• Aucun résultat trouvé

f d/t(x), for every t on the dual R. Convolution of elements in

N/A
N/A
Protected

Academic year: 2022

Partager "f d/t(x), for every t on the dual R. Convolution of elements in"

Copied!
9
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 7 nr 30 1.67 11 3 C o m m u n i c a t e d 13 S e p t e m b e r 1967 b y LENNA~T CARLESON

An extremal problem related to Kolmogoroff's inequality for bounded functions

By YNGVE DOMAR

A B S T R A C T

L e t A a n d B be positive n u m b e r s a n d m a n d n positive integers, m < n. T h e n t h e r e is for c o m p l e x v a l u e d f u n c t i o n s ~0 o n R w i t h sufficient differentiability a n d b o u n d e d n c s s p r o p e r t i e s a r e p r e s e n t a - t i o n

~o (rn) = ~ ( n ) - ) t - v l + ~-X-vs,

w h e r e r l a n d v2 are b o u n d e d Borel m e a s u r e s w i t h vl a b s o l u t e l y c o n t i n u o u s , s u c h t h a t t h e r e exists a f u n c t i o n V w i t h IV `n)] < A a n d ]9] ~<B o n R a n d s a t i s f y i n g

cf(m) (O) = A L [ dvl l + B ~ l dv2 I.

T h i s r e s u l t is f o r m u l a t e d a n d p r o v e d in a general s e t t i n g also applicable to derivatives of frac- t i o n a l order. N e c e s s a r y a n d sufficient conditions are given in order t h a t t h e m e a s u r e s a n d t h e o p t i m a l f u n c t i o n s h a v e t h e s a m e essential p r o p e r t i e s as t h o s e w h i c h occur in t h e p a r t i c u l a r ease s t a t e d above.

1. We denote by

M(R)

the Banach space of bounded Borel measures on R and b y

AC(R)

the subspace of

M(R)

consisting of all measures which are absolutely con- tinuous with respect to the Lebesgue measure. The Fourier-Stieltjes transform /2 of a measure/t

EM(R)

is defined b y the relation

p ( t ) =

f d/t(x),

for every t on the dual R. Convolution of elements in

M(R)

is defined in the usual w a y such t h a t it corresponds to pointwise multiplication of the Fourier-Sticltjes transforms.

L e t / t l a n d / t 2 be given elements in

M(R),

and tt o a third given element such t h a t there exist elements 1 and v2 in

M(R)

such t h a t

/to =/tl"eVl+#2~ev2. (1)

We assume that there exist a real number a and measures 00 and a2 in

AC(R)

such t h a t the three relations

(2)

Y. DOMAR, Extremal problem related to Kolmogoroff's inequality

pl(t) + 0, (2)

p2(t) = fq(t) ~z(t), (3)

p0(t) = pl(t) d0(t) (4}

all hold, if [ t [ ~ a.

H denotes the set of all pairs of b o u n d e d Borcl m e a s u r e s {vl, v2}, which satisfy (1).

L denotes t h e set of all pairs of b o u n d e d Borel m e a s u r e s {Vl, ~2} such t h a t

/A~I-)(- y I +/~2-X-~) 2 =

0

W e finally f o r m t h e class K of all pairs of functions {91,w in L~(R), such t h a t w i t h t h e usual definition of convolution b e t w e e n elements in L~C(R) a n d AC(R),

91 ~ vl +92 * v2 = 0, for e v e r y vl C AC(R) a n d v2 EAC(R) such t h a t {vl, v2} EL.

T h e o r e m 1. 1 ~ I /

{'~1, ~,~}~H

then VlCAC(R ).

2 ~ I/{91, 92} E K, then 9z is continuous, after a change in a set o/Lebesgue measure O.

3 ~ With this assumption on 92, we/orm/or any {91, 9z} e K and {~, r2} e H the/unc- tional

F(91, 9 2 ) = F(91, 92, vl, v2) = f 91( x)v~(x)dx+ ~ 9 2 ( - x ) d v 2 ( x ) .

