• Aucun résultat trouvé

complete intersections The Crepant Transformation Conjecture for toric Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Partager "complete intersections The Crepant Transformation Conjecture for toric Advances in Mathematics"

Copied!
86
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

The Crepant Transformation Conjecture for toric complete intersections

Tom Coatesa,∗, Hiroshi Iritanib, Yunfeng Jiangc

a DepartmentofMathematics,ImperialCollegeLondon,UnitedKingdom

b DepartmentofMathematics,KyotoUniversity,Japan

cDepartmentofMathematics,UniversityofKansas,UnitedStates

a r t i c l e i n f o a bs t r a c t

Article history:

Received14November2017 Accepted15November2017 Availableonline23March2018 CommunicatedbytheManaging Editors

MSC:

primary14N35

secondary14A20,14E16,14F05, 53D45

Keywords:

ToricDeligne–Mumfordstacks CrepantResolutionConjecture Mirrorsymmetry

Quantumcohomology Fourier–Mukaitransformation Mellin–Barnesmethod

LetX andY beK-equivalenttoricDeligne–Mumfordstacks relatedbyasingletoricwall-crossing.WeprovetheCrepant Transformation Conjecture in this case, fully-equivariantly andingenuszero.Thatis,weshowthattheequivariantquan- tumconnectionsforX andY becomegauge-equivalentafter analytic continuation in quantum parameters. Furthermore weidentifythegaugetransformationinvolved,whichcanbe thoughtofasalinearsymplectomorphismbetweentheGiven- talspacesforXandY,withaFourier–Mukaitransformation betweentheK-groupsofXandY,viaanequivariantversion oftheGamma-integralstructureonquantumcohomology.We provesimilarresultsfortoriccompleteintersections.Weim- poseonlyveryweakgeometrichypothesesonX andY:they canbenon-compact,forexample,andneednotbeweakFano or haveGorensteincoarsemodulispace. Ourmaintoolsare theMirror TheoremsfortoricDeligne–Mumfordstacks and toriccompleteintersections,andtheMellin–Barnes method foranalyticcontinuationofhypergeometricfunctions.

©2018TheAuthors.PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

* Correspondingauthor.

E-mailaddresses:t.coates@imperial.ac.uk(T. Coates),iritani@math.kyoto-u.ac.jp(H. Iritani), y.jiang@ku.edu(Y. Jiang).

https://doi.org/10.1016/j.aim.2017.11.017

0001-8708/©2018TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

A birational map ϕ: X+ X between smooth varieties, orbifolds, or Deligne–

Mumford stacks is called a K-equivalence ifthere exists asmooth variety, orbifold,or Deligne–MumfordstackX andprojectivebirationalmorphismsf±:X →X± suchthat f=ϕ◦f+ andf+KX+=fKX:

X

f f+

X+

ϕ X

(1.1)

In this case, the celebrated Crepant Transformation Conjecture of Y. Ruan predicts that the quantum (orbifold) cohomology algebras of X+ and X should be related by analytic continuation in the quantum parameters. This conjecture has stimulated agreat deal ofinterest inthe connectionsbetween quantum cohomology (or Gromov–

Wittentheory)andbirational geometry:see, forexample,[9,10,17,18,20,22,23,27,40,44, 52,55–58,61,67,70,74,75]. Ruan’s original conjecture was subsequently refined, revised, and extended to higher genus Gromov–Witten invariants, first by Bryan–Graber [19]

undersomeadditionalhypotheses,andthenbyCoates–Iritani–Tseng,Iritani,andRuan ingeneral[33,34,49].Recall thatatoricDeligne–Mumford stack X canbe constructed as aGITquotient

Cm//ωK

ofCm byanaction of acomplextorus K,where ω is an appropriatestabilitycondition,andthatwall-crossinginthespaceofstabilityconditions induces birational transformationsbetween GITquotients[36,71]. Ourmain resultim- pliestheCIT/RuanversionoftheCrepantTransformationConjectureingenus zero,in thecasewhere X+ andX arecompleteintersections intoricDeligne–Mumford stacks and ϕ: X+ X arises from a toric wall-crossing. We concentrate initially on the casewhereX+andX aretoric,deferringthediscussionoftoriccompleteintersections to §1.3.

