• Aucun résultat trouvé

L’Université Joseph Fourier ‐ Grenoble I ‐ France  pour obtenir le grade de 

N/A
N/A
Protected

Academic year: 2022

Partager "L’Université Joseph Fourier ‐ Grenoble I ‐ France  pour obtenir le grade de "

Copied!
133
0
0

Texte intégral

(1)

Observatoire des Sciences de l’Univers de Grenoble  Laboratoire de Géophysique Interne et de Tectonophysique 

Thèse 

présentée à 

L’Université Joseph Fourier ‐ Grenoble I ‐ France  pour obtenir le grade de 

Docteur de l’Université Joseph Fourier,  spécialité « Terre – Univers – Environnement »   

par 

Aloé SCHLAGENHAUF   

‐‐‐‐‐‐‐‐ 

Identification des forts séismes passés sur les failles  normales actives de la région Lazio‐Abruzzo   (Italie Centrale) par ‘datations cosmogéniques’ ( 36 Cl)  

de leurs escarpements 

‐‐‐‐‐‐‐‐ 

ANNEXES 

Thèse soutenue publiquement le 30 Septembre 2009 devant le jury composé de :   

P. Galli     Protezione Civile, Roma, Italie      Rapporteur 

G. Hilley     Université de Stanford, Etats‐Unis        Rapporteur 

M. Campillo     Université J. Fourier, LGIT, Grenoble     Président du Jury 

P. Tapponnier   Earth Observatory of Singapore       Examinateur 

Y. Gaudemer    Université Paris 7, IPGP, Paris        Examinateur 

J. Malavieille    Géosciences Montpellier          Examinateur 

L. Benedetti     CEREGE, Aix‐en‐Provence          Directeur de thèse 

I. Manighetti    LGIT, Grenoble          Directeur de thèse 

(2)
(3)

Annexe I

(du chapitre 3)

(4)
(5)

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 0 100 200

>Ml 1.1 >Ml 3 >Ml 5

SISMICITE INSTRUMENT ALE Catalogue CSI 1.1 (1981-2002)

500 300 100 35 15 0

profondeur (km)

Adriatique

Ionienne

Tyrrhénienne

(6)

12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 0 100 200 km

Adriatique

Ionienne

Tyrrhenienne

1915 2009

1997 1980

1984 Roma Napoli

Anconna Pescara

- Annexe I - A. Schlagenhauf, thèse, 2009 I-3

(7)

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 8˚

8˚ 10˚

10˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

44˚ 44˚ 0 100 200 km

Gar gano

Adriatique

Ionienne

Tyrrhenienne

2 1 Calabro-Sicilien

Calabro-Basilicate

Molise-Campanie 3

Lazio-Abruzzo 4

Umbria-Marche 5 Roma Napoli

Anconna Pescara

(8)

12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 0 100 200

−174/0/0 Mw 6.6 −76/0/0 Mw 6.6 1349/9/9 Mw 6.6

1349/9/9 Mw 6.5 1456/12/5 Mw 7.0

1461/11/26 Mw 6.5 1627/7/30 Mw 6.7 1638/3/27 Mw 7.0

1638/6/8 Mw 6.6* 1659/11/5 Mw 6.5

1688/6/5 Mw 6.7

1703/1/14 Mw 6.8 1703/2/2 Mw 6.7 1706/11/3 Mw 6.6 1732/11/29 Mw 6.6 1783/2/5 Mw 6.9

1783/2/7 Mw 6.6

1783/3/28 Mw 6.9

1805/7/26 Mw 6.6 1832/3/8 Mw 6.5

1857/12/16 Mw 7.0 1905/9/8 Mw 7.0 1908/12/28 Mw 7.2

1915/1/13 Mw 7.0 1930/7/23 Mw 6.7 1980/11/23 Mw 7.0 −217 à -1 0 à 499 500 à 999 1000 à 1099 1100 à 1199

1200 à 1299 1300 à 1399 1400 à 1499 1500 à 1599 1600 à 1699

1700 à 1799 1800 à 1899 1900 à 2002

Mw 5.5 Mw 6.0 Mw 6.5 Mw 7.0

1694/9/8 Mw 6.9

1456/12/5 Mw 6.6 CA TALOGUE DES SEISMES HIST ORIQUES EN IT ALIE (CPTI04) Magnitudes Mw ≥ 5.5 Periode (années) texte Mw ≥ 6.5 L'Aquila 2009/04/06 Mw 6.3

1984/5/7 Mw 5.9*

1997/09/26 Mw 6.0

- Annexe I - A. Schlagenhauf, thèse, 2009 I-5

(9)

12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 12˚

12˚ 14˚

14˚ 16˚

16˚ 18˚

18˚ 38˚ 38˚

40˚ 40˚

42˚ 42˚ 0 100 200 CA TALOGUE DES P ALEOSEISMES EN IT ALIE (PCI)

−10050 (-10770/-10715) − Mw6.9

−3813 (-6810/-536) − Mw6.6 −2050 (-3495/-1490) − Mw6.8 −1875 (-3955/+255) − Mw6.9

−1050 (-1316/-800) − Mw6.8 372 ( +255 /+390) − Mw6.9

590 (+79/691) − Mw6.8

745 (+595/+895) − Mw6.6 951( -730 /+1836) − Mw6.2 1638 (+1450/+1700) − Mw6.8 1783 (+1255/+1783) − Mw6.9

Serre 1783 (+1660/+1950) − Mw6.6

1836(-730/+1836) − Mw6.2

−4242 (-4504/-3900) − Mw6.4 −394 (-2865/-344) − Mw6.4 1561 (-720/+1800) − Mw6.4

−13470 (-17660/-9180) − Mw6.9 −6300 (-6600/-5900) − Mw6.9 −3624 (-4736/-2411) − Mw6.9 −1945 (-2283/-1507) − Mw6.9 −135 (-754/+1415) − Mw6.9 1980 − Mw6.9

(Irpinia)

−280 ( − 290/− 270) − Mw6.6 1456 N−Matese − Mw6.6 1805 N−Matese − Mw6.6

−4270 (-4950/-3490)− Mw6.3 −3338 (-3685/-2890) − Mw6.3 −580 (-1000/-60) − Mw6.3

1279 (-170/+1997) 1997 − Mw5.6

(Colfiorito)

