h e alarm. Thus, t h e second method i s t o c a l c u l a t e t h e i n i t i a l sound l e v e l from t h e sound power output of t h e alarm,6 using t h e e x p r e s s i o n

"s Ss

A

L

= P

-

10

l o g [(F)(l

+

-)]

+

14

6 0 "s

where Ls = mean sound p r e s s u r e l e v e l i n source room, P = sound power output of alarm (dB),

V,

= volume of source room (m3), T60 = r e v e r b e r a t i o n time,

Ss = s u r f a c e a r e a of source room (m2),

X = wave l e n g t h of sound (m).

For a n alarm o p e r a t i n g p r i m a r i l y a t

3150

Hz i n a n approximately s q u a r e room w i t h 2.4- c e i l i n g and a r e v e r b e r a t i o n time of

0.4

s, t h i s can be reduced t o

LS = P

+

14

-

10

l o g

[6.06~

+

.3a]

-

c o r r ( 7 ) where

A

= a r e a of room, c o r r = -2 f o r hard rooms ( k i t c h e n , b a t h ) , =

0

f o r normal rooms, = 2 f o r s o f t rooms ( r u g s , d r a p e s , e t c . ) . RECOMMENDATIONS

Of t h e seven smoke d e t e c t o r s considered d u r i n g t h e s t u d y , n o t one provided any information about t h e sound power output of t h e alarm. It would seem t o be

d e s i r a b l e t h a t e i t h e r a minimum sound power o u t p u t should be e s t a b l i s h e d f o r smoke d e t e c t o r s o r t h a t manufacturers should be r e q u i r e d t o i n d i c a t e c l e a r l y t h e sound power o u t p u t and t h e dominant frequency band.

One of t h e problems a s s o c i a t e d w i t h t h e s e s e l f - c o n t a i n e d smoke d e t e c t o r s i s t h a t t h e optiaum l o c a t i o n f o r e a r l y d e t e c t i o n of f i r e s is n o t t h e same a s t h e optimum l o c a t i o n t o e n s u r e t h a t t h e alarm i s heard. This problem can be

(12)

overcome i n s e v e r a l ways, one being t o make t h e alarms louder. It may i n c r e a s e

:

t h e c o s t of t h e u n i t , and may a l s o r i s k h e a r i n g damage f o r people c l o s e t o t h e

1

alarm when i t i s a c t i v a t e d . Another i s t o have a number of smoke d e t e c t o r s i n t e r c o n n e c t e d s o t h a t d e t e c t i o n of a f i r e by any one would t r i g g e r a l l t h e alarms. A t h i r d method would be t o s e p a r a t e t h e d e t e c t o r and t h e a l a r m s o t h a t each could be p l a c e d i n i t s optimum l o c a t i o n . It i s recommended t h a t t h e l a s t two o p t i o n s be i n c o r p o r a t e d i n b u i l d i n g r e g u l a t i o n s and p r a c t i c e s f o r f i r e s a f e t y design.

CONCLUSION

A simple e x p r e s s i o n h a s been developed t o c a l c u l a t e t h e a t t e n u a t i o n of t h e a l a r m s i g n a l from a smoke d e t e c t o r a s i t propagates through a r e s i d e n t i a l b u i l d i n g , w i t h t h e p a t h viewed a s a s e r i e s of connected rooms. A t t e n u a t i o n depends on f l o o r a r e a and t y p e of f u r n i s h i n g s i n each room. C o r r e c t i o n s a r e a p p l i e d i f t h e house does n o t have f o r c e d a i r h e a t i n g o r i f a number of d o o r s

-

a r e closed. The e x p r e s s i o n can be used t o determine t h e optimum l o c a t i o n f o r alarms. A s t h e b e s t l o c a t i o n f o r an a l a r m is n o t n e c e s s a r i l y t h e b e s t l o c a t i o n

,

f o r a smoke d e t e c t o r , i t i s recommended t h a t i n t e r c o n n e c t e d m u l t i p l e d e t e c t o r / a l a r m systems be used o r t h a t d e t e c t o r and a l a r m be s e p a r a t e d .

I

REFERENCES

1. B r i g h t , R.G.: "Recent Advances i n R e s i d e n t i a l Smoke D e t e c t o r s , "

Fire

J o u r n a l , 68:6, 69-77, 1974.

