• Aucun résultat trouvé

XPS analysis of PE and EVA samples irradiated at different γ-doses

N/A
N/A
Protected

Academic year: 2021

Partager "XPS analysis of PE and EVA samples irradiated at different γ-doses"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-01666619

https://hal.archives-ouvertes.fr/hal-01666619

Submitted on 12 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

XPS analysis of PE and EVA samples irradiated at

different γ-doses

Samuel Dorey, Fanny Gaston, Sylvain R.A. Marque, Benjamin Bortolotti,

Nathalie Dupuy

To cite this version:

Samuel Dorey, Fanny Gaston, Sylvain R.A. Marque, Benjamin Bortolotti, Nathalie Dupuy. XPS

analysis of PE and EVA samples irradiated at different γ-doses. Applied Surface Science, Elsevier,

2018, 427, pp.966 - 972. �10.1016/j.apsusc.2017.09.001�. �hal-01666619�

(2)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

XPS

analysis

of

PE

and

EVA

samples

irradiated

at

different

␥-doses

Samuel

Dorey

a,∗

,

Fanny

Gaston

a,b,c,∗∗

,

Sylvain

R.A.

Marque

c,d

,

Benjamin

Bortolotti

e

,

Nathalie

Dupuy

b

aSartoriusStedimFMTS.A.S,Z.I.LesPaluds,AvenuedeJouquesCS91051,13781AubagneCedex,France bAixMarseilleUniv,CNRS,IRD,AvignonUniversité,IMBEUMR7263,13397,Marseille,France cAixMarseilleUniv,CNRS,ICR,Case551,13397MarseilleCedex20,France

dVorozhtsovNovosibirskInstituteoforganicchemistryOffice312,9ProspectAcademicanLaurentiev,630090Novosibirsk,Russia eSTMicroelectronicsRoussetSAS,ZIRousset,AvenueCelestinCoq,13106RoussetCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received21June2017

Receivedinrevisedform24August2017 Accepted1September2017

Availableonline21September2017

Keywords: ␥-irradiation Polyethylene Polyethylene-vinylacetate XPS

a

b

s

t

r

a

c

t

Theprincipalplasticmaterialsusedforthefluidcontactandstorageinthebiopharmaceuticalindustry aremainlymadeupofsemi-crystallinepolymers,polyolefins,PVC,SiloxaneandPET.Thepolyethylene (PE)andthepolypropylene(PP)areoftenusedasfluidcontactinmulti-layermaterialslikefilms.As onesterilisationwayofsingle-useplasticdevicesusedinmedicalandpharmaceuticalfieldscantake placevia␥-irradiation,theeffectofsterilizationonplasticsmustbeinvestigated.Theirradiationprocess leadstotheproductionofradicals,whichcangeneratechangesinthepolymerstructureandonthe polymersurface.Itiswellknownthatthepresenceofoxygenwithfreeradicalsprecedethegeneration ofperoxidespeciessocalledROS(reactiveoxygenspecies)whicharehighlyreactive.Thepurposeof thisworkistoinvestigatethe␥-raysimpactonthesurfaceofPE(polyethylene)andEVA (polyethy-lenevinylalcohol)basedfilmswhenionizedatdifferentdoses.X-rayPhotoelectronSpectroscopy(XPS) wasappliedtodeterminethesurfacecompositionsofthepolymerstohighlightthedifferentchemical moietiesgeneratedduringthe␥-irradiationprocessandtomonitorthepotentialpresenceoftheROS.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Theprincipalplastic materialsusedfor thefluidcontact and storageinthebiopharmaceuticalindustryaremainlymadeupof semi-crystallinepolymers,polyolefins,PVC,SiloxaneandPET.The polyethylene(PE)andthepolypropylene(PP),whichbelongtothe familyofpolyolefins,entermainlyinthemanufactureofone-layer films,covers,stoppersandaremoreandmoreusedasfluid con-tactinmulti-layermaterialslikefilms. Asonesterilisationway ofsingle-useplasticdevicesusedinmedicalandpharmaceutical fieldscantakeplaceviaionizingradiation[1,2],theeffectof ster-ilizationonplastics(i.e.thepolymersandtheiradditives)mustbe investigated.Irradiationprocessingsuchas␥-irradiationofplastic single-usemedicaldevicesmayaffectchemicalandphysical prop-ertiesoftheplasticmaterials[3,4].Theirradiationprocessleadsto theproductionofradicals,whichcangeneratechangesinthe poly-merstructureandonthepolymersurface[5].Itiswellknownthat

∗ Correspondingauthor.