−3002 (-3940/-1965) − Mw6.5 −828 (-2155/+ 600) − Mw6.5

−6415 (-6425/-6365) − Mw6.4 −1550 (-6320/+1000) − Mw6.4

−17150 (-17750/-16450) −Mw7.0 −15081 (-15666/-14397) − Mw7.0 −10441 (-10729/-10053) − Mw7.0 −8203 (-10729/-5576) − Mw7.0 −5050 (-10729/-5576) − Mw7.0 −3831 (-3944/-3618) − Mw7.0 −1450 (-1500/-1300) − Mw7.0 508 (+426 /+782) − Mw7.0 1915 − Mw7.0

(Avezzano)

−4320 (-5560/-2980) − Mw6.7 −1880 (-1830/-1375) − Mw6.7 965 (+ 890/+13th cent) − Mw6.7

−12550 (-14000/-11000) − Mw7.0 −4074 (-4573/-3475) − Mw7.0 −241 (-1381/+1000) − Mw7.0

−99 (− 500/− 50) − Mw6.8 1703 (+1400/+1800) − Mw6.8

Marine−Pettino 1703( +1400/+1800) − Mw6.6 Fucino

Mevale Cittanova

Vettore Norcia Campo Imperatore Ovindoli - Piano di Pezza 5 Miglia−Aremogna N−Matese

Laga Marzano Caggiano Pollino Rossano Lakes

(10)

12˚30' 12˚30'

13˚00' 13˚00'

13˚30' 13˚30'

14˚00' 14˚00'

14˚30 14˚30

41˚30' 41˚30'

42˚00' 42˚00'

42˚30' 42˚30'

0 50

Bassin du

Fucino

Avezzano

Sulmona Celano

L'Aquila

Sora

Rieti Pescara

Terni

Gran Sasso 2912

Monte Greco 2285

Tre-Monti Magnola Velino

Fiamignano

Monte Faito

Monte Cimarini

Trasacco Luco dei Marsi Fiume Liri Faults

Serrone Parasano Monte V

entrino San Sebastiano Castel di Ieri

Scanno

Monte Marsicano

Barrea Piano di 5 Miglia

Maiella Roccasacale

Monte Morrone Piano di Pezza

Campo-Felice Monte Orsello

Monte OcreRoio

Paganica High Aterno Monte Petino

Monte Marine

Montagnola

Campo di Giove

Sant' Antonio Monte Rotella

Piano Aremogna Roccacaramanica Roccapreturo

Monte

Aterno Faults

Monte Capucciata Campo Imperatore

Assergi Campotosto

Monte Laga Leonessa

Celano-Ovindoli

- Annexe I - A. Schlagenhauf, thèse, 2009 I-7

(11)

12˚30' 13˚00' 13˚30' 14˚00' 14˚30

41˚30' 41˚30'

42˚00' 42˚00'

42˚30' 42˚30'

0 50

Avezzano Celano Sulmona

L'Aquila

Sora

Rieti Pescara

Terni

Gran Sasso 2912

Monte Greco 2285

Bassin du

Fucino

(12)

12˚30' 12˚30'

13˚00' 13˚00'

13˚30' 13˚30'

14˚00' 14˚00'

14˚30 14˚30

41˚30' 41˚30'

42˚00' 42˚00'

42˚30' 42˚30'

0 50

Bassin du

Fucino

Avezzano

Sulmona Celano

L'Aquila

Sora

Rieti Pescara

Terni

Gran Sasso 2912

Monte Greco 2285

Tre-Monti Magnola Velino

Fiamignano

Monte Faito

Monte Cimarini

Trasacco Luco dei Marsi Fiume Liri Faults

Serrone Parasano Monte V

entrino San Sebastiano Castel di Ieri

Scanno

Monte Marsicano

Barrea Piano di 5 Miglia

Maiella Roccasacale

Monte Morrone Piano di Pezza

Campo-Felice Monte Orsello

Monte OcreRoio

Paganica High Aterno Monte Petino

Monte Marine

Montagnola

Campo di Giove

Sant' Antonio Monte Rotella

Piano Aremogna Roccacaramanica Roccapreturo

Monte

Aterno Faults

Monte Capucciata Campo Imperatore

Assergi Campotosto

Monte Laga Leonessa

Celano-Ovindoli

Liri Tre-Monti Fucino-nord Fucino-sud

Aterno - Roccapreturo - Scanno Sulmona - Gran Sasso

Maiella

Systèmes du Lazio-Abruzzo:

- Annexe I - A. Schlagenhauf, thèse, 2009 I-9

(13)

12˚30' 13˚00' 13˚30' 14˚00' 14˚30

41˚30' 41˚30'

42˚00' 42˚00'

42˚30' 42˚30'

0 50

Avezzano Sulmona

Celano L'Aquila

Sora

SB PA

TR

CI

RP2 RP3 RP1

RC FI

VE CF

MA1 MA2

MA3 MA4

TM

(14)
(15)

Annexe II

(du chapitre 4)

(16)
(17)

APPENDIX

A Topographic shielding of normal fault sites

Equations below are only valid for calculation of the fast neutron flux which is not energy dependent.

The cosmic ray flux intensity arriving from the sky in the direction given by the inclination θ (positive upwards) and the azimuth φ is generally given by :

I(θ, φ) = I

o

sin

m

θ (A.1)

for θ > 0 and I(θ, φ) = 0 for θ < 0. I

o

is the maximum intensity and m is an empirical constant, generally taken to be equal to 2.3 (e.g. Lal, 1958 ; Nishiizumi et al., 1989). If the sample exposed is not shielded, it will receive the maximum possible flux given by :

Φ

max

= Z

0

Z

π/2

0

I

o

sin

m

θ cos θ dθ dφ = 2πI

o

m + 1 (A.2)

In the presence of a shielding topography, the cosmic ray flux Φ will be reduced by a shielding factor S = Φ/Φ

max

. If the topography is described by a relationship between its vertical angle θ

topo

(as seen from the sampling site) and the azimuth φ, the remaining flux will be :

Φ = Z

0

Z

π/2

θtopo(φ)

I

o

sin

m

θ cos θ dθ dφ (A.3)

and the shielding factor S is given by : S = m + 1

2π Z

0

Z

π/2

θtopo(φ)

sin

m

θ cos θ dθ dφ (A.4)

Equation A.4 can lead to a closed form in the rare cases where the θ

topo

(φ) relationship is simple.

