• Aucun résultat trouvé

Composite Materials

N/A
N/A
Protected

Academic year: 2022

Partager "Composite Materials"

Copied!
30
0
0

Texte intégral

(1)

Composite Materials

(2)

Metal Matrix Composites

Long fiber composites SiC–Ti (fiber diameter : 500 µm)

(3)

Polycrystalline Morphology

zinc coating shape memory alloy Cu–Zn–Al

(4)

Two–phase Materials

Titanium alloy Ti6242 nickel–base single crystal superalloy

(5)

Characterization of thin layers and coatings

coating of a galvanized steel sheet

EBSD analysis

RD = (1) TD = (2)

RD TD ND

1 2 3 4

5 6

7 8

9 10

11 12

14 13 15

16 17

18 19

20

21 22

23 24 25 26

27 28

29 30

31

32 33 34

ND = (3)

TD = (2) RD = (1)

Symmetrical

2D geometry but 3D deformation modes!

(6)

Multi–crystalline specimens

0 5 10 16 21 26 31 37 42 48 53 58 101

eveq (x1.0E-3)

(011) (001)

(-111) 1

4 2 3 0

5 10 16 21 26 31 37 42 48 53 58

x1.0E-3 etot 33

3 1 2 4 sample A

(7)

Metallic foams

Aluminum foam nickel foam

(8)

X-ray tomography

(9)
(10)

Quasi–transparent materials

−→ confocal microscopy

(11)

Influence of phase morphology and distribution on material behaviour

100 µm

(12)

Influence of phase morphology on Young’s modulus

0 200 400 600 800 1000 1200 1400 1600 1800

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

E (MPa)

f1 fine microstructure coarse microstructure E (H+) E (H−)

(13)
(14)

Models for random materials : Polycrystals

3D Vorono¨ı cells

(15)

3D Vorono¨ı cells

(16)

How to prescribe a mean deformation to a material volume element?

possible boundary conditions :

• Kinematic uniform boundary conditions

• Traction uniform boundary conditions

• Periodicity conditions

• mixed boundary conditions

(17)

Kinematic uniform boundary conditions

u = E.x, ∀x ∈ ∂V, ui = Ei jxj

< ε > =1 V

Z

V

εdV = E Proof (divergence theorem) :

< εi j > = 1 V

Z

V

u(i,j)dV = 1 V

Z

V

u(inj)dS

= E(ik1 V

Z

V

xknj)dS = E(ik1 V

Z

V

xk,j)dV

= E(ikδk j) = Ei j Mean work of internal forces :

σ? statically admissible stress field (divergence free) ε

0 compatible strain field fulfilling the kinematic uniform boundary conditions

< σ? : ε0 >= Σ : E where the macroscopic stress tensor is defined by

Σ =< σ? >

return

(18)

Divergence, Stokes, Gauss ... theorem

Z

V

u

,i

dV =

Z

V

u n

i

dV where u

,i

=

xu

i

1D :

Z

b

a

u

0

(x) dx = [ u ]

ba

return

(19)

Traction uniform boundary conditions

T = σ.n = Σ.n, ∀x ∈ ∂V, Ti = Σi jnj

< σ > =1 V

Z

V

σ dV = Σ Proof (divergence theorem) :

< σi j > = 1 V

Z

V

σi jdV = 1 V

Z

V

σikδk jdV = 1 V

Z

V

ik xj),kdV

= 1 V

Z

V

σikxjnkdS = 1 V

Z

V

ΣikxjnkdS

= Σi j

Mean work of internal forces :

σ? statically admissible stress field (divergence free) and fulfilling the traction uniform boundary conditions

ε0 compatible strain field

< σ? : ε0 >= Σ : E where the macroscopic strain tensor is defined by

E =< ε0 >

return

(20)

Periodicity conditions

u = E.x+v where v is a periodic fluctuation

-

x y

z

+

v(x+) = v(x), u(x+)−u(x) = E.(x+x)

=⇒ u is not periodic!!!

σ(x).n = −σ(x+).n+, (n = −n+)

< ε >= E Proof : < vi,j >= 1

V

Z

V

vi,j dV = 1 V

Z

V

vinj dS = 0 Mean work of internal forces :

< σ : ε >= Σ : E where the macroscopic stress tensor is defined by

Σ =< σ >

return

(21)

Example

compute the effective elastic properties of a periodic composite...

local properties

 σ11

σ22

σ33

σ12

=

c11 c12 c13 0 c12 c22 c23 0 c13 c23 c33 0 0 0 0 c44

 ε11

ε22

ε33

12

effective properties

 Σ11

Σ22

Σ33

Σ12

=

C11 C12 C13 0 C12 C22 C23 0 C13 C23 C33 0

0 0 0 C44

E11 E22 E33 2E12

(22)

Extension test

impose < ε >, compute < σ >...

E =

1 0 0 0 0 0 0 0 0

Σ11 = C11 Σ22 = C12 Σ33 = C13 Σ12 = 0 homogeneous boundary conditions

x y

z

periodicity conditions

x y

z

(23)

Shear test

E =

0 1/2 0 1/2 0 0

0 0 0

 Σ11 = Σ22 = Σ33 = 0 Σ12 = C44

homogeneous boundary conditions

x y

z

periodicity conditions

x y

z

(24)

Application to two–phase Vorono¨ı mosaics

x y

z

two elastic phases : E=2500 MPa, ν = 0.3 E = 25 MPa, ν = 0.49

(25)

Apparent shear modulus

0 200 400 600 800 1000

10 100 1000 10000

µapp (MPa)

V

KUBC

Bounds of Voigt−Reuss

(26)

Apparent shear modulus

0 200 400 600 800 1000

10 100 1000 10000

µapp (MPa)

V

KUBC SUBC Bounds of Voigt−Reuss

(27)

Apparent shear modulus

0 200 400 600 800 1000

10 100 1000 10000

µapp (MPa)

V

KUBC SUBC PERIODIC Bounds of Voigt−Reuss

(28)

Parallel computing

turbine blade in 8 subdomains

FETI method

local equilibrium on each subdomain

compatibility and equilibrium at the interface : iterative

algorithm

cluster of PCs under Linux

(29)

Sub–domain decomposition

x

y

z

x y

z

(30)

Références

Documents relatifs

• Newton-Raphson algorithms: the spectral factorization problem is formulated as a quadratic polynomial matrix equation which is then solved iteratively [26]. At each step, a

Elles sont entre autres la CDB, provenant des Nations Unies; le Manuel de référence pour l'aménagement écosystémique des forêts au Québec – Module 1 — Fondements

This approach allowed us to study the relationship between the similarity of two tasks and the minimal amount of data needed to compute a near-optimal policy for the second task

•  Atteinte rénale +/- •  Atteinte cardiaque ++ •  Canal carpien ++. Pronostic : décès après 10 ans

1) Template Builder: This sub-interface will be used by technical persons performing role R1 having good pro- gramming and technical skills. R1 will design the GUI- based templates

Dans un second temps, cela nous permettait d’aller interroger les maitres de stages universitaires (MSU) responsables de ses étudiants pour recueillir leur

For each subject, the difference (as a z-score) between their corrected and uncorrected vision conditions for the N75 and P100 results for both the peak amplitude method and

This workshop will seek to understand the roles and demands placed on users of security systems, and explore design solutions that can assist in making security systems usable