∗∗ Correspondingauthorat:SartoriusStedimFMTS.A.S,Z.I.LesPaluds,Avenuede JouquesCS91051,13781AubagneCedex,France

E-mailaddresses:samuel.dorey@sartorius.com(S.Dorey),

fanny.gaston@sartorius.com(F.Gaston).

thepresenceofoxygenwithfreeradicalsprecedethegeneration ofperoxidespeciessocalledROS(reactiveoxygenspecies)which arehighlyreactive.Multilayerfilmscouldbethepredominant ele-mentstoconstituteflexibleplasticbagswhichcancontainproteins orotheractivepharmaceuticalingredients(API).Themodification ofthefilmsurfacepropertiesandsomeby-productsthereof,can thusleadtothemodificationofsensibleproteinsproneto oxida-tion[6,7]duetothepresenceofROS.Surprisinglythepresence ofperoxideisalwaysreportedbyindirectmethodseitherusing enzyme,orcolorimetry,dies,etc.[8–16].

In parallel, high-energy irradiation leads to a succession of chemicalreactions,whichultimatelyleadtoeitheranincreaseor adecreaseinthemolecularweightofapolymer.Theinitial pro-cesseswhichoccurwhenahigh-energyphotoninteractswithan organicpolymerarereasonablywellestablishedanddonotdepend essentiallyonthechemical structure of thematerial.However, theseprimaryprocessesleadtoacascadeoffurtherreactions,the natureofwhichdependssensitivelyonthenatureofthepolymeric material.

Intheevaluationofradiationresistanceofplastics,changesin thephysico-mechanical,thermal, optical,physico-chemical, and otherpropertiesneedtobeinvestigated[17].Itshouldbenoted thatradiationdoesnotaffectthepropertiesofallpolymersinthe sameway,ortothesamelevel,andwhenselectingapolymerfor

http://dx.doi.org/10.1016/j.apsusc.2017.09.001

(3)

aparticularapplicationtheeffectofirradiationshouldbe consid-ered.Thepurposeofthisworkistoinvestigatethe␥-raysimpacton thesurfaceofseverallotsofcommercialPE(polyethylene)andEVA (polyethylenevinylacetate)basedfilmswhenionizedatdifferent doses.ContactanglemeasurementsandXPS(X-rayphotoelectron spectroscopy)methodscanbeusedtoanalysesurfacepropertiesof PEandEVA[18–20].X-rayphotoelectronspectroscopy(XPS)was appliedaswelltodeterminethesurfacecompositionsoftheEVA copolymers[21–23].Inthiscurrentstudy,filmsurfaceanalysisare performedbyXPStohighlightthedifferentchemicalmoieties gen-eratedduringthe␥-irradiationprocessandtomonitorthepotential presenceoftheROS.

2. Materialsandmethods 2.1. Filmsamples

Thetwomultilayerfilmsstudiedinthisworkare:PEfilmand EVAfilm.ThePEfilmhasthefollowingstructure:PE/EVOH/PE,with athicknessofabout400␮m.TheEVAfilmsampleiscomposedof ethylenevinylacetate(EVA)andethylenevinylalcohol(EVOH): EVA/EVOH/EVA,withathicknessofabout360␮m.Twobatchesof EVAfilmandthreebatchesofPEfilmareinvestigated.Forthesake ofclarifty,theresultsofthethirdlotofPEfilmarenotdescribedas itdisplaysverysimilarresults.

2.2. -Irradiation

AllfilmsamplesofPEand EVA filmshave beenpraparedin specificpackaging(PE)tobeirradiatedatroomtemperaturein a60Co␥-sourceprovidingadoserateof8–13kGy/h,asgivenby

Synergy Healthcompany (Marseille, France). The sampleshave been ␥-irradiated at doses of 30 (±1), 50 (±1), 115 (±2) and 270(±5)kGy.Asterilizationcyclecorrespondsapproximatelyto 25kGy. Desired doseis obtainedbyseveral sterilizationcycles, includinganon-controlledwaitingtimeinnon-controlledstorage conditionsbetweeneachcycle.Theimpactofthe␥-irradiationis assessedfrommodificationsocurringbetweenirradiatedsamples andnon-sterilizedamples,whichcorrespondto0kGysamplesin thedocument.

2.3. XPS

TheXPSspectrawerecarriedoutwithaKratosAxisNova spec-trometerusingamonochromaticAlK(alpha)source(15mA,15kV). XPScandetectallelementsexcepthydrogenandhelium,probes thesurfaceofthesampletoadepthof5–10nanometres,andhas detectionlimitsrangingfrom0.1to0.5atomicpercentdepending ontheelement.