Otherwise, is has to be numerically integrated.

A simple dipping fault plane

Generally, the fault scarp can be modelled in a first approximation as a semi-infinite plane of dip β . If the azimuth φ is taken to be 0 (or π) in the fault direction and π/2 in the direction of maximum scarp slope, the relationship between θ

topo

and φ is given by :

θ

topo

(φ) = atan(tan β sin φ), 0 6 φ 6 π (A.5a)

θ

topo

(φ) = 0, π 6 φ 6 2π (A.5b)

Equation A.5a is simply the expression of the apparent slope of the scarp in the azimuth φ. The resulting shielding factor S(β) is given by :

S(β) = 1

2 + m + 1 2π

Z

π

0

Z

π/2

atan(tanβsinφ)

sin

m

θ cos θ dθ dφ (A.6) If there is a significant topography across the valley, its shielding effect must be included here, in the π 6 φ 6 2π domain, by replacing the 1/2 term by an expression similar to equation (A.4) but for π 6 φ 6 2π.

1

(18)

r(coll)

θ φ

Z E O

H P F

α

β upper eroded

scarp section

colluvium basal preserved fault scarp section incident

cosmic ray

x y z

r(rock)

Z E

θ φ

H P

γ

β

x y z

γ

colluvium

upper eroded scarp section

basal preserved fault scarp section

r(rock)

θ φ Z

E

H P

γ

β

x y colluvium z

upper eroded scarp section

basal preserved fault scarp section

S(rock,depth)

S(coll,depth)

α (or A)

β (or B)

γ (or C) Z

H

S(rock,surf) S(air,surf)

β (or B)

γ (or C) Z

H

a) Buried samples

b) Exhumed samples Colluvium

contribution at depth (Sc_d)

Scarp rock contribution at depth (Sr_d)

Scarp rock contribution at surface (Sr_s)

FIGURE A.1 - Schematic representation of the geometry of a normal fault scarp and associated colluvial wedge, and resulting shielding. α is colluvial wedge dip,β the basal scarplet dip, and γ the dip of the upper part of the fault escarpment. H is the actual height of the basal scarplet. Whenγ andβare different, a) buried samples receive cosmic rays passing through the colluvium (‘colluvium contribution’ of the flux), and cosmic rays passing through the scarp rock (‘rock contribution’ of the flux), b) the exhumed samples receive cosmic rays traveling through the air, plus cosmic rays passing through the rock.

2

- Annexe II - A. Schlagenhauf, thèse, 2009 II-3

(19)

Colluvial wedge

As the samples have been buried beneath a colluvial wedge before being exhumed by an earthquake, it is necessary to take into account the partial shielding created by this wedge. As for the fault scarp, we assume that it can be modelled by a semi-infinite plane of dip α. At any point beneath the colluvial wedge, the cosmic ray flux intensity coming from the direction (θ, φ) will be attenuated from its surface value by a factor exp(−d/λ) where d is the distance travelled throuth the colluvium by the incoming particle and λ the true attenuation length of the corresponding particle flux. In the case of fast neutrons, λ ≈ 208 g.cm

−1

(e.g. Gosse and Phillips, 2001).

If the target is at a distance Z (positive downwards) beneath the colluvium-fault intersection (Figure 4 in the main text), the distance d travelled through the colluvium by a particle coming from the direction (θ, φ) is given by :

d

= Z sin(β − α)

sin θ cos α − cos θ sin α sin φ if 0 6 φ 6 π (A.7a) d

+

= Z sin(β − α)

sin θ cos α + cos θ sin α sin φ if π 6 φ 6 2π (A.7b) Our expression of d differs from that given by Dunne et al. (1999, eq. 12) as we use a different depth Z.

Combining the shielding provided by the fault scarp of slope β and the attenuation due to the colluvial wedge of slope α, the resulting flux at Z is :

Φ(Z, α, β) = Z

π

0

Z

π/2

atan(tanβsinφ)

I

o

e

−d

sin

m

θ cos θ dθ dφ +

Z

π

Z

π/2

0

I

o

e

−d+

sin

m

θ cos θ dθ dφ

(A.8)

In the actual calculation, the distances d

, d

+

, and the attenuation length λ have to be expressed in the same units, e.g. cm or g.cm

−2

. The ratio between Φ and Φ

max

can then be used as a scaling factor S

d

(Z, α, β) for the production rate (Dunne et al. 1999) beneath the colluvial wedge. The Matlab

R

program (see Electronic Supplement 1) scdepth.m computes S

d

(Z, α, β).

Plotting S as a function of Z for given values of α and β shows (Figures A.2.a,b,c) that it is reasonable to approximate the scaling factor by an exponential decay of the form :

S

d

(Z, α, β) ≈ S

Z

exp(−Z/Λ

Z

) (A.9)

where Λ

Z

is an apparent attenuation length. In order to facilitate the comparison with the work of Dunne et al. (1999), we calculate the scaling factor as a function of z, the distance measured perpendicularly to the colluvial upper surface, which is related to Z by z = Z sin(β − α). The scaling factor can also be approximated by an exponential decay in z of the form S

d

(z) = S

z

exp(−z/Λ

z

) where Λ

z

is the apparent attenuation length relevant to the z direction, perpendicular to the colluvial outer surface. In the case of a flat colluvium and no scarp, α = β = 0, we find that setting the true attenuation length λ = 208 g.cm

−2

gives Λ

z

≈ 157 g.cm

−2

, which is close to the classical value of 160 g.cm

−2

used in vertical profiles (e.g.

Gosse and Phillips, 2001). Other calculated values of s

o,f

and Λ

f

are given in Figures A.2c,d for given α and β related to Figures 5a,b of the main text.