JR JR

lts value does not depend on the choice o/{vl, vz}.

4 ~ Let (A, B) be a/ixed pair o/positive numbers and let K(A, B) denote the subset of all {91, 92} e K such that 119111~ <~ A, ]19~[] ~ <~ B. Then there exists a {~F1, 1F2 } e K ( A, B) such that

] F(91, 92) 1 < F(uIV'l, ~F2), /or every {91,

92}eK(A,

B).

5 ~ There exists a {vl, v~}EH such that

Id~(x) l.

(6)

JR JR

Before we give t h e proof of T h e o r e m 1, we shall discuss a p a r t i c u l a r l y i m p o r t a n t e x a m p l e a n d m a k e some general c o m m e n t s .

L e t m a n d n be integers such t h a t 0 < m < n. I t is e a s y to see t h a t all our a s s u m p - tions are fulfilled if we choose #1,/~z and tt0 such t h a t

fq(t) = e -t~ (it) '~, ft2(t) = e -t*, po(t) = e-t' (it)rn.

434

(3)

ARKIV FOR MATEMATIK. Bd 7 nr 30 Using the definition of K we find t h a t K consists of all pairs of bounded functions of the form {~v("),g}, where g is absolutely continuous together with its n - 1 first

derivatives. Let us then form the continuous function gO = g(n) -)(- ~)1 -~-~) "~- Y2'

where {Yl' v2} EH. Convoluting this with an a r b i t r a r y measure # with compact sup- port and high differentiability properties, it is easy to see, b y using (1) and partial integration, t h a t we obtain

go-X-# =iv ++#(r"),

where #(m) denotes the measure which, in the distribution sense, is the

m-th

derivative of the measure #. Hence g0 =g(~). I f we substitute x = 0 in g(m) we obtain

g(m>(0) = F ( g (~), g, ~1, v~).

Hence our theorem shows t h a t there is for every pair (A, B) of positive numbers a representation

g<m)(o)= fRg(n)(-x)~;(x)dx + f g(-x) d~2(x)

such t h a t equality can be attained in the resulting inequality

IIv( >II <A, Ilgll+--< B.

I n this particular case, the value of (6) is known, since the optimal functions g have been found b y Kolmogoroff [6], see also Bang [2]. As was shown in Bang's paper, the inequality given b y Kolmogoroff is v e r y closely related to the well-known 9 inequalities b y Bernstein and Bohr. As can be seen for instance in Achiezer [1, w167 74, 86] these two inequalities can be proved and generalized using representations which are similar to our formula (5). The starting point for our investigations was an a t t e m p t to prove and generalize Kolmogoroff's inequality using similar ideas. We shall in section 3 show t h a t the representation obtained in Theorem 1 can give a direct infor- mation on the possibility of such generalizations.

I t should finally be mentioned t h a t the ideas in this paper have connections with questions on minimal extrapolations of Fourier-Stieltjes transforms (see for instance [3] and Herz [4, Theorem 4.1]). I t is possible to p u t certain parts of these two theories into a common framework. Generalizations in the same direction as those in HSrman- der [5] are also possible.

2. Proo/ o/ Theorem 1.

10. I f {vl, v2 } E H, then b y (1)

Po = Pl~l +P2~2.

(4)

"z. DOMX~,

Extremal problem related to Kolmogoroff's inequality

B y (2), (3) and (4) this relation implies t h a t if it] ~>a

~o(t) = ~(t) -t-d2(t)r (7)

T h e difference

~3(t)

between t h e left a n d right m e m b e r s of (7) is a Fourier-Stieltjes t r a n s f o r m which vanishes for large t, hence the corresponding measure v3 belongs t o

AC(R).

W e thus h a v e t h e relation

'Pl = 0-0 --~)3 - - 0-2-)(- ~2,

where 0-0, v3 a n d 0-2 belong to

AC(R).

B u t t h e convolution of a measure in

AC(R)

with a measure in M ( R ) belongs to A C(R). Hence 0-2 -)r ~2 E A C(R) a n d as a consequence

vl EAC(R).