Theinstrumentworkfunctionwascalibratedtogiveabinding energy(BE)of83.96eVfortheAu4f7/

2lineformetallicgoldand

thespectrometerdispersionwasadjustedtogiveaBEof932.62eV fortheCu2p3/

2 lineofmetalliccopper.TheKratoscharge

neu-Fig.1.XPS spectraofEVAfilmatdifferentabsorbeddoses.OnlyXPSspectra recordedonbatch1arepresentedastheyareidenticaltobatch2.

tralizersystemwasusedoneachsamples.Theeffectivenessofthe chargeneutralizationwastunedbymonitoringtheFullWidthat HalfMaximumoftheC1speakofadventitiouscarbon.The quan-tificationsarecalculatedfromrelativesensibilityfactors(RSF)from eachelement,givenbythemanufacturer.Measurementsare per-formedwithaprecisionof5%forthemajorelementsand10%for theminorelements.

Surveyscananalyseswerecarriedoutwithananalysisareaof 300×700␮m,apassenergyof160eVandadwelltimeof100ms. Highresolutionanalyseswerecarriedoutwithananalysisareaof 300×700␮m,apassenergyof10eVandadwelltimeof500ms. Spectrahavebeenchargecorrectedtothemainlineofthecarbon 1sspectrum(adventitiouscarbon)fixedat284.8eV.

SpectrawereanalysedusingCasaXPSsoftware(version2.3.16). 3. Resultsanddiscussion

3.1. EVAfilm

Fig.1showsthesurfaceXPSspectraforpristineEVAfilmand␥ ray-irradiatedfilmsatdifferentirradiationdoses.Allspectrapoint outthepresenceofoxygenandcarbonatomsandnoother ele-menthasbeenfoundabovethedetectionlimit.Accordingtothe literature[24,25],thepeakatapproximately285eVisassignedto C1sphotoelectronslikelycorrespondingtoC C,C O,andO C O bondsonthesurfaceofsample.ThepresenceofO1sat532eVin thepristinesampleisdirectlyattributedtothepresenceoftheester moietyintheEVApolymer.Afterirradiation,itisclearlyobserved intheXPSspectrathattheO1speakintensitydecreasewith ␥-irradiationdosesupto50kGyandincreaseafterwards.Thepeak O1sassignedtothepresenceofC OorC O24,pointsoutsurface changesasoxidationduringirradiationunderaircondition.To esti-matechangeinoxygencontentinthesurfaceoftheEVAfilmupon

Table1

PercentageofcarbonandoxygeninEVAfilmafterdifferentirradiationdoses.

Irradiationdose(kGy) Relativecomposition Relativecomposition

batch1 batch2

C1s(%Atomic Concentration)

O1s(%Atomic Concentration)

RatioO/C C1s(%Atomic

Concentration) O1s(%Atomic Concentration) RatioO/C 0 92.9 7.1 7.6% 94.1 5.9 6.3% 30 94.3 5.7 6.0% 94.2 5.8 6.1% 50 94.1 6.0 6.4% 94.3 5.7 6.0% 115 94.0 6.0 6.4% 93.6 6.4 6.8% 270 93.1 6.9 7.4% 92.9 7.1 7.6%

(4)

Table2

AssignmentofthepeaksdetectedinC1sXPSspectra26–32andVariationofthedifferentchemicalmoietyrelativeconcentrationaccordingtothe␥-irradiationdoses.Carbon markedwithanasterismisthetargetonewhenseveralcarbonsarewritten.

AssignmentofthepeaksdetectedinC1sXPSspectra

Bindingenergy 285.2eV 286.8eV 287.8eV 289.2eV 290.2eV

Assignment CC,CH R O C* O C O R C* O(COCH3) COOH

Chemicalformsrelativeconcentration(%)

Batchnumber 1 2 1 2 1 2 1 2 1 2 ␥-irradiationdoses (kGy) 0 92.8 92.7 3.3 3.4 0.4 0.4 3.3 3.4 0.2 0.1 30 92.9 92.7 3.1 3.3 0.5 0.6 3.0 3.3 0.5 0.2 50 92.8 92.8 2.9 3.1 0.8 0.6 2.8 3.1 0.7 0.4 115 93 92.7 2.9 2.8 0.7 1.0 2.6 2.8 0.8 0.7 270 92 92.5 3.2 2.7 0.9 1.3 2.6 2.7 1.2 0.9

Fig.2.a)C1sXPSspectraofEVAfilmirradiatedatdifferent␥-doses,b)exampleof decompositionoftheC1sspectrumrecordedonsampleirradiatedat270kGy.

irradiation,thelevelofoxidationwasfurtherquantitatively calcu-latedandisshowninTable1.Withanincreaseofabsorbeddoses, thelevelofsurfaceoxidationchangesgradually(Table1,Table2

andFigs.2and3).