3

(20)

0 500 1000 1500 0

0.2 0.4 0.6 0.8 1

Z*ρrock (g.cm-2) SD, Scaling factor along Z

Exact scaling so.exp(-z/Lambda)

cm (for ρrock = 2.7 g.cm-3) cm (for ρrock = 2.7 g.cm-3)

0 500 1000 15000

20 40 60 80 100

Z*ρrock (g.cm-2)

relative error (%)

0 185 370 550 0 185 370 550

a b

0 400 800 1200 1600 2000

0 0.2 0.4 0.6 0.8 1

0 400 800 1200 1600 2000

Z*ρcoll (g.cm-2) Z*ρcoll (g.cm-2) SD, Scaling factor along Z

c

β = 15°

β = 30°

β = 45°

β = 60°

β = 75°

β = 90°

α = 0° α = 0°

α = 15°

α = 30°

β = 50°

α = 45°

cm (for ρcoll = 2.0 g.cm-3) cm (for ρcoll = 2.0 g.cm-3)

0 500 1000 0 500 1000

for ρrock = 2.7 and ρcoll = 2.0 (g.cm-3)

1) variations of β (α = 0°):

β 15° 30° 45° 60° 75° 90°

so_f_depth 0.9876 0.9679 0.9120 0.8114 0.6680 0.5015

Λ_f_depth 157.35 159.70 162.80 164.80 163.65 157.65

2) variations of α (β = 50°):

α 0° 15° 30° 45°

so_f_depth 0.8836 0.8836 0.8836 0.8836 Λ_f_depth 163.70 162.70 149.25 116.70

d

FIGURE A.2 - Fast neutron attenuation at depth. a) Comparison of exact scaling and its fit by an exponential with the fitexp.m MatlabR code (S=so.exp(−Z/Λf). Corresponding values of z in cm at the top are given for ρrock= 2.7. b) Relative error between the two previous curves. c) Scaling with depth for different values ofβand α, and d) corresponding values ofso andΛf.

4

- Annexe II - A. Schlagenhauf, thèse, 2009 II-5

(21)

Change in dip of the fault escarpment

It has been observed that, above the steep scarplet, the mountain front has a gentler slope. Samples located near the top of the scarplet will receive not only particles from the atmosphere directly above them but also particles who will have travelled through the upper surface (Figure A.1). Again, if we take the scarp and the mountain front above as planar surfaces of slopes β and γ respectively, the particle flux arriving at the sample from the direction (θ, φ) will be attenuated by a factor exp(−d/λ) where d is the distance travelled through the footwall rock from the entry point to the sample and λ is the true attenuation length. If the scarp height is H and the position of the sample on the scarp surface is measured by Z (positive upwards), then d is given by :

d = (H − Z) sin(β − γ)

sin θ cos γ − cos θ sin γ sin φ (A.10)

The net contribution of these particles to the flux reaching the sample will then be : Φ =

Z

π

0

Z

atan(tanβsinφ)

0

I

o

e

−d/λ

sin

m

θ cos θ dθ dφ (A.11) In fact, the lower limit of the inner integral may not be 0 but atan(tan γ sin φ), the apparent slope of the upper surface in the direction φ, as the distance d becomes infinite for θ <= atan(tan γ sin φ) and attenuation is complete.

The total flux received by the sample can then be calculated and leads to the following scaling factor S

s

(Z, H, β, γ) :

S

s

(Z, H, β, γ) = 1

2 + m + 1 2π

Z

π

0

Z

π/2

atan(tanβsinφ)

sin

m

θ cos θ dθ dφ

+ m + 1 2π

Z

π

0

Z

atan(tanβsinφ)

atan(tanγsinφ)

e

−d/λ

sin

m

θ cos θ dθ dφ

(A.12)

The Matlab

R

program (see Electronic Supplement 1) scsurf.m computes S

s

(Z, H, β, γ). This time, the scaling factor S

s

(Z, H, β, γ) should be modelled, for given values of H, β, and γ, as the sum of a constant term and of an exponential, reflecting the contributions of particles reaching directly the sample and particles having travelled through the upper surface of the fault scarp, respectively.

If the scarplet height H is small enough, it may become necessary to combine the effects of the colluvial wedge and of the upper surface to calculate the scaling factor for samples located at relatively shallow depths beneath the colluvial wedge (in fact, the Matlab

R

program scdepth.m mentioned above includes the presence of an upper slope).

In the presence of erosion

In the presence of erosion, a sample now at the surface will have been partially shielded from the surface flux by a layer of rock of decreasing thickness. It is therefore necessary to calculate the flux reaching a sample beneath the scarp surface. Assuming for the moment that the scarp surface is an infinite plane of slope β , if e is the rock thickness between the (future) sample and the scarp surface (Figure A.3a), the distance travelled by a particle coming from the direction (θ, φ) is :

d

= e

sin θ cos β − cos θ sin β sin φ if 0 6 φ 6 π (A.13a)

d

+

= e

sin θ cos β + cos θ sin β sin φ if π 6 φ 6 2π (A.13b)

5

(22)

The corresponding scaling factor is : S

r

(e, β) = m + 1

2π Z

π

0

Z

π/2

atan(tanβsinφ)

e

−d

sin

m

θ cos θ dθ dφ + m + 1

2π Z

π

Z

π/2

0

e

−d+

sin

m

θ cos θ dθdφ

(A.14)

The Matlab

R

program (see Electronic Supplement 1) scrock.m computes S

r

(e, β). For a given scarp slope β, the scaling factor S

r

(e) is also well approximated by an exponential decay of the form :

S

r

(e, β) ≈ S

e

exp(−e/Λ

e

) (A.15)

Colluvium + upper surface + erosion

If we wish to model the erosion of a scarp of slope β and height H, above a colluvial wedge of slope α and below an upper surface of slope γ, the same methodology as in the above cases should be used : (1) calculating first the distance d between the entry point at the Earth’s surface and the target at depth as a function of the incoming direction (θ, φ), (2) integrating the attenuated flux intensity over the (0 6 φ 6 2π, 0 6 θ 6 π/2) domain, skipping regions from which no flux is coming by adjusting the integration limits for θ as we did above.

