• Aucun résultat trouvé

C.S.T.B. solar diagrams

N/A
N/A
Protected

Academic year: 2021

Partager "C.S.T.B. solar diagrams"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Building Research Note, 1964-12-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ce2402e8-2ac0-44e6-8954-8b097a8dcfe0 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ce2402e8-2ac0-44e6-8954-8b097a8dcfe0

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40000660

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

C.S.T.B. solar diagrams

(2)

December

1964

A R C H C O U N C I L O T T A W A C A N A D A

C

.

S

.

T

.

B

.

SOLAR DIAGRAMS by

(3)

C. S. T . B . SOLAR DIAGRAMS

by

D. G . Stephenson

Knowledge of the a p p a r e n t position of the sun a t different t i m e s and d a t e s i s e s s e n t i a l f o r the design of shading s y s t e m s and the d e t e r m i n a t i o n of heat gain through windows. T a b l e s of s o l a r altitude and a z i m u t h a n g l e s a r e available ( 1 , 2), but they a r e l e s s convenient f o r m a n y p u r p o s e s than a g r a p h i c a l p r e s e n t a t i o n of the s a m e d a t a .

N e a r l y a l l the s o l a r c h a r t s o r g r a p h s t h a t have been published a r e in p o l a r f o r m , i. e . a v e c t o r gives s o l a r a z i m u t h by i t s d i r e c t i o n and altitude by i t s length. Some c h a r t s make the length d i r e c t l y proportional t o the altitude angle and o t h e r s make the length proportional t o t h e cotangent of the altitude angle. The D i a g r a m m e s S o l a i r e s p r e p a r e d

by

the C e n t r e Scientifique e t Technique du Bgtiment in F r a n c e a r e of t h i s l a t t e r type. E a c h c h a r t p r e s e n t s the s o l a r position d a t a f o r a l l t i m e s and d a t e s f o r one specific latitude.

The C . S. T . B. c h a r t s can be thought of a s the d i a l f o r a horizontal sun clock t h a t h a s a gnomon of length d standing v e r t i c a l l y a t the p r i n c i p a l point 0 . F i g u r e 1 i s a h a l f - s c a l e reproduction of the c h a r t f o r a latitude of 48 d e g r e e s . As a s u n - c l o c k d i a l the c h a r t h a s to be o r i e n t e d s o t h a t the

X Y

line i s exactly n o r t h and south, with the X a r r o w pointing toward the e q u a t o r . T h e shadow of the point of the gnomon m o v e s along a path like t h o s e labelled Courbe A t o G. T h e s e a r e the shadow paths f o r different d a t e s ; a t n o r t h l a t i t u d e s A is f o r 21 J u n e , B f o r 21 May and 21 J u l y and s o on t o G , which i s f o r 21 D e c e m b e r . T h e s e c u r v e s a r e r e f e r r e d to a s the d a t e l i n e s . The s t r a i g h t l i n e s that i n t e r s e c t the d a t e l i n e s go through points on t h e m w h e r e the shadow of the t i p of the gnomon would be a t a p a r t i c u l a r t i m e of day. F o r e x a m p l e , the i n t e r s e c t i o n of the line m a r k e d 10 with the c u r v e A i n d i c a t e s the position of the shadow t i p a t 1 0 a . m . on 21 June. T h e slightly d a r k e r l i n e s a r e f o r the h o u r s indicated by t h e n u m b e r s adjacent t o t h e m and the l i g h t e r l i v e s a r e f o r e v e r y 1 0 m i n u t e s between the h o u r s .

Whenever t i m e is mentioned in t h i s note, l o c a l a p p a r e n t t i m e ( L . A. T . )

i s m e a n t . T h i s i s the t i m e indicated by the shadow on a sun dial. It can d i f f e r f r o m s t a n d a r d t i m e by a l m o s t a n hour f o r p l a c e s n e a r the boundaries between t i m e zones. The c o r r e c t i o n of s t a n d a r d t i m e t o L . A . T . i s d e s c r i b e d in BRN 47.

The C . S . T . B . h a s published, in English a s well a s in F r e n c h , a c o n c i ~ l _ note on the m a i n u s e s of t h e i r c h a r t s , but t h e r e a r e two applications

n u t :zlc~ tioned. Both d e r i v e f r o m the cotangent type of plot used in the c h a r t s and r e p r e s e n t p a r t of the advantage of t h i s type of c h a r t o v e r the d i r e c t altitude -

(4)

.