Fig.2ashowstheC1sXPSspectraofEVAfilmsirradiatedwith different␥-doses.Accordingtotheliterature[20,22,24,26–32],one majorpeakat285eVisattributableto CH2 groupsinexpected

environments(Table2).Twominorpeaksat289eVand286.6eV areassignedtotheester COORspecies.Thispeakisexpectedinthe freshfilmbecauseoftheacetatemoietyinthepristinepolymer.On

closerscrutiny,asmallpeakonthehighbindingenergysideofthe CHpeakisapparent.Uponcurvefitting(Fig.2b),thissmallpeakis situatedat287.8eVandisascribedtocarbonylC Ospecies[26,27]. Fortheirradiatedsurfaces,achemicalshiftintheC1sspectrahas occurred,whichindicatesthatoxygencontainingcompoundsare produced.CarboxylgroupsareformedontheEVAsurfacesthrough thebondscissionbytheirradiationofO2 monomerionswitha

fingerprintat290eVaffordingabroadeningofthepeakat289eV aswell.The290eVpeakintensitydueto COOgroupsproduced bytheEVAdegradationgrowsinintensityduring␥-rayexposure (Table2).

Allmoiety creationsand modifications observedin C1s XPS spectraarecorroboratedlikewisewiththeO1sXPSspectra(Fig.3a). Curvefittingallowshighlightingthereofallthedifferent chemi-calmoietiesduringC1sXPSspectradecomposition(Fig.2b).An increaseofthe␥-irradiationdosecausesanincreaseofgeneration ofketones,aldehydesand acidsdirectlyrelated tothe degrada-tionoftheestergroupsfromtheEVApolymer.Thisobservation agreeswithotherresultsobtainedusingATR-FTIRtechnics[33]. Unfortunately,hydro(gen)peroxideshavenotbeendetected.

TherelativecontentsofCCandCHarestableupto270kGy, informing us that the polymer structure is not deteriorated. Acetategroupdecreasesandacidgroupsincreasewiththe␥-doses whateverthelots. TheC O andCOOHrelative contents evolve simultaneously.One may presume that the acetate moieties is transformedintocarboxylmoieties.Noperoxidehasbeendetected, whereasperoxidemustbetherootcauseofthegenerationof car-boxylmoieties.

3.2. PEfilm

RadiationeffectonthesurfaceofPEfilmfromthreebatcheswas studiedbyXPSspectra;resultsononebatcharepresentedand dis-cussedastheyarestrictlyidenticalforotherbatches.Fig.4shows thesurfaceXPSspectraforpristinefilmand␥ray-irradiatedfilmsat differentirradiationdoses.Allspectraindicatethepresencecarbon atomsandsomeofthemexhibitthepresenceofoxygenatoms.The peakatapproximately285eVisassignedtoC1sphotoelectronsand thepeakat532eVisassignedtoO1sphotoelectrons[22,24,26–30]. TheabsenceofO1sat532eVinthepristinesampledirectly indi-catesthattherenooxidationoccurredduringthermalprocessing ofthePEfilm.

Therelativeelementalcompositionbetweencarbonandoxygen isgiveninTable3.

TherelativecontentsofCarestableupto115kGyanddecrease slightlyat270kGy,informingusthatthepolymerstructureisnot deteriorated.

Fig.5ashowstheC1sXPSspectraofPEfilmsirradiatedwith dif-ferent␥-doses.Onesinglepeakat284.8eVisascribedto (CH2)n

(5)

Fig.3.a)O1sXPSspectraofEVAfilmirradiatedatdifferent␥-doses,b)exampleofdecompositionoftheO1sspectrumrecordedonthenon-irradiated(NS)sample,c) exampleofdecompositionoftheO1sspectrumrecordedontheirradiatedsampleat115kGy.DirectdecompositionofoxygenO1sspectracannotbedoneclearly.

Table3

PercentageofcarbonandoxygeninPEfilmafterdifferentirradiationdoses.

␥-irradiationdose(kGy) Relativecomposition

Batch1 Batch2

C1s(%AtomicConcentration) O1s(%AtomicConcentration) C1s(%AtomicConcentration) O1s(%AtomicConcentration)

0 100 0 100 0

30 100 0 99.9 0.1

50 99.9 0.1 99.8 0.2

115 99.5 0.5 99.4 0.6

270 98.1 1.9 98.4 1.6

spectrahasoccurred,whichindicatesthatoxygencontaining com-poundsareproduced[37].Oncloserscrutiny,asmallshoulderon thehighbindingenergysideoftheCHpeakisapparent.Uponcurve fitting(Fig.5b),thissmallpeakisat∼285.2eVandmaybeascribed toC O(H)species[38],ortosp2 carbons[39].Inanotherpaper,

decompositionoftheC1sspectraofLDPEsamplesleadstoCsp2at

∼284.9eV,andtoCsp3at285.2eV[40].