It is easy to see that the expression of d as a function of the target position given by Z and e (Figure A.3a) becomes very complex as several regions have to be considered and that the integration of the flux intensity becomes cumbersome, if not painful. It will be very difficult to easily express the corresponding scaling factor S

t

(Z, e) as a function of Z and e. As, however, this scaling factor should vary smoothly with Z and e, we believe that it is reasonable to assume that S

t

can be expressed as the product of two scaling factors, one accounting for the shape of the scarp itself and being a function of Z , and one accounting for the thickness e of footwall rock separating the target form the scarp surface :

S

t

(Z, e) = f (Z)g(e) (A.16)

At the surface of the scarp (e = 0), S

t

(Z, 0) should be equal to the scaling factors S

d

or S

s

we have calculated above in equations (A.9) and (A.12). Above the colluvial wedge and far enough from the top of the scarp surface, S

t

(Z, e) should be equal to S

r

(e). The solution is to take :

S(Z, e) = S

r

(e) ¯ S(Z) (A.17)

where S(Z) ¯ is either S

d

(Z ) or S

s

(Z), depending on the location of the target, normalized to the (identical) value they take at the colluvium-fault scarp limit (Figure A3.a). This ensures that the effect of the scarp slope β is not taken into account twice. With this normalization, S(Z) ¯ decrease exponentially from 1 towards 0 for increasing depths beneath the colluvium, while it increases slightly towards the top of the scarp, reflecting the increasing contribution of particles entering through the upper surface (Figure A.3b).

B Matlab

R

code description

The production rate P

Production rates are calculated using the full description of the production sources from Schimmelpfennig et al. (2009 ; after Gosse and Phillips, 2001). Both clrock.m and clcoll.m have equivalent equations.

They differ only by the fact that clcoll.m also takes into account the colluvial wedge mean chemical composition : it calculates the production rate in the sample (scarp rock composition) buried under a thickness z of colluvium having its proper chemical composition.

Thickness factors (Q

x

; with x standing for each production source) from Gosse and Phillips (2001) are only valid for samples at the surface vicinity. We re-calculated the thickness factors to express them as a function of depth. The new thickness factors are defined at the sample center, or thickness half, named

6

- Annexe II - A. Schlagenhauf, thèse, 2009 II-7

(23)

th

2

(in ’e’ direction) and are the following (using Schimmelpfennig et al., 2009 nomenclature) : For spallation :

Q

sp

= 1 + 1 6

th

2

Λ

f,e

2

(B.1) For direct capture of slow negative muons :

Q

µ

= 1 + 1 6

th

2

Λ

µ

2

(B.2) For epithermal neutrons :

Q

eth

= 1 P

eth

"

φ

eth

f

eth

Λ

eth

(1 − p(E

th

)) exp −e

Λ

f,e

1 + 1

6 th

2

Λ

f,e

2

!

+ (1 + R

µ

R

eth

)(F∆φ)

eth

f

eth

Λ

eth

(1 − p(E

th

)) exp −e

L

eth

1 + 1 6

th

2

L

eth

2

!

+R

µ

φ

eth

f

eth

Λ

eth

(1 − p(E

th

)) exp −e

Λ

µ

1 + 1

6 th

2

Λ

µ

2

!#

(B.3)

For thermal neutrons : Q

th

= 1

P

th

"

φ

th

f

th

Λ

th

exp

−e Λ

f,e

1 + 1

6 th

2

Λ

f,e

2

!

+ (1 + R

0µ

)(=∆φ)

eth

f

th

Λ

th

exp

−e L

eth

1 + 1

6 th

2

L

eth

2

!

+ (1 + R

0µ

R

th

)(=∆φ)

th

f

th

Λ

th

exp −e

L

th

1 + 1 6

th

2

L

th

2

!

+R

0µ

φ

th

f

th

Λ

th

exp −e

Λ

µ

1 + 1 6

th

2

Λ

µ

2

!#

(B.4)

Apparent attenuation length for fast neutrons is calculated as explained above in part 1 of the Appendix using either scdepth.m, scsurf.m, or scrock.m depending of sample position in Z direction (Figure 5 of the main text). As slow muons flux is energy dependent (e.g. Gosse and Phillips, 2001) the same calculation of the apparent attenuation length of slow muons cannot be achieved as for fast neutron. We use the 1500 g.cm

−2

defined for a flat surface (e.g. Gosse and Phillips, 2001, p 1504).

The number of atoms N

The equation governing the evolution of the number N of

36

Cl atoms is : dN

dt = −λ

36

N + P (B.5)

where λ

36

is the decay constant of

36

Cl and P is the production rate. In certain conditions, equation (B.5) can be solved analytically. Here we want to model the evolution of a fault scarp whose geometry changes repeatedly with time, we wish also to study the influence of a variable magnetic field on the production rate, and to account for possible erosion of the scarp surface. This has lead us to solve equation (B.5) numerically by dividing the time span of the scarp evolution into small increments of time and writing : N(t + ∆t) = N (t) + [P (t) − λ

36

N(t)] × ∆t (B.6)

7

(24)

These time increments are small enough, typically 100 years, to ensure that the magnetic field and hence its effects on the production rate through the elevation-latitude correcting factors S

el,f

for fast neutrons and S

el,µ

for muons, can be considered constant. In that, we follow the method used for instance by Dunai (2001), Pigati and Lifton (2004), Lifton et al. (2005) and Lifton et al. (2008). The changes in geometry, either by earthquake slip or erosion are accounted for by calculating the scaling factor S(Z(t), e(t)). For instance, if the erosion rate is ε, the thickness e of rock between the sample and the scarp surface varies as :

e(t + ∆t) = e(t) − ε × ∆t (B.7)

Changes in Z occur every time there is an earthquake, so that Z(t) values are updated much less frequently than e(t) values. Finally, each segment of the fault scarp has its own exhumation history. This has lead us to write a Matlab

R

program, named modelscarp.m (see Electronic Supplement 1 and Figure B.1), whose main structure is based on the nesting of three loops : one for each of the segments, one for the number of earthquakes prior to the exhumation of the current segment (once it is exhumed, the actual Z values of a segment have no influence the production rate), and one for the small time increments ∆t.