1.1. The toric case

We consider toric Deligne–Mumford stacks X± of the form

Cm//ωK

, where K is a complex torus,and consider a K-equivalence ϕ:X+ X determined by a wall- crossinginthespaceofstabilityconditionsω.TheactionofT = (C×)monCmdescends togive(ineffective)actionsofT onX±,andweconsider theT-equivariantChen–Ruan cohomologygroupsHCR,T (X±) [25]. Thereis aT-equivariantbigquantum product τ onHCR,T (X±),parametrizedbyτ∈HCR,T (X±) anddefinedintermsofT-equivariant Gromov–WitteninvariantsofX±.TheT-equivariantquantumconnection isapencilof flatconnections:

(3)

=d+z−1 N i=0

iτ)dτi (1.2)

on the trivialHCR,T (X±)-bundle over anopen set inHCR,T (X±); here z C× is the pencilvariable,τ∈HCR,T (X±) istheco-ordinateonthebaseofthebundle,φ0,. . . ,φN are a basis for HCR,T (X±), and τ0,. . . ,τN are the corresponding co-ordinates of τ HCR,T (X±),sothatτ=N

i=0τiφi.

Theorem 1.1.LetX+ andX betoric Deligne–Mumfordstacks, andletϕ:X+X be aK-equivalencethat arisesfromawall-crossing of GITstabilityconditions. Then:

(1) the equivariant quantum connections of X± become gauge-equivalent afteranalytic continuation in τ, via a gauge transformation Θ(τ,z) :HCR,T (X)→HCR,T (X+) whichishomogeneousof degreezero,regularatz= 0,andpreserves theequivariant orbifold Poincarépairing;

(2) there exists acommon toric blowup X of X± as in (1.1)such that gauge transfor- mationΘcoincides withtheFourier–Mukaitransformation

FM:KT0(X)→KT0(X+) E→(f+)(f)(E) via theequivariantGamma-integral structureintroducedin §3below.

Here:

• TheGamma-integralstructureonequivariantquantumcohomologyisanassignment, to eachclassE ∈KT0(X±) ofT-equivariantvector bundlesonX±,of aflatsection s(E) fortheequivariantquantumconnectiononX±.Thisgivesalatticeinthespace offlatsectionswhichisisomorphictotheintegralequivariantK-groupKT0(X±).The flatsections(E) is,roughlyspeaking,givenbytheCherncharacterofE multiplied by a characteristic class of X±, called the Γ-class, that is defined in terms of the Γ-function. Part (2) of Theorem 1.1 asserts thatthe flat section s(E) analytically continuestos(FM(E)).

• The gauge transformation Θ(τ,z) will in general be non-constant: it depends on the parameter τ for the equivariant quantum product, and also on the parameter z appearing inthe equivariantquantum connection. When writteninterms of the integralstructure,however,itbecomesaconstant,integrallineartransformation.

Remark1.2. Throughoutthis paper,when weconsider K-equivalence (1.1)ofDeligne–

MumfordstacksX±,KX±meansthecanonicalclassasastack;ingeneralthisisdifferent from the(Q-Cartier)canonical divisorK|X±| of the coarsemoduli space|X±|. In par- ticular,wedonotrequirethecoarsemoduli spaces|X±| tobeGorenstein.

(4)

Remark 1.3. Gonzalez and Woodward [44] have proved a very general wall-crossing formula for Gromov–Witten invariants under variation of GIT quotient, using gauged Gromov–Witten theory. Their result, which is a quantum version of Kalkman’s wall- crossing formula, gives a complete description of how non-equivariant genus-zero Gromov–Witten invariants change under wall-crossing. Thus their theorem must im- ply the non-equivariant version of the first part of Theorem 1.1, and the first part of Theorem 1.4.Ourmethodsaresignificantlylessgeneral—theyapplyonlytotoricstacks andtoric completeintersections — butgive amuch moreexplicitrelationshipbetween thegenus-zeroGromov–Wittentheories.