2% W e choose a measure v E A C ( R ) such t h a t ~(t)=1 if It[ ~ a . L e t (~1, ~2} EK- F o r a n y / ~

EAC(R)

t h e pair

((0-2-a2~r)~, v ~ - ~ }

lies in

L,

a n d b o t h measures belong to

AC(R).

Hence b y the definition of

K,

~01-)(- (0" 2 - - 0-2-)(- ~2) -)(-/~ ~- ~92-)(- (V-X-~ - - ~ ) = 0.

A r e a r r a n g e m e n t gives

This implies t h a t

9?2 = 9)2 -)~'v -{- (i01-)~" 0-2 --(~1 "~ ( 0-2-)(- ~))

a l m o s t everywhere. Since v, 0-2 a n d 0-2~v all belong to

AC(R),

the r i g h t - h a n d m e m - ber is continuous which proves t h e assertion 2 ~ .

3 ~ W e f o r m t h e B a n a c h space X of all pairs {vl, v2} where vl

EAC(R)

a n d v2 EM(R), with t h e n o r m

a n d with t h e v e c t o r operations defined in an obvious way. L is a linear subspace in X a n d H a hyperplane, parallel to L. F o r e v e r y given (~1, ~ 2 ) E K ,

represents a linear functional on

X,

which vanishes for e v e r y {vl, v2} EL such t h a t

v2 EAC(R).

I f n o w (vl, v2} EL is a r b i t r a r y a n d does n o t annihilate the functional, it is in view of 1 ~ and 2 ~ possible to find a measure r

EAC(R)

with its s u p p o r t c o n c e n t r a t e d t o a n e i g h b o r h o o d of x = 0 and such t h a t t h e functional, applied to {Vl-~V, v2~v}, does n o t vanish. B u t this element belongs to L a n d v2-)(-v

EAC(R)

which gives us a contra- diction. Hence t h e functional vanishes on L a n d t h u s t h e value is c o n s t a n t on H.

4". W i t h t h e notions i n t r o d u c e d above we let d denote the distance between H a n d

L,

i.e.

436

(5)

ARKIY F6R MATEMATIK. B d 7 nr 3 0

O b v i o u s l y ]-~(~01, ~V 2, vx, v2)] ~<d, (9)

if {~vl,~2}eK(A, B), {v~, v 2 } e H .

W e k n o w f r o m t h e H a h n - B a n a c h t h e o r e m t h a t there exists a b o u n d e d linear func- tional

G(Vl, v~)

on X, with n o r m 1, vanishing on L, a n d t a k i n g t h e value d on H. G is also a linear functional with n o r m ~< 1, on t h e closed subspace of X, consisting of t h e pairs {Vl, v2} where b o t h v 1 a n d v2 belong to

AC(R).

T h e dual of this space is well known, a n d we o b t a i n f r o m this t h a t there exist b o u n d e d measurable functions

~ 1 a n d 1F~ such t h a t

G ( v , =

f ( - x) v; (x) dx § f ) r 2 ( - x) v; (x) dx, (10)

if vl a n d

v2 E AC(R).

Obviously

II~r~ll| II~II|

Since G vanishes on L, t h e definition of K shows t h a t {~F1, 1F2}EK, in particular t h a t we can assume ~F2 to be continuous. Since b y (9)

I X~(~01' ~92) I ~ d = G(~)I, T2) , if

{cf~,cf2)eK(A , B), {v~, va)eH,

4 ~ is p r o v e d if we can show t h a t

for e v e r y {~1, v2} EX.

W e can, of course, because of (10) restrict ourselves to t h e case when v 1 = 0 . I n the case when ~ has a c o m p a c t support, v2 belongs to

AC(R),

hence b y (10) t h e relation (11) is true, a n d t h u s we can also restrict ourselves to t h e case w h e n ~2 vanishes on t h e set {tilt I < a } . T h e n ( - a 2 ~ - v ~ ,

v2}eL,

hence

which gives us G( - a 2 ~ 2 , ~2) =0,

G(O, v2) = G(a~ ~ v2, O) = ~ ~ 1 ( - x) (as ~ ~ ) ' (z)

dx.