Before these loops, the program calculates the number of

36

Cl atoms at the end of the pre-exposition time.

[

36

Cl]

e

γ

α

β

1 >1

<1

scaling factor versus Z view in cross section

Z ρ rock

ρ coll

H

e

Z = 0

a) b) S(Z)

Z

FIGURE A.3 - The attenuations along ’e’ and ’Z’ directions are separated : a) the [36Cl] profile due to rock attenuation is calculated for a surface of dipβ in the directione perpendicular, b) a scaling factorS(Z), which is only applied to the cosmogenic part of the production, is introduced. It accounts for both attenuation at depth (S(Z)<1) and increased flux at the vicinity ofγ (S(Z)). It is calculated by scaling the cosmogenic production at surface far fromγ (at Z = 0, forβinfinite).

FIGURE B.1 - Schematic representation of the MatlabR modelscarp.mprogram given in Electronic Supplement 1. In orange, parameters that need to be modified for each site by the users.EQ stands for Earthquake ;f for neutrons ;µfor muons ; jfor the sample ;ifor the earthquake number ;tfor the time step ;rockfor the sample chemical composition ;collfor the mean colluvial wedge composition ;Pcosmofor the cosmogenic production ;Prad

for the radiogenic production ;epsilonfor the erosion rate (in mm/yr).

8

- Annexe II - A. Schlagenhauf, thèse, 2009 II-9

(25)

modelscarp.m (Matlab

R

code):

Matlab

R

command window:

data = load('datarock.txt');

66 columns * x lines (x samples)

coll = load('datacolluvium.txt');

62 columns * 1 line (mean colluvium composition) dataset loading

EL = load('datamagfield.txt');

4 columns * t lines

modelscarp(data,coll,age,slip,preexp,EL,epsilon)

calculation

A - Initialization

CONSTANTS DECLARATION: α, β, γ, ρ rock , ρ coll , Η final (per site)

Ψ

36

Cl_Ca,0 (function of Earth magnetic field description used)

CONSTANTS LOADING: λ 36 , Λ f, Sel,f (t), Sel, μ (t)

SURFACE SCALING (along z

0) S(z ≥ 0) equal to 1 if β infinite ; S(z)

≥1

(for z

0) if H, γ DEPTH SCALING (along z ≤ 0) after each EQ(i) S(z,Hi)≤1 (for z ≤ 0) ; loop on Hi

S(z ≤ 0, Hi) fitted whith fitexp.m —> sof,d,i and Λ f,d,i

ROCK SCALING (along e ≤ 0) calculates Se(e) (for e ≤ 0) independently of position on z Se(e) fitted whith fitexp.m —> sof,e and Λ f,e

(d: depth)

VARIABLES INITIALIZATION Initial samples (j) positions along e —> e

0

(j)

scsurf.m

scdepth.m scrock.m

B - Calculation of

36

Cl depth profile after pre-exposure (all samples buried under the colluvium)

clrock.m ( rock(j), e

0

(j), Λ

f,e

, so

f,e

, S

el,f

(t), S

el,μ

(t) ) —> P

cosmo

(j) and P

rad

(j) at e

0

(j)

clcoll.m( coll(j), rock(j), Λ

f,d,i=0

, so

f,d,i=0

, S

el,f

(t), S

el,μ

(t) ) / clcoll.m (.., z=0,.. ) —> S

coll,cosmo

(j) P

tot,pre-exp

(j) = P

rad

(j) + P

cosmo

(j) * S

coll,cosmo

(j) - λ

36

* P

tot,pre-exp

(j,t-1) * t

time (t)

sample (j)

(scalling)

depth

—> Ptot,pre-exp (j)

C - Calculation of

36

Cl depth and surface profiles during seismic phase

clrock.m ( rock(j), e

0

(j), Λ

f,e

, so

f,e

, S

el,f

(t), S

el,μ

(t) ) —> P

cosmo

(j) and P

rad

(j) at e(j)

clcoll.m( coll(j), rock(j), Λ

f,d,i=0

, so

f,d,i=0

, S

el,f

(t), S

el,μ

(t) ) / clcoll.m (.., z=0,.. ) —> S

coll,cosmo

(j) P

tot,depth

(j) = P

rad

(j) + P

cosmo

(j) * S

coll,cosmo

(j) - λ

36

* P

tot

(j,t-1) * t

time (t)

sample (j)

(scalling)

surface depth

earthquake (i)

P(j) = Ptot,pre-exp (j) + Ptot,EQ (j)

clrock.m ( rock(j), e(j,t), Λ

f,e

, so

f,e

, S

el,f

(t), S

el,μ

(t) ) —> P

cosmo

(j) and P

rad

(j) at e(j,t) (scsurf.m) S(j) / S(z=0) —> S

surf,cosmo

(j)

P

tot,depth

(j) = P

rad

(j) + P

cosmo

(j) * S

surf,cosmo

(j) - λ

36

* P

tot

(j,t-1) * t e(j,t+1) = e(j,t) - ε * t

time (t)

sample (j)

(scalling)

—> Ptot,EQ (j) 1

rst

EQ 2

nd

EQ 2

nd

EQ

and just before 1

rst

EQ

sample position through time

erosion erosion

9

(26)
(27)

Legend of Electronic Supplement 1 – Schlagenhauf et al., 2009

For a new sampling site:

1- Create the 3 input files as the ones given for Magnola MA3 site (text format with tabulations – no coma, use points for decimal separator):

• ‘datarock.txt’: 66 columns by x lines (x : number of samples) ; see Tables 1 and 2 of main text

• ‘datacolluvium.txt’: 62 columns by 1 line (mean colluvium composition) ; see Table 1 of main text

• ‘datamagfield.txt’: 4 columns by t lines (variations of scaling factors S

el,s

and S

el,µ

);

from 1rst to 4th column: time period (yrs) – time steps (yrs) - S

el,s

- S

el,µ

example (for a variable magnetic field):

2- Modify the Matlab® code modelscarp.m (actual values are the one corresponding to MA3 Magnola site):

• alpha (degrees): colluvium wedge dip

• beta (degrees): preserved scarp dip

• gamma (degrees): upper eroded scarp dip

• Hfinal: final height (present height) of the fault scarp of dip β (m)

• rho_coll: colluvial wedge mean density

• rho_rock: scarp rock mean density

• Psi_36Cl_Ca_0: spallation production rate of

36

Cl at surface from

40

Ca corresponding to the description of magnetic field used (ex: 48.8 at

36

Cl/g Ca /yr, from Stone et al., 1996 using a constant magnetic field).