Theorem 1.1isslightlyimpreciselystated:wegiveprecisestatements,oncetheneces- sarynotationanddefinitionsareinplace,asTheorems 5.14, 6.1,and 6.3below.Wenow explainhowTheorem 1.1impliestheCIT/RuanversionoftheCrepantTransformation Conjecture.

TheCIT/Ruanversion oftheCrepantTransformationConjecture isstatedinterms ofGivental’ssymplecticformalismforGromov–Wittentheory[43].Inourcontext,this associates to X± the vector spaces H(X±):= HCR,T (X±)((z−1)) equipped with a cer- tainsymplecticform,and encodesT-equivariant genus-zeroGromov–Witten invariants viaaLagrangiancone L± ⊂ H(X±).The Giventalcone L± for X± determines thebig quantum product τ on HCR,T (X±), and vice versa. The CIT/Ruan Crepant Trans- formationConjecture, made inthe context of non-equivariant Gromov–Witten theory, asserts that there exists a C((z−1))-linear grading-preserving symplectic isomorphism U: H(X)→ H(X+),suchthatafteranalyticcontinuationofL±wehaveU(L)=L+. See[33,34]formoredetails.

Therearevarioussubtlepointsinthenotionofanalyticcontinuationofthe(infinite- dimensional) cones L±, especially under the weak convergence hypotheses that we impose,and some necessary foundational material is missing.Thus we chooseto state Theorem 1.1 in terms of the equivariant quantum connections for X± rather than in termsoftheGiventalconesL±.Thetwo formulationsareverycloselyrelated,however, aswenowexplain.LetL±(τ,z) denoteafundamentalsolutionfortheequivariantquan- tumconnection,thatis,amatrixwithcolumnsthatgiveabasisofflatsectionsfor. Theassignment

τ→L±(τ, z)−1H+ τ∈HCR,T (X±) where H+:=HCR,T (X±)C[z]

givesthefamilyoftangentspacesto theGiventalcone L±.As emphasizedin[33],this defines avariationof semi-infiniteHodge structureinthe sense ofBarannikov[5]. The Giventalcone L± canbe reconstructedfrom thesemi-infinitevariationas:

L± =

τ

zL±(τ, z)−1H+

Thuspart (1)ofTheorem 1.1impliestheCIT/Ruan-styleCrepantTransformationCon- jecturewheneveritmakessense,withthesymplectictransformation Udefinedinterms

(5)

of the gauge transformation Θ by U = L+1ΘL. The fact that U is independent of τ follows from the fact that Θ is a gauge equivalence. The fact that U is symplectic (orequivalently,thefactthatΘ ispairing-preserving)followsfromtheidentification,in part (2)ofTheorem 1.1,ofΘ withtheFourier–MukaitransformationFM.TheFourier–

MukaitransformationisaderivedequivalenceandthuspreservestheMukaipairingson KT0(X±); thisimplies, viathe equivariantHirzebruch–Riemann–Roch theorem,thatΘ ispairing-preserving.TheidentificationofΘ withFMalsomakesclearthatthesymplec- tic transformation Uhas awell-defined non-equivariant limit,since theFourier–Mukai transformation itselfcanbedefinednon-equivariantly.

IntermsofthesymplectictransformationU,part(2)ofTheorem 1.1canberephrased as thecommutativityofthediagram

KT0(X) FM

Ψ

KT0(X+)

Ψ+

H(X) U H(X+)

where H(X±) is avariant of Givental’s symplectic space and Ψ± are certain ‘framing maps’ builtfromtheGamma-integral structure:see Theorem 6.1.This identificationof U with a Fourier–Mukai transformation was proposed in [49]. Our results also imply Ruan’s original conjecture thatthe quantum cohomology rings of X± are (abstractly) isomorphic, andthattheassociatedF-manifoldstructuresareisomorphic.Wereferthe reader to [27,28,33,34,50] for discussions on the consequence of these conjectures and several concreteexamples.