JR

(12)

N o w let {Tn}~ r be a sequence of n o n - n e g a t i v e measures in

AC(R),

all with t o t a l mass 1 a n d with supports contained in t h e set

{x]]x] <~l/n}.

T h e n v~ in (12) can be e x c h a n g e d t o v2~-Tn. B y a well-known p r o p e r t y of convolutions with measures in

AC(R),

applied to t h e r i g h t - h a n d m e m b e r of (12), we see t h a t lim G(0, v2 ~ Tn) = G ( 0 , v2), n-)r162

(6)

Y. DOMAR, Extremal problem related to Kolmogoroff's inequality

Since v 2 ~ - ~ belong to A C(R), t h e left-hand m e m b e r of this relation can be r e p r e s e n t e d using the f o r m u l a (10), a n d this finally gives, b y s t a n d a r d a r g u m e n t s ,

?

G(O, v~) =.I W2( - x) dye(x),

hence t h e desired result.

5 ~ W e h a v e to p r o v e t h a t t h e r e exists an element {vx, v2} E H which gives t h e mini- m u m in (8). W e can find a w e a k l y c o n v e r g e n t sequence of pairs of measures, converg- ing to a m e a s u r e {v ~ v~ where b o t h v ~ a n d v ~ belong to M(R). I t is e a s y to see, using t h e F o u r i e r - S t i e l t j e s t r a n s f o r m s , t h a t t h e relation ( 1 ) w h i c h d e t e r m i n e s H , can be w r i t t e n

f~

~0 (Y) = ~t 1 (y - x) dVl(X) + ~2 (Y - x) du2 (x), (13) for e v e r y y E R, where/to,/~1 a n d ~2 are the functions

e -~#i ( i = 0 , 1 , 2 ) .

B u t these functions belong to Co(R ) a n d hence (13) has to be fulfilled for t h e limiting m e a s u r e s {v ~ v~ H e n c e {v ~ v2 ~ } e l l , a n d it is obvious t h a t it m u s t realize t h e infimum.

3. W e n o w r e t u r n t o t h e case w h e n f i l - e - t ~ ( i t ) ~, ft2 =e-t~, fto=e-t~(it) m, where m a n d n are integers such t h a t 0 < m < n . This case was briefly discussed in the last p a r t of w 1. U n d e r this a s s u m p t i o n K o l m o g o r o f f [6] has f o u n d t h e o p t i m a l pairs {~F1, ~F2}. Disregarding a c o n s t a n t f a c t o r with m o d u l u s 1, t h e y are f o u n d a m o n g t h e functions given b y t h e relation

U121=

A sign (sin (bx+c)),

where b a n d c are real, b # 0 , a n d with t h e corresponding ~F~ d e t e r m i n e d as t h e primi- tive function of ~F 1 of order n a n d w i t h m e a n value 0.

A certain lack of s y m m e t r y in t h e functions {~1, ~ 2 } a p p e a r s w h e n m a n d n varies.

This can, however, be overcome, for e v e r y fixed set {m, n, A, B}, b y changing t h e functions

/~1

a n d / 2 2 to

e t~ (it)n ei~, t

a n d e-t, (it)m etZ~ t.

respectively with t h e real n u m b e r s fil a n d f12 s u i t a b l y chosen. After such a change, which of course only corresponds to translations in the functions {~1, ~2} in t h e class considered, we see t h a t the o p t i m a l pair {Y~I, 92} has t h e following properties, for some h > 0 :

1 ~ ~ F I = A sign (sin hx-),

2 ~ ~F2(2nz/h ) = B ( - 1 ) n (nEZ),

while - B < ~ 2 ( x ) < B , if x ~ - 2 n z / h (nEZ).

438

(7)

ARKIV FOR MATEMATIK. B d 7 n r 30 A pair of functions {~1, ~ } with these properties is said to belong to the class E(A, B, h).