3- In the Matlab® command window:

data = load(‘datarockMA3.txt’);

coll = load(‘datacolluviumMA3.txt’);

EL = load(‘datamagfieldMA3Stone2000.txt’);

age = [7200 4900 4000 3400 1500 0];

% Earthquakes ages (years), here last event is at t=0 to model the buried samples

slip = [190 205 160 360 200 400];

% Corresponding earthquakes displacements (cm ; 400 cm for the buried samples)

preexp = 1900;

% pre-exposure duration (years)

epsilon = 0;

% erosion rate (mm/yr)

modelscarp(data,coll,age,slip,preexp,EL,epsilon)

Output: it can take a few minutes to run. A Figure window of Matlab will appear displaying the results. Black dots are the [

36

Cl] concentrations with horizontals bars for the corresponding uncertainties. Blue open dots are the modelled [

36

Cl] concentrations. Blue line represent the position of each discontinuities associated with each modelled event.

“Modelscarp” folder contains: all the Matlab® codes for earthquake recovering using

36

Cl cosmogenic isotope on active normal fault scarps, and all input files for MA3 site on the Magnola Fault.

modelscarp.m is the main routine iterating the other six (see Appendix for more details).

clcoll.m and clrock.m calculate production of

36

Cl in a sample buried under colluvium or at surface, respectively,

scdepth.m, scsurf.m calculate the scaling of the samples along Z when buried or at surface, respectively,

scrock.m calculates the scaling along direction e,

fitexp.m calculates the fit by an exponential form of the 3 scaling factors described above to derived the

attenuation length Λ.

(28)

Electronic Supplement 2 - Schlagenhauf et al. 2009

Sample chemical preparation for Cl extraction in limestone rocks (modified after Stone et al., 1996)

SAMPLE

length = ~ 15cm ; width = ~ 10cm ; thickness = ~ 3cm weight = ~ 1000 - 1200 g

Crushing & Sieving 3 times

Sample density

keep a representative piece (~ 30 g)

~ 50 g

(in a plastic bottle, 500 ml)

100 g for replicates if necessary

< 250 μ m

xx g 250 - 500 μ m

~ 150 g > 500 μ m xx g

MQ water leaching (x2)

HNO 3 2M leaching (10% of sample dissolved)

Sample chemical composition (ICP-MS for trace elements, and spectrometry for oxides)

~ 5 g of leached sample

~ 35 g - r = weight dissolved Leachings

Aliquot for [Ca] and [K] (ICP)

~ 5 ml of purified sample solution Filter Dry residue and weight (r) + Na 35 Cl spike, 3mg / g (1ml)

Dissolution in HNO 3 2M (10 ml / g of sample)

+ AgNO 3 , 100 mg / g (2.5 ml) Store 3 days in the dark Pomp supernatent

+ 1:1 NH 4 OH (2 ml)

Filter residue (BaSO 4 ) + 1:1 Ba(NO 3 ) 2 (1 ml)

Sulfate precipitation AgCl separation Spike and dissolution

+ 1:1 HNO 3 (2 ml)

Remove liquid - Rinse with MQ water Dry precipitate - Store in the dark Final AgCl precipitation

AgCl precipitate for AMS measurement

~ 1-5 mg of sample icebath

- Annexe II - A. Schlagenhauf, thèse, 2009 II-13

(29)

Electronic Supplement 3 – Schlagenhauf et al. 2009

Equations for [Cl] and [

36

Cl] concentrations calculations, from AMS ratios.

The example is given for a

35

Cl-spiked sample.

More details can be found in Desilets et al., 2006

[Desilets, D., Zreda, M., Almasi, P.F., Elmore, D., 2006. Determination of cosmogenic

36

Cl in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233, 185-195]

AMS ratios:

36

Cl

35

Cl(or

37

Cl)

  

 

sample,AMS

and

36

Cl

35

Cl(or

37

Cl)

  

 

blk,i,AMS

;

35

Cl

37

Cl

  

 

sample,AMS

and

35

Cl

37

Cl

  

 

blk,i,AMS

[Cl

nat

] calculation:

m

Cl,spike

= [Cl

spike

] × m

spike

× 0.001 (g)

with [Cl

spike

] the spike concentration in Cl (mg/g) m

spike

the spike mass (g)

n

Cl,spike

= m

Cl,spike

× N

av

/ M

spike

(at.)

with N

av

the Avogadro number (6.022.10

23

mol

-1

)

M

spike

the molar mass of the spike (%

35Cl

x M

35Cl

+ %

37Cl

x M

37Cl

) M

35Cl

= 34.9689 g.mol

-1

and M

37Cl

= 36.9659 g.mol

-1

Isotopic dilution equations to calculate

n

Cl

nat,sample

: Cl

nat

ratio:

R

Cl

nat

= %

35

Cl

nat

%

37

Cl

nat

= 75.77

24.23 = 3.127 Spike ratio:

R

spike

= %

35

Cl

spike

%

37

Cl

spike

(known) Sample ratio from AMS:

R

sample,AMS

=

35

Cl

37

Cl

  

 

sample,AMS

= n

35Clspike

+ n

35Clnat,sample

n

37Clspike

+ n

37Clnat,sample

with

n

35Clspike

= n

Cl

spike

× %

35Clspike

and

n

37Clspike

= n

Cl

spike

× %

37Clspike

n

35Clnat,sample

= n

Cl

nat,sample

× %

35Clnat

and

n

37Clnat,sample

= n

Cl

nat,sample

× %

37Clnat

R

sample

= (n

Cl

spike

× %

35Clspike

) + (n

Cl

nat,sample

× %

35Clnat

) (n

Cl

spike

× %

37Clspike

) + (n

Cl

nat,sample

× %

37Clnat

)

for the sample:

n

Cl

nat,sample

= n

Cl

spike

×

%

35Clspike

35

Cl

37

Cl

  