1.2. TheMellin–Barnes methodand theworkofBorisov–Horja

The main ingredients inthe proofof Theorem 1.1 are theMirror Theorem fortoric stacks [26,29], which determines the equivariant quantum connection (or, equiva- lently, the Giventalcone L±) interms of acertain cohomology-valued hypergeometric function called the I-function, and the Mellin–Barnes method [6,21], which allows us to analyticallycontinue the I-functions for X±. From this point of view, thesymplec- tic transformation U arises as the matrix which intertwines the two I-functions (see Theorem 6.1):

UI=I+.

On the otherhand, componentsof theI-functiongive hypergeometricsolutionsto the Gelfand–Kapranov–Zelevinsky(GKZ)systemofdifferentialequations.Theanalyticcon- tinuationofsolutionsto theGKZsystemhasbeenstudiedbyBorisov–Horja[12].They showedthat,underanappropriateidentificationofthespacesofGKZsolutionswiththe

(6)

K-groupsofthecorrespondingtoricDeligne–Mumfordstacks,theanalyticcontinuation of solutions to a GKZsystem is induced by a Fourier–Mukai transformation between the K-groups.Our computation maybe viewed as astraightforward generalization of theirs.Thedifferencesfromtheirsituationare:

(a) we work with a fully equivariant version, that is, the parameters βj in the GKZ systemarearbitrary and weuse theequivariant K-groups(here βj corresponds to theequivariantparameter);

(b) wecomputeanalyticcontinuationoftheI-functioncorrespondingtothebigquantum cohomology;intermsoftheGKZsystem, wedonotassumethatlatticevectorsin theset1A lieonahyperplaneofheight one.

Sinceweworkequivariantly,wecanusethefixedpointbasisinlocalizedequivariant cohomology tocalculate theanalytic continuationof theI-functions.It turns outthat analyticcontinuation viatheMellin–Barnesmethod becomesmucheasier to handlein thefullyequivariantsetting,becauseweonlyneedtoevaluateresiduesatsimplepoles.2 Itisalso straightforwardto computetheFourier–Mukaitransformationintermsofthe fixed point basis inthe localized equivariant K-group, and hence to see that analytic continuationcoincideswithFourier–Mukai.

Regardingpart(b)above,wechooseAto betheset{b1,. . . ,bm}⊂Nofrayvectors of anextended stacky fan [11,53]. Since we do notrestrict ourselvesto the weakFano case,andsinceweworkwithJiang’sextendedstackyfans,thegenericrankoftheGKZ systemcanbebiggerthantherankofHCR,T (X±).Toremedythis,wetreatonespecial variableanalyticallyandworkformallyintheothervariables.Infact,thebigI-functions are notnecessarily convergent in allof the variables, and we analytically continue the I-functionwith respecttoonespecificvariable yr.This amountsto consideringanadic completion of the Borisov–Horja better-behaved GKZsystem [14] with respect to the othervariables.TheanalyticcontinuationinTheorem 1.1occursacrossa“globalKähler modulispace”M whichistreatedasananalyticspaceinonedirectionandasaformal schemeintheotherdirections.

1.3. The toric completeintersection case

Letϕ:X+ X be aK-equivalence betweentoric Deligne–Mumford stacks that arisesfrom atoric wall-crossing,as in§1.1.LetX bethecommontoric blow-upofX± and letX0 denote thecommon blow-down; X0 hereis a(singular)toric variety,nota stack.