A natural problem is now to investigate if pairs in the class E(A, B, h) occurs as optimal pairs in other cases.

Let us then first make some assumptions on/20,/21 and/22. We assume that/21 ~:0 ahnost everywhere, and that/20//21 and/22//21 EL1 except for some bounded interval.

Finally we assume t h a t

/2~ (t + hn)//2~(t + hn) * 0, almost everywhere. Then the following theorem holds.

Theorem 2. Suppose that {W~, ~T'2}EK N E(A, B, h). Necessary and su//icient in order that {~T'I, ~F2} is an optimal pair, in the sense o/ Theorem 1, is that there exists a pair {~1, v2} EH, such that

~ (x)sign (sin ~ ) = I ~ (x)I (xER),

while v~ is a discrete measure composed o/ non-negative pointmasses at x = 4 n z/h, n EZ, and non-positive point masses at x = (4n § 2)z/h, n EZ.

{vl, v2} is then uniquely determined by the relations

/~0 (t -~- nh)//21 (t ~- nh) = ~2 (t) ~ /22 (t + n h ) / / ~ 1 (t ~- nh), (14)

oQ oo

~1 =/~0//~1 - ~2/22//21. (15)

Proo/ o/ Theorem 2. The sufficiency is a direct consequence of the conditions on ~1 and ~ which show that

[ F((pl, ~ ) ] = ] F ( ~ i , 92, "Pl, ?J2) l ~

F(W1, ~F2,

"k' 1, ~)2) = I F(Vl, V2) I,

if {~91, q~2} EK(A, B).

To prove the necessity we assume t h a t {~1, ~2} EK N E(A, B, h) is an optimal pair. Then b y Theorem 1, 4 ~ and 5 ~ there exists an optimal {Vl, v2}EH, which obviously has to fulfil the conditions on the signs of v~ and v2.

I t remains to prove the formulas (14) and (15). (15) is a direct consequence of (1).

I t shows, together with the conditions on/20,/21 and/22, t h a t ~1 ELl(R) . Hence we can assume t h a t v~ is continuous. The condition on the sign variation of v~ then implies t h a t

v/(2nze/h) = 0 (nEZ).

p 9 A

But vl is the inverse Fourier transform of the function vl in the L 1 sense. Hence the periodic function

#l(t +nh),

- o o

which locally belongs to L 1, has its Fourier coefficients determined b y the values v~(2n z/h) in such a way t h a t they, too, must vanish. Hence

(8)

Y. DOM.A.R, Extremal problem related to Kolmogoroff's inequality

~x (t + nh) =O, a l m o s t everywhere.

A direct s u m m a t i o n of (15) t h e n gives (14).

T h e o r e m 2 is applicable in t h e case w h e n / t l , / t 2 and re0 are given b y t h e relations /21 (t) = e -t~ (it) ~' e ~ t,

/ 2 ~ ( t ) = e t 2 ,

/20 (t) = e -t* (it) ~ e t~*t, w h e r e (~1, ill, (~2 a n d flz are real a n d

0 < ~ 2 < ~ 1 - - 1 . (it)~J, 7" = 1, 2, is t h e n to be i n t e r p r e t e d as

exl~ ~ i sign t + log I t I) ~J"

I f al, a2, A a n d B are given, it is possible to show t h a t we can choose h, fil a n d f12 such t h a t there is a pair of functions {q~l, qJ2} E K N E ( A , B, h). T h e p r o b l e m is to decide w h e t h e r this pair is a n o p t i m a l one.

I f b o t h al a n d a2 are integers this is t h e case, which follows f r o m K o l m o g o r o f f ' s result. T h e only new in this case is t h e existence a n d t h e explicit f o r m of t h e o p t i m a l pair {YI' V2}"

T h e case w h e n some aj is n o t a n integer corresponds t o t h e p r o b l e m for fractional d e r i v a t i v e s (see B a n g [2]). I n this case it is e a s y to see f r o m (14) t h a t ~e(t) is a n a l y t i c within t h e period ( - h / 2 , h/2) e x c e p t a t t = 0 , where it has a singularity of a t y p e which excludes t h e possibility of t h e d e m a n d e d sign-variation in d v~. H e n c e {1F1, ~F~}

is n o t o p t i m a l in this case.