DuetotheoverlappingofsomeO1scomponents,allmoiety generationsandmodificationsobservedinC1sXPSspectradonot directlyfitwiththeO1sXPSspectra(Fig.6).Carboxylgroupsare formedonthePEsurfacesthroughthebondscissionbythe irra-diationofO2monomerions.Anincreaseofthe␥-irradiationdose

causesanincreaseofoxygenatedcompoundswhiledistinguishing

betweenketones,aldehydesandacidsisnotdirectlypossibleby curvefittingduetotheweakpeakintensities.Thisindicatesthe oxidationoccursinaweakproportioninaPEfilmsupporting pre-viouslyreportedresults[41].Besidesnohydro(gen)peroxidehas beendetected.

3.2.1. Formationmechanismsofoxygenatedspecies

Severalmechanismsareconsideredtoaccountfortheformation ofoxygenatedspecies.SomeofmechanismsproposedinScheme1

arereportedintheliterature[42–44].Carboxylicacidisgenerated throughamanifoldbasedonalkylperoxylradical.Interestingly,the formationsofketoneandaldehydeareinvolvedinroutesA3,A4,

(6)

Scheme1.Routesdescribingtheformationofoxidizedproducts.

Fig.4. XPSsurveyspectraofPEfilmatdifferentabsorbeddoses.Onlyonebatchis representedasothersareidentical.

B,whichmayaccountforthenon-symmetricalpeakobservedin

Fig.5a.

Thealkylradicalsareobtainedafter␥-irradiationofPE,which are scavenged by the molecular oxygento afford an alkylper-oxylradicalA.The intermediateA abstractsa H-atomfromits surroundingtoaffordthehydroperoxydeBoritreactsby inter-molecularcouplingtoaffordatetra-oxideG.

The intermediate B reacts either by the fragmentation of the peroxidic bond (route A2) with loss of hydroxyl radical and formation of alkoxyl radical C [42], or by the H-atom abstraction(routeA1)atthe␣-positionofhydroperoxydegroup (Bond Dissociation Energy, BDE(CH3CH2COOH)∼406kJmol−1)

affording hydroperoxyalkyl radical. Then the latter fragments into the ketone D and a hydroxyl radical [42–44]. Abstraction (route A4) of the H-atom at ␣-position of the oxyl radical C (BDE(C2H5CH(O ˙)CH3)∼49kJmol−1) may occur to afford the

ketoneD.Morelikelytooccuristhe␤-fragmentationofC(route A3,BDE(CH3CH2-CH(CH3)O•)∼18kJmol−1)releasinganaldehyde

Fig.5.a)C1sXPSspectraofPEfilmirradiatedatdifferent␥-doses,b)exampleof decompositionoftheC1sspectrumrecordedonsampleirradiatedat50kGy.

(7)

Fig.6. O1sXPSspectraofPEfilmirradiatedatdifferent␥-irradiationdoses.

(E)andanalkylradical.TheketoneDandthealdehydeEcouldbe furtheroxidizedintocarboxylicacidsF.

InparalleltotherouteA,theintermediateAreacts alsoby self-coupling(routeB)toaffordthetetra-oxideG,whichcollapses eitherinketoneDandalcohol[45] (routeB1)orbyO Obond cleavagereleasingO2intheintermediateradicalC(routeB2)[46].

4. Conclusion

Intheevaluationofthe␥-raysimpactonPE(polyethylene)and EVA(polyethylenevinylalcohol)filmswhenionizedatdifferent doses,changesinthephysico-chemicalfeaturesonsurfacehave beeninvestigatedbyXPS(X-ray PhotoelectronSpectroscopy)to highlightthedifferentchemicalmoietiesgeneratedduringthe ␥-irradiationprocess.

IntheEVAfilm,thechemicalgroupscorrespondingtothe car-boxylicacidsandaldehyde/ketonesincreasewiththe␥-irradiation dose.Theacetatemoietydecreasesonfilmsurfacewhen increas-ing␥-irradiationduetothelysisoftheacetategroupoftheEVA polymerinprofittothecarboxylate,aldehyde/ketonesmoieties. TheshiftoftheC1sandO1speaksindicatesaswellanoxidationof thefilmsurfaceoccurs.Afterall,itseemsthehighestdose inves-tigatedinthatpaper,i.e.270kGy,leadsaswelltothecleavageof carboxylates.

Inopposite,theXPSanalysisofthePEfilmdoesnotrevealahigh contentofoxygenwhen ␥-irradiatingthesamples.Asymmetric shapesofC1sandO1speakslinkedtoweakintensityinXPSspectra onPEfilmsdonotallowclearlyidentifyingthegeneratedchemical groups. Previousstudysuggests thatcarboxylic acidsand alde-hyde/ketonesaregenerated41.Thefilmssurfacestudyinvestigated

byXPSdidnotallowdetectingthehydro(gen)peroxides gener-atedduringthe␥-irradiationprocess.Nevertheless,thehydro(gen) peroxide(s)mustbepresenttoinduceoxidationofthepolyolefin chainsleadingtothegenerationoftheoxygenatedspecies.