-

- 2 - b r o c h u r e by giving additional u s e s . Positioning a Model

The shadows c a s t by shading devices o r by one p a r t of a building -

onto another can be d e t e r m i n e d quite e a s i l y by using a model. It i s only n e c e s s a r y to position it in relation t o a b e a m of light In the s a m e way a s the r e a l building will s i t with r e s p e c t to the sun. One method of positioning a model is by using a heliodon QBRN 47), but the C . S. T

.

B . c h a r t s can a l s o be used f o r t h i s purpose.

The model i s attached t o a drawing board and the C , S. T . B . c h a r t f o r the a p p r o p r i a t e latitude placed beside it on the board. The c h a r t and model a r e s o a r r a n g e d that the building h a s the c o r r e c t orientation r e l a t i v e t o the North-South a x i s of the c h a r t . A s m a l l cone of height equal t o the distance d shown on the c h a r t is located with its apex d i r e c t l y above t h e principal point 0 of the c h a r t . If the model and the c h a r t a r e s e t in d i r e c t sunshine ( o r illuminated by any other p a r a l l e l b e a m of light), t h e point of the shadow c a s t by the cone indicates the t i m e and date when that p a r t i c u l a r shadow p a t t e r n will o c c u r . Alternatively, i f the shadows a r e t o be found f o r any specified t i m e and d a t e , it is only n e c e s s a r y t o move the drawing board s o a s t o make the point of the -shadow coincide with the i n t e r s e c t i o n of the p a r t i c u l a r t i m e and date l i n e s .

The shadows on and around the model a r e then a s they would be f o r the r e a l building a t that p a r t i c u l a r t i m e and d a t e .

Constructinp: Horizontal and Vertical Shadow Angles

It is often n e c e s s a r y t o d e t e r m i n e the position of shadows when t h e r e

is no model available. T h i s can be done quite r e a d i l y using plan and elevation drawings i f t h e horizontal and v e r t i c a l shadow angles a r e available. The H. S. A. is the angle on a plan drawing between a line perpendicular t o the wall and

t h e projection of the s u n ' s r a y s on the horizontal plane. S i m i l a r l y , the V. S. A . i s the angle, on a v e r t i c a l section drawing of the wall, between a line perpendicular t o t h e wall and the projection of the s u n v s r a y s on the plane of the drawing.

The H. S. A. and V. S. A. can be obtained by a simple construction

on a sheet of t r a c i n g p a p e r laid over the C . S. T . B. c h a r t f o r the p a r t i c u l a r latitude. F i g u r e 2 shows a n example. The f i r s t s t e p is t o d r a w , through point 0 a s t r a i g h t line with the s a m e a z i m u t h as the wall in question. This i s the "wall liner1. F o r t h i s application the a r r o w ,

X ,

points to the t r u e North and the wall line will cut the angle s c a l e around the p e r i m e t e r of the c h a r t a t the wall azimuth angle. Then the point P i s located a t the intersection of the t i m e and date l i n e s on the underlying c h a r t corresponding t o the t i m e and d a t e f o r which the shadow angles a r e r e q u i r e d . A line i s drawn f r o m P perpendicular to the wall l i n e , cutting it a t Q. A line i s a l s o drawn f r o m P through 0 and the angle OPQ i s the horizontal shadow angle.

R

i s located on the wall line s o that the distance f r o m Q t o R i s equal t o the length of t h e line labelled "Distance d" on the upper p a r t of the c h a r t . The angle Q P R i s the v e r t i c a l shadow angle.

(5)

-

3 -

Finding the P o s i t i o n of Shadows on V e r t i c a l Walls

The boundaries of the shadows on a wall, whether f r o m a shading

device O F a n adjacent object, can be found by projecting the outline of the shading

object on the wall, t h e l i n e s of projection being p a r a l l e l t o the s u n ' s r a y s . The shadow angle d i a g r a m obtained by the method d e s c r i b e d above can b e used t o find the s o l a r projection of a point on the wall. T h e p r o c e d u r e i s shown i n F i g u r e 3 .