This completes a discussion of B a n g [2] where he c a m e t o t h e s a m e conclusion in t h e case 0 < a S < ~1 = 1. I n t h a t case, assuming fll = fi2 = 0, t h e o p t i m a l pairs {~F1, ~F 2 } a r e explicitly known. T h e y consist essentially of all {LF', ~F } w i t h II ~F' II ~o < A, I1 ~F II oo ~ B , where ~ is absolutely continuous a n d where

2 B t F ( x ) = - B , if x ~ - ~ ,

2 B W'(x) = A, if - - - < x < 0 .

A

B y m e a n s of T h e o r e m 1 we can easily give t h e necessary a n d sufficient condition o n /20, fulfilling (4) with given

/21 = (it) e -~', 22 ~ e-t2 440

(9)

ARKIV F/)R MATEMATIK. Bd 7 n r 30 i n order t h a t all these f u n c t i o n s {y/, ~o} give o p t i m a l pairs. E a s y a r g u m e n t s show t h a t t h e c o n d i t i o n is t h a t

~o = / x l * v ,

where v is a n a b s o l u t e l y c o n t i n u o u s n o t necessarily b o u n d e d m e a s u r e , such t h a t for some c

~ ' = c o n s t a n t ~ c , if x < 0 , 2 B v'>~c, if 0 < x < - -

A '

2 B v' is ~ c, b o u n d e d a n d decreasing, if x > ~ - .

I n p a r t i c u l a r we o b t a i n B a n g ' s case w h e n for some d > 0, a n d for 0 < ~ < 1,

{

v t = 0 , x < 0 ,

r x>0.

R E F E R E N C E S

1. ACHIEZER, 1~. I., Vorlesungen fiber Approximationstheorie. Berlin 1953 (1947).

2. BANO, T., Une in6galit6 de Kolmogoroff et les functions presqueperiodiques. Danske Vid. Selsk Mat.-Fys. Medd. X I X , 4 (1941).

3. DOMAR, Y., On the uniqueness of minimal extrapolations. Ark. Mat. 4, 19-29 (1959).

4. HERZ, C. S., The spectral theory of bounded functions. Trans. Am. Math. Soc. 94, 181-232 (1960).

5. H ~ R M A N D E R , L., A n e w p r o o f a n d a generalization of a n inequality of B o h r . M a t h , S e a n d . 2, 3 3 - 4 5 (1954).

6. K O L N I O O O R O F F , A . N., O n inequalities b e t w e e n u p p e r b o u n d s of consecutive derivatives of a n arbitrary function defined o n a n infinite interval. U 6 e n y e Zapiski M o s k o v . Gos. U n i v . M a t e m a t i k a 30, 3 - 1 6 (1939); A m e r . M a t h . Soe. Translation 4.

Tryckt den 9 april 1968

Uppsala 1968. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

Déterminer l'encadrement de la masse d’engrais azoté répandu pour que l’exploitant agricole ne soit pas pénalisé.a. Lors d’un lancer franc au basket, le joueur

L'entreprise a établi que son intervalle de rentabilité optimale doit correspondre à un coût marginal ne dépassant pas 25 €.. Un bureau d'étude est chargé de

L'entreprise a établi que son intervalle de rentabilité optimale doit correspondre à un coût marginal ne dépassant pas 25 €.. Un bureau d'étude est chargé de

2, page IV-35, and the characterization of regular local rings as those which are l~Toetherian of finite homolog~cal dimension... F., On the homology o]

assertion is now proved.. We now complete the proof of the theorem. It follows that the surface Ml is standardly embedded in B, up to ambient isotopy. The

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

Since we shall be concerned with spaces of functions on groups the following properties are of importance :.. For later reference we state here some facts concerning the

have investigated the maximal distortion under a normalized ft-quasisymmetric func- tion f of the real line.. In particular, we investigate whether the functions