The radiationdoes not affectthe properties of allpolymers inthesameway,ortothesamedegree,even thoughpolymers investigatedhereareallpolyolefinbased.Itmeanstheeffectof irradiationshouldbeconsideredwhenselectingapolymerfora particularapplication.However,theextentofthemodifications issuedby␥-raysshouldbeseenasminorasnewchemical moi-etiesmainlybroughtbyoxygenatedspeciesrepresent<1%ofthe pristinemoietiespresentaftertheplasticsproduction.A stabilisa-tionoftheoxidisedspeciemoietiesonfilmsurfacewouldindicate

thathydro(gen)peroxidehaswhollyreactedguarantyinganinert filmsurface.

Acknowledgements

FGthanksSartoriusStedimBiotechforPhDgrant.NDandSRAM arethankfultoAMUandCNRSforsupport,andtoSartoriusStedim Biotechforfunding.

References

[1]TrendsinRadiationSterilizationofHealthCareProducts,International AtomicEnergyAgency(IAEA),STI/PUB/1313,2008.

[2]ISO11137,Sterilizationofhealthcareproducts–radiation.

[3]A.Chapiro,RadiationChemistryofPolymers,Radiat.Res.4(1964)179.

[4]V.S.Ivanov,RadiationChemistryofPolymersNewConceptsinPolymer Science,C.R.H.I.deJonge,TheNetherlands,1992,p.34.

[5]G.Audran,S.Dorey,N.Dupuy,F.Gaston,S.R.A.Marque,Degradationof gammairradiatedpolyethylene-ethylenevinylalcohol-polyethylene multilayerfilms:anESRstudy,Polym.Degrad.Stabil.122(2015)169–179.

[6]S.Ahmad,H.Khan,U.Shahab,S.Rehman,Z.Rafi,M.Y.Khan,A.Ansari,Z. Siddiqui,J.M.Ashraf,S.M.Abdullah,S.Habib,M.Uddin,Proteinoxidation:an overviewofmetabolismofsulphurcontainingaminoacidcysteine,Front Biosci.(ScholEd.)9(2017)71–87.

[7]N.J.Xiao,C.D.Medley,I.C.Shieh,G.Downing,S.Pizarro,J.Liu,A.R.Patel,A small-scalemodeltoassesstheriskofleachablesfromsingle-usebioprocess containersthroughproteinqualitycharacterization,PDAJ.Pharm.Sci. Technol.70(2016)533–546.

[8]M.Zhou,Z.Diwu,N.Panchuk-Voloshina,R.P.Haugland,Astable

nonfluorescentderivativeofresorufinforthefluorometricdeterminationof tracehydrogenperoxide:applicationsindetectingtheactivityofphagocyte NADPHoxidaseandotheroxidases,Anal.Biochem.253(1997)162–168.

[9]G.Su,Y.Wei,M.Guo,Directcolorimetricdetectionofhydrogenperoxide using4-nitrophenylboronicacidoritspinacolester,Am.J.Anal.Chem.2 (2011)879–884.

[10]K.Zscharnack,T.Kreisig,A.A.Prasse,T.Zuchner,Aluminescence-basedprobe forsensitivedetectionofhydrogenperoxideinseconds,Anal.Chim.Acta834 (2014)51–57.

[11]Ka-KeiFung,C.Pui-YeeChan,R.Renneberg,Developmentofenzyme-based barcode-stylelateral-flowassayforhydrogenperoxidedetermination,Anal. Chim.Acta634(2009)89–95.

[12]W.Luo,M.E.Abbas,L.Zhu,K.Deng,H.Tang,Rapidquantitativedetermination ofhydrogenperoxidebyoxidationdecolorizationofmethylorangeusinga Fentonreactionsystem,Anal.Chim.Acta629(2008)1–5.

[13]L.Marle,G.M.Greenway,Determinationofhydrogenperoxideinrainwaterin aminiaturisedanalyticalsystem,Anal.Chim.Acta548(2005)20–25.

[14]D.Yu,P.Wang,Y.Zhao,A.Fan,Iodophenolblue-enhancedluminol chemiluminescenceanditsapplicationtohydrogenperoxideandglucose detection,Talanta146(2016)655–661.

[15]JoanaP.N.Ribeiro,MarcelaA.Segundo,SaletteReis,JoséL.F.C.Lima, SpectrophotometricFIAmethodsfordeterminationofhydrogenperoxide: applicationtoevaluationofscavengingcapacity,Talanta79(2009) 1169–1176.

[16]Y.Gao,G.Wang,H.Huang,J.Hu,S.MazharShah,X.Su,Fluorometricmethod forthedeterminationofhydrogenperoxideandglucosewithFe3O4as

catalyst,Talanta85(2011)1075–1080.