 

sample,AMS

× %

37Clspike

35

Cl

37

Cl

  

 

sample,AMS

× %

37Clnat

− %

35Clnat

 

 

(30)

and for the blank:

n

Clnat,blk,i

= n

Clspike

×

%

35

Clspike

35

Cl

37

Cl

  

 

blk,i,AMS

× %

37

Clspike

35

Cl

37

Cl

  

 

blk,i,AMS

× %

37Clnat

− %

35Clnat

 So, the blank corrected sample number of mole is:

n

Cl

natcorr

= n

Cl

nat,sample

n

Cl

nat,blk,i

Finally,

[Cl

nat

]

sample

= n

Cl

natcorr

× M

Cl

nat

×10

6

N

av

× m

sample

(ppm)

[

36

Cl] calculation:

For a

35

Cl spike:

36

Cl

35

Cl

  

 

sample,AMS

=

n

36Clsample

n

35Clsample

n

36Clsample

=

36

Cl

35

Cl

  

 

sample,AMS

× n

35Clsample

with

n

35Clsample

= n

35Clspike

+ n

35Clnat,sample

n

35

Clsample

= n

Clspike

× %

35

Clspike

( ) + ( n

Clnat,sample

× %

35Cl,nat

)

for the sample:

n

36Clsample

=

36

Cl

35

Cl

  

 

sample,AMS

×   ( n

Clspike

× %

35Clspike

) + ( n

Clnat,sample

× %

35Cl,nat

)

 

and for the blank:

n

36Clblk,i

=

36

Cl

35

Cl

 

 

blk,i,AMS

× n

Cl

spike

× %

35Clspike

( ) + ( n

Clnat,blk,i

× %

35Cl,nat

)

  

 

So, the blank corrected number of mole in the sample is:

n

36Clsample,corr

= n

36Clsample

n

36Clblk,i

Finally,

[

36

Cl] = n

36Clsample,corr

m

sample

(at.g

-1

)

And the uncertainty on the calculated [

36

Cl] concentration is:

Δ [

36

Cl ] = [

36

Cl ] × Δ

3636

Cl Cl / /

3535

Cl Cl

2

+ Δ

35

Cl /

37

Cl

35

Cl /

37

Cl

  

 

2

blk,i: blank associated to chemistry series i       Cl

nat

: natural chlorine 

(75.77% 35Cl; 24.23% 35Cl) 

sample: sample prepared in the series i            m

sample

: sample weight   

- Annexe II - A. Schlagenhauf, thèse, 2009 II-15

(31)

Electronic Supplement 4 - Schlagenhauf et al. 2009

Scaling factors for fast neutrons (S

el,s

) and slow muons( S

el,µ

) according to different Earth paleomagnetic models

a - Stone (2000)

Spallation rate at latitude λ and elevation z (normalized to its value at 60˚latitude and at stan- dard sea level pressure) :

S

el,s

(P ) = a + b exp −P

150

+ cP + dP

2

+ eP

3

(a.1)

with a, b, c, d, e : scaling coefficients function of latitude from 0 to > 60˚with a 10˚step (see Stone, 2000), and P : Pressure (hPa) - ( from Lal., 1991) :

P(z) = P

s

exp

− g

o

M

Rξ (ln T

s

− ln(T

s

− ξz))

(a.2)

P

s

: Sea level pressure = 1013.25 hPa ; T

s

: Sea level temperature = 288.15 K ; ξ : adiabatic lapse rate = 0.0065 K.m

−1

;

M : Molar weight of air g

o

: acceleration of gravity R : gaz constant

 g

o

M

R = 0.03417 K.m

−1

Slow muon capture at latitude λ and elevation z :

S

el,µ

(P) = M

λ,1013.25

exp (1013.25 − P)

242 (a.3)

with the attenuation length of muons in the air = 242,

and M

λ,1013.25

: scaling coefficients for latitudes from 0 to > 60˚ with a 10˚ step (see Stone, 2000).

b - Dunai (2001)

Spallation rate at latitude λ, longitude θ and elevation z :

S

el,s

= P N

i

i ; with N

(z,Rc,t)

= N

(1030,Rc,f)

exp z

(h)

Λ

(Rc)

(b.1)

N

(1030,Rc,f)

: neutron flux at sea level, z

(h)

; difference in atmospheric depth, Λ

(Rc)

: attenuation coefficient.

• with N

1030,Rc

= Y + A

h

1 + exp

−(RBc−X)

i

C

; and A, B, C, X, Y scaling coefficients (see Dunai, 2001) (b.2)

1

Références

Documents relatifs

34 Antioch, Seleukeia in Pieria, Seleukeia on the Kalykadnos, Tarsos (royal work- shop), Tarsos (civic workshop, see Houghton, Lorber and Hoover 2008, 2285-6, 2288-9),

It appears from this table that for all years and samples and for both sons and daughters, the bulk of the intergenerational correlation in earnings arises from the correlation

Spelling words at the end of first grade: Is it easier to spell after hearing the word than after seeing its picture?. Cynthia Boggio, Maryse Bianco, Céline Pobel-Burtin,

Figure 8 Microstructure of the P91 steel after creep (2mm from fracture surface) a) EBSD IPF (same colour key as in Figure 6a); b) BSE image; c) EBSD Image Quality map Figure 7

The microstructure was investigated using transmission electron microscopy (TEM) and revealed chromium rich M 23 C 6 carbides, MX-type precipitates, Laves phases

of DA covered by total vegetation, trees/shrubs and lawn (Table 2). QuickBird image, vegetation classification, street vegetation cover and yard 137.. vegetation cover of a

Using a lattice- based signature in message-recovery mode is quite generic (i.e it does not depend on the structure of the message), and so it may be used in AKE constructions that

We study the probability of selling a product containing social or environmental claims based on different levels of cues (the non-verifiable green communication) and hard