1 RecallthatGelfand–Kapranov–ZelevinskydefinedtheGKZsystemintermsofafinitesetAZd.They calledittheA-hypergeometricsystem.

2 For anexample of the complexities causedby non-simple poles,see the orbifoldflop calculation in [27, §7].

(7)

X

f

f+

X+

ϕ

g+

X

g

X0

(1.3)

Consider adirectsum of semiample line bundles E0 →X0, and pull this back to give vector bundles E+ X+, E X, and E X. Lets+, ˜s, and s be sections of, respectively,E+, E, andE thatarecompatibleviaf+ andf (sof+s+=s=fs) such thatthe zeroloci of s± intersectthe floppinglocus of ϕtransversely. Let Y+, Y, and Y denote thesubstacksdefinedbythezerolociof, respectively,s+, ˜s, ands. In this situationthere isacommutativediagram:

Y

F F+

˜ι

Y

ι

X

f f+

Y+

ι+

X X+

(1.4)

where thevertical mapsareinclusions,thebottomtriangleis(1.1),andthesquaresare Cartesian. The K-equivalence ϕ:X+ X induces aK-equivalence ϕ:Y+ Y. Wenow considertheCrepantTransformationConjectureforϕ:Y+ Y.

Since the complete intersections Y± will not in general be T-invariant we consider non-equivariant Gromov–Witten invariantsand the non-equivariant quantum product.

(Our assumptionsonX± ensure thatthe non-equivarianttheory makessense.) Denote byHamb (Y±) theimageimι±⊂HCR (Y±),whereι±:Y± →X± istheinclusionmap.If τ ∈Hamb (Y±) thenthebigquantumproductτpreservestheambientpartHamb (Y±) HCR (Y±).Wecanthereforedefine aquantumconnectionontheambientpart:

=d+z1 N i=0

iτ)dτi

This is a pencilof flatconnectionsonthe trivialHamb (Y±)-bundleover anopen set in Hamb (Y±) where,as in (1.2), z C× is the pencil variable, τ Hamb (Y±) is the co- ordinateonthebaseofthebundle,φ0,. . . ,φN areabasisforHamb (Y±),andτ0,. . . ,τN are thecorresponding co-ordinatesofτ.

In§7.1belowweconstructanambientversionoftheGamma-integralstructure,which is anassignment toeachclassE intheambientpartofK-theory

(8)

Kamb0 (Y±) = imι±⊂K0(Y±)

ofaflatsections(E) forthequantum connectiononthe ambientpartHamb (Y±).This gives alattice inthe space of flat sections which is isomorphic to the ambientpart of (integral)K-theoryKamb0 (Y±).

Theorem1.4.Letϕ: Y+Y beaK-equivalencebetweentoriccomplete intersections asabove.Then:

(1) thequantumconnectionsontheambientpartsHamb (Y±)⊂HCR (Y±)becomegauge- equivalent afteranalytic continuationinτ,via agauge transformation

ΘY(τ, z) :Hamb (Y)→Hamb (Y+)

which ishomogeneousofdegree zero andregularatz= 0.If Y iscompactthen ΘY preserves theorbifold Poincarépairing;

(2) when expressedintermsoftheambientintegralstructure,thegauge transformation ΘY coincideswith theFourier–Mukaitransformation

FM:Kamb0 (Y)→Kamb0 (Y+) E→(F+)(F)(E) given bythetop trianglein(1.4).

Asbefore,Theorem 1.4isslightlyimpreciselystated:precisestatementscanbefound asTheorems 7.2, 7.9,and 7.11below.Arguingasin §1.1showsthatTheorem 1.4implies the CIT/Ruan version of the Crepant Transformation Conjecture for ϕ: Y+ Y wheneveritmakessense,with thecorresponding map

UY:Hamb(Y)→ Hamb(Y+)

betweentheambientparts oftheGiventalspacesforY± beinggivenby:

UY = (Lamb+ )1ΘYLamb

whereLamb± arethefundamentalsolutionsforthequantum connectionsontheambient partsHamb (Y±).

The proof of Theorem 1.4 relies on the Mirror Theorem for toric complete inter- sections [30], and on non-linear Serre duality [31,41,42,73],which relates thequantum cohomology of Y± to the quantum cohomology of the total space of the dual bundles E±.SinceE± istoric,itcanbe analyzedusingTheorem 1.1.

Remark 1.5. The idea of using non-linear Serre duality to analyze wall-crossing has been developed independently by Lee–Priddis–Shoemaker [59], in the context of the Landau–Ginzburg/Calabi–Yaucorrespondence.