[17]V.S.Ivanov,RadiationChemistryofPolymersNewConceptsinPolymer Science,C.R.H.I.deJonge,TheNetherlands,1992,p.200.

[18]C.M.Cepeda-Jimenez,R.Torregrosa-Macia,J.M.Martin-Martinez,Surface modificationsofEVAcopolymersinducedbylowpressureRFplasmasfrom differentgasesandtheirrelationtoadhesionproperties,J.Adhes.Sci. Technol.17(2003)1145–1159.

[19]M.D.Landete-Ruiz,J.M.Martin-Martinez,SurfacemodificationofEVA copolymerbyUVtreatment,Int.J.Adhes.Adhes.25(2005)139–145.

[20]M.D.Doganci,C.E.Cansoy,I.O.Ucar,H.Y.Erbil,E.Mielczarski,J.A.Mielczarski, CombinedXPSandcontactanglestudiesofflatandroughethylene-vinyl acetatecopolymerfilms,J.Appl.Polym.Sci.124(2012)2100–2109.

[21]T.Chihani,P.Bergmark,P.Flodin,Surfacemodificationofethylene copolymersmoldedagainstdifferentmoldsurfaces.Part2.Changesatthe outermostsurface,J.Adhes.Sci.Technol.9(1995)843–857.

[22]A.A.Galuska,SurfacecharacterizationofEVAcopolymersandblendsusing XPSandToF-SIMS,Surf.InterfaceAnal.21(1994)703–710.

[23]R.L.McEvoy,S.Krause,P.Wu,Surfacecharacterizationofethylene-vinyl acetate(EVA)andethylene-acrylicacid(EAA)co-polymersusingXPSand AFM,Polymer39(1998)5223–5239.

[24]M.Z´ıenkiewicz,M.Rauchfleisz,J.Czupry ´nska,Comparisonofsomeoxidation effectsinpolyethylenefilmirradiatedwithelectronbeamorgammarays, Radiat.Phys.Chem.68(2003)799–809.

[25]H.Wang,L.Xu,J.Hu,M.Wang,G.Wu,Radiation-inducedoxidationof ultra-highmolecularweightpolyethylene(UHMWPE)powderbygamma raysandelectronbeams:acleardependenceofdoserate,Radiat.Phys.Chem. 115(2015)88–96.

(8)

[26]I.O.Ucar,M.D.Doganci,C.E.Cansoy,H.Y.Erbil,I.Avramova,S.Suzer, CombinedXPSandcontactanglestudiesofethylenevinylacetateand polyvinylacetateblends,Appl.Surf.Sci.257(2011)9587–9594.

[27]G.P.Lopez,D.G.Castner,B.D.Ratner,XPSO1sbindingenergiesforpolymers containinghydroxyl,etherketoneandestergroups,Surf.InterfaceAnal.17 (1991)267–272.

[28]R.Joshi,J.Friedrich,S.Krishna-Subramanian,Surfacemodificationof ultra-highmolecularweightpolyethylenemembranesusingunderwater plasmapolymerization,PlasmaChem.PlasmaProcess.33(2013)921–940.

[29]A.Singh,Irradiationofpolyethylene:someaspectsofcrosslinkingand oxidativedegradation,Radiat.Phys.Chem.56(1999)375–380.

[30]G.H.Takaoka,M.Kawashita,H.Shimatani,R.Araki,Modificationof polyethylenesurfacesirradiatedbythesimultaneoususeofclusterand monomerionbeams,Surf.Coat.Technol.201(2007)8242–8245.

[31]S.Akhter,K.Allan,D.Buchanan,J.A.Cook,A.Campion,J.M.White,XPSandIR studyofX-rayinduceddegradationofPVApolymerfilm,Appl.Surf.Sci.35 (1988–1989)241–258.

[32]J.M.Chalmers,R.J.Meier,MolecularCharacterizationandAnalysisof Polymers,1sted.,Elsevier,2008,pp.433–435.

[33]F.Gaston,N.Dupuy,S.R.A.Marque,M.Barbaroux,S.Dorey,FTIRstudyof ageingof␥-irradiatedbiopharmaceuticalEVAbasedfilm,Polym.Degrad. Stabil.129(2016)19–25.

[34]D.Briggs,N.Fairley,XPSofchemicallymodifiedlow-densitypolyethylene surfaces:observationsoncurve-fittingtheC1sspectrum,Surf.InterfaceAnal. 33(2002)283–290.

[35]H.Iwata,A.Kishida,M.Suzuki,Y.Hata,Y.Ikada,Oxidationofpolyethylene surfacebycoronadischargeandthesubsequentgraftpolymerization,J. Polym.Sci.Pol.Chem.26(1988)3309–3322.