2. Jones, J.C.: "1982 Multiple-Death F i r e s i n t h e United S t a t e s , "

Fire

J o u r n a l , 77:4, 10-25, 1983.

3. Underwriters L a b o r a t o r i e s Inc. Standard f o r S a f e t y UL217: "Single and M u l t i p l e S t a t i o n Smoke Detectors."

4. Nober, E.H., P e i r c e , H., Well, A., and Johnson, C.C.: "Waking E f f e c t i v e n e s s of Household Smoke and F i r e D e t e c t i o n Devices," NBS-GCR-80-284, Washington, DC, 20234, 1980.

5. Kahn, M.J.: "Detection Times t o Fire-Related S t i m u l i by S l e e p i n g Subjects." NBS-GCR-83-435, Washington, DC, 20234, 1983.

6. ANSI S1.31-1980.: "American N a t i o n a l Standard P r e c i s i o n Method f o r t h e Determination of Sound Power Levels of Broad-Band Noise Sources i n Reverberation Rooms." American I n s t i t u t e of Physics, New York. 7. Berry, C.H.: " W i l l Your Smoke D e t e c t o r Wake You?"

F i r e

72:4,

105-108, 1978. w

8. American N a t i o n a l Fire Codes, N a t i o n a l F i r e P r o t e c t i o n A s s o c i a t i o n , NFPA 74, Batterymarch Park, Quincy, MA, 02269, 1974.

9. Bradley, H.L. and Wheeler, W.P.: "The A n a l y s i s of t h e Audible S i g n a l From S i n g l e - S t a t i o n Heat and Smoke Detectors." Unpublished paper f o r ENFP 416, F i r e P r o t e c t i o n Engineering Department, U n i v e r s i t y of Maryland, College Park,

MD,

1977.

10. ASTM E90-81: "Standard Method f o r Laboratory Measurement of Airborne Sound Transmission Loss of B u i l d i n g P a r t i t i o n s . "

(13)

T h i s p a p e r

i s

b e i n g d i s t r i b u t e d i n r e p r i n t form by t h e I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n . A l i s t of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l R e s e a r c h C o u n c i l o f C a n a d a , O t t a w a , O n t a r i o ,

KIA

0R6.

Ce document e s t d i s t r i b u 6 s o u s forrne de t i r e - + p a r t p a r 1 ' I n s t i t u t de r e c h e r c h e e n c o n s t r u c t i o n . On p e u t o b t e n i r une l i s t e d e s p u b l i c a t i o n s de 1 ' I n s t i t u t p o r t a n t s u r l e s t e c h n i q u e s ou l e s r e c h e r c h e s e n m a t i k r e d e b l t i m e n t e n e c r i v a n t

B

l a S e c t i o n d e s p u b l i c a t i o n s , I n s t i t u t d e r e c h e r c h e e n c o n s t r u c t i o n , C o n s e i l n a t i o n a l d e r e c h e r c h e s du Canada, Ottawa ( O n t a r i o ) ,

K1A

OR6.

Figure

TABLE  1.  Maximum  sound  power  output  of  smoke  d e t e c t o r s
Figure  1.  Histogram of sound attenuation due to closure of single door in  propagation path
Figure  2.  Measured  a t t e n u a t i o n   minus  c o r r e c t i o n s   f o r   open  d o o r s ,   c l o s e d   doors,  and  number  of  f l o o r s   between  alarm  and  r e c e i v e r
Figure  3  shows  t h e   a t t e n u a t i o n   c a l c u l a t e d   u s i n g   t h i s   model  p l o t t e d   a g a i n s t   measured  a t t e n u a t i o n s   f o r   a l l   source-receiver  c o n f i g u r a t i o n s   i n  t h e   11 houses

Références

Documents relatifs

Non-local traf- fic models such as the gas-kinetic based traffic model sum- marized in Appendix A can be even more efficient numer- ically than second-order models with diffusion

The barrel yoke is segmented in 3 rings of about 2.7 m long, equipped with muons chambers within the first half of their thickness. The central part of it will support

Such an acquisition leads to a new design of the front-end electronics of the sub-detectors (the muon system modification is not so drastic as for the others) in order to send

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Nous souscrivons donc aux recommandations européennes les plus récentes concernant le traitement anticoagulant et antiagrégant des patients atteints de fibrillation auriculaire (et

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

l’utilisation d’un remède autre que le médicament, le mélange de miel et citron était le remède le plus utilisé, ce remède était efficace dans 75% des cas, le