Z i s the s h o r t e s t distance f r o m the point A t o the wall, i . e .

,

A B i s perpendicular to the plane of the wall. T h e s o l a r projection of point A i s a t D, which i s a

d i s t a n c e X m e a s u r e d horizontally and Y m e a s u r e d v e r t i c a l l y f r o m B. The d i s t a n c e s X and Y a r e r e l a t e d to the d i s t a n c e Z and the shadow angles by the e x p r e s s i o n s

X = Z x tangent H. S.A.

Y

= Z x tangent V.S.A.

The angle d i a g r a m i n the lower p a r t of F i g u r e 3 shows how X and Y can be d e t e r m i n e d d i r e c t l y . The d i s t a n c e Z i s laid off f r o m P along PQ and

X

and Y m e a s u r e d a s shown.

Insolation on a V e r t i c a l Surface

The insolation (i. e . incident s o l a r e n e r g y ) , both d i r e c t and diffuse, on a n y wall can be found by using one of the o v e r l a y c h a r t s in conjunction with the a p p r o p r i a t e s o l a r d i a g r a m . The values indicated on the o v e r l a y s h e e t s a r e in w a t t s / s q m e t r e ; t h e s e c a n be converted t o ~ t u / f t ~ h r by multiplying t h e m by 0.317.

The o v e r l a y s h e e t s No. 4 , 5 and

.b

a r e based on the F r e n c h s t a n d a r d f o r insolation, which i s slightly l e s s f o r any given condition than the s t a n d a r d u s e d in the United S t a t e s . The insolation on walls facing North, E a s t , South and West h a s been m e a s u r e d a t Ottawa f o r about t h r e e y e a r s , and t h e s e r e c o r d s show that the insolation frequently e x c e e d s the values indicated by both the

A m e r i c a n and F r e n c h s t a n d a r d s . On a v e r y c l e a r d a y i t can exceed the values in the c h a r t s by about 25 p e r cent when t h e r e i s n o snow on the ground. (In w i n t e r , the radiation r e f l e c t e d f r o m a snow s u r f a c e can i n c r e a s e the radiation falling on a wall by a f u r t h e r 25 p e r cent. ) When m o r e d a t a a r e available, it will be possible t o p r e p a r e a l t e r n a t i v e o v e r l a y c h a r t s a p p r o p r i a t e f o r Canada. In the m e a n t i m e , the F r e n c h D i a g r a m m e s

-

d e P u i s s a n c e can be u s e d t o e s t i m a t e the insolation that c a n be expected on a typical cloudless day..

Angle of Incidence

The angle of incidence of the s o l a r b e a m on any f l a t s u r f a c e i s defined a s the angle between the s o l a r b e a m and a line perpendicular t o the

s u r f a c e . The angle of incidence a t a v e r t i c a l s u r f a c e facing in any d i r e c t i o n c a n be found by using o v e r l a y No. 3 i n conjunction with the s o l a r d i a g r a m f o r the a p p r o p r i a t e latitude. (It cannot be u s e d with the c h a r t s f o r latitudes

g r e a t e r than 52 d e g r e e s because the d i s t a n c e d i s different f o r the high latitude c h a r t s . )

(6)

- - - - .- 7 .

- 4 -

Overlay No. 3 is laid on the s o l a r d i a g r a m with i t s principal point d i r e c t l y over the principal point of the c h a r t , and with the b a s e line acting a s the wall line. The incident angle, f o r any t i m e and date r e p r e s e n t e d by a point

P on the s o l a r d i a g r a m can be obtained by estimating the co-ordinate of P

F

relative t o the curved co-ordinate l i n e s on the overlay. The angles m a r k e d on the c h a r t a r e the complements of the incident angles; f o r example, if P i s under the curved line m a r k e d 70 deg, the angle of incidence i s 90-70, o r 20 d e g r e e s .

References:

1. Brown, G.

,

and T . Tuominen. S o l a r Position a t Various Hours, Dates and Latitudes

-

T a b l e s . Rapport 7 5 Byggforskningen, Stockholm, 1962.

2 .

U.

S. Navy Hydrographic Office. T a b l e s of Computed Altitude and Azimuth. Publication 2 14.

(7)
(8)

F I G U R E 2

(9)

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in