[36]A.Kondyurin,I.Kondyurina,M.Bilek,Radiationdamageofpolyethylene exposedinthestratosphereatanaltitudeof40km,Polym.Degrad.Stabil.98 (2013)1526–1536.

[37]D.T.Clark,B.J.Cromarty,A.Dilks,Atheoreticalinvestigationofmolecularcore bindingandrelaxationenergiesinaseriesofoxygen-containingorganic moleculesofinterestinthestudyofsurfaceoxidationofpolymers,J.Polym. Sci.Pol.Chem.16(1978)3173–3184.

[38]M.Kawashita,S.Itoh,R.Araki,K.Miyamoto,G.H.Takaoka,Surfacestructure andapatite-formingabilityofpolyethylenesubstratesirradiatedbyoxygen clusterionbeams,J.Biomed.Mater.Res.A82(2007)995–1003.

[39]B.Lesiak,J.Zemek,J.Houdkova,P.Jiricek,A.Jozwik,XPSandXAESof polyethylenesaidedbylineshapeanalysis:theeffectofelectronirradiation, Polym.Degrad.Stabil.94(2009)1714–1721.

[40]S.Massey,A.Adnot,A.Rjeb,D.Roy,Actionofwaterinthedegradationof low-densitypolyethylenestudiedbyX-rayphotoelectronspectroscopy, eXPRESSPolym.Lett.1(2007)506–511.

[41]F.Gaston,N.Dupuy,S.R.A.Marque,M.Barbaroux,S.Dorey,Oneyear monitoringbyFTIRof␥-irradiatedmultilayerfilmPE/EVOH/PE,Radiat.Phys. Chem.125(2016)115–121.

[42]A.Tidjani,Y.Watanabe,Gamma-oxidationoflinearlowdensity polyethylenes:thedose-rateeffectofirradiationonchemicalandphysical modifications,J.Polym.Sci.Pol.Chem.33(1995)1455–1460.

[43]J.Lacoste,D.J.Carlsson,Gamma-,photo-,andthermally-initiatedoxidationof linearlowdensitypolyethylene:aquantitativecomparisonofoxidation products,J.Polym.Sci.Pol.Chem.30(1992)493–500.

[44]Z.Liu,S.Chen,J.Zhang,Photodegradationofethyleneeoctenecopolymers withdifferentoctenecontents,Polym.Degrad.Stabil.96(2011)1961–1972.

[45]J.A.Howard,K.U.Ingold,Self-reactionofsec-butylperoxyradicals. ConfirmationoftheRussellmechanism,J.Am.Chem.Soc.90(1968) 1056–1058.

[46]D.J.Bogan,F.Celii,R.S.Sheinson,R.A.Coveleskie,ObservationofO2(b

1(g+→X3(g-)chemiluminescencefromtheself-reactionofisopropylperoxy radicals,J.Photochem.25(1984)409–417.

Figure

Fig. 1. XPS spectra of EVA film at different absorbed doses. Only XPS spectra recorded on batch 1 are presented as they are identical to batch 2.
Fig. 2. a) C1s XPS spectra of EVA film irradiated at different ␥-doses, b) example of decomposition of the C1s spectrum recorded on sample irradiated at 270 kGy.
Fig. 3. a) O1s XPS spectra of EVA film irradiated at different ␥-doses, b) example of decomposition of the O1s spectrum recorded on the non- irradiated (NS) sample, c) example of decomposition of the O1s spectrum recorded on the irradiated sample at 115 kGy
Fig. 4. XPS survey spectra of PE film at different absorbed doses. Only one batch is represented as others are identical.
+2

Références

Documents relatifs

اهيلا لصوتلما جئاتنلا ةشقانمو ةسارد انيديأ ينب تيلا ةساردلا نأ ابم : لمعتسلما جهنلما ىدل يططلخا يركفتلا ىوتسبم ةيططلخا تاراهلما

These data indicate that the A–Q complex contains a conduit that connects the mother cell and the forespore and support a model in which stacked rings similar to those found in type

In conclusion, we have investigated polarization conversion in plasmonic dimer nanoantennas. Using an analyti- cal model for two coupled dipolar antennas based on field

Afin de répondre à cette problématique et à ses déclinaisons, cette thèse se veut tout d’abord une contribution théorique à la connaissance des dynamiques

La deuxième voie d’amélioration consiste en la validation, au travers de nouveaux programmes expérimentaux, des données nucléaires impliquées dans la formation

The hormonal treatment and the parity interact: thus on primiparous, whatever the injected dose, eCG does not significantly improve rabbit does receptivity in comparison with

A BSTRACT : The aim of this experiment was to compare the ovary response, the fertilising aptitude and the embryo development of multiparous rabbit does having

The spectra provide a measure of the sLllke partial density of states (PDOS) localized at the A1 atoms and show prominant qualitative features that may be identified