(9)

Example 1.6.AmirrorY to thequintic3-foldarises[7,21,46]asacrepantresolutionof an anticanonicalhypersurface inX =

P4/(Z/5Z)3

.A mirrortheorem forY hasbeen provedbyLee–Shoemaker[60].ThevarietyY isaCalabi–Yau3-foldwithh1,1(Y)= 101.

TherearemanybirationalmodelsofY astorichypersurfaces,correspondingtothemany different latticetriangulationsof theboundaryofthefan polytopefor X. Theorem 1.4 implies that the quantum connections (and quantum cohomology algebras) of all of these birational models become isomorphicafter analytic continuationover theKähler modulispace(whichis101-dimensional),andthattheisomorphismsinvolvedarisefrom Fourier–Mukai transformations.

1.4. Anote onhypotheses

Since we work with T-equivariant Gromov–Witten invariants of the toric Deligne–

Mumford stacks X±, we donot needto assume thatthecoarse moduli spaces |X±| of X± are projective. Weinsist insteadthat|X±| issemi-projective,i.e. that |X±|is pro- jective overthe affinizationSpec(H0(|X±|,O)),andalso thatX± containsatleast one torus fixedpoint.These conditionsareequivalent todemandingthatX± isobtainedas theGITquotient

Cm//ωK

ofavectorspacebythelinearactionofacomplextorusK;

they ensurethatthe equivariantquantum cohomologyofX± admitsanon-equivariant limit.Inparticular,therefore,thenon-equivariantversionoftheCrepantTransformation Conjecture followsautomaticallyfromTheorem 1.1.

We do not assume, either, that the stacks X± or Y± satisfy any sort of positivity or weakFano condition; put differently, we do not impose any additional convergence hypotheses ontheI-functionsforX± andY±. Thisextrageneralityispossible because of ourhybrid formal/analytic approach, where we single out onevariable yr and ana- lytically continue inthatvariable alone. The sametechniqueallows us to describe the analytic continuation ofbig quantum cohomology (or its ambientpart),as opposed to small quantum cohomology. Ingeneral, obtainingconvergence results forbig quantum cohomology ishard.

1.5. Thehemisphere partition function

Recentlythere wassomeprogressinphysicsintheexactcomputationofhemisphere partition functionsforgauged linearsigmamodels. Hori–Romo[48] explainedwhy the Mellin–Barnes analytic continuation of hemisphere partitionfunctions shouldbe com- patible with branetransportation[47] inthe B-brane category. Inthelanguage ofthis paper,thehemispherepartitionfunctioncorrespondstoacomponentoftheK-theoretic flatsection s(E), andbranetransportationcorresponds to theFourier–Mukaitransfor- mation. Theorem 1.1 thus confirms the result of Hori–Romo. Note that the relevant equivalence betweenB-brane categoriesshoulddependonachoiceofapathofanalytic continuation, and thatthe Fourier–Mukai transformation in Theorem 1.1 corresponds to aspecificchoiceofpath(seeFig. 1).

(10)

1.6. Plan ofthepaper

Wefixnotation forequivariantGromov–Witten invariantsandequivariant quantum cohomology in §2, and introduce the equivariant Gamma-integral structure in §3. We establishnotationfortoricDeligne–Mumfordstacksin §4.In§5westudyK-equivalences ϕ:X+X oftoricDeligne–Mumfordstacksarisingfromwall-crossing,constructing global versionsof the equivariantquantum connections forX±. Weprovethe Crepant TransformationConjecture fortoricDeligne–Mumford stacks(Theorem 1.1)in §6, and theCrepant Transformation Conjecture fortoric complete intersections (Theorem 1.4) in §7.

1.7. Notation

Weusethefollowing notationthroughoutthepaper.

X denotes a general smooth Deligne–Mumford stack in §2 and §3; it denotes a smoothtoricDeligne–Mumford stackin §4and later.

T = (C×)m.

RT =HT(pt,C).

λj ∈HT2(pt,C)= Lie(T) isthecharacterofT = (C×)mgiven byprojectiontothe jthfactor, sothatRT =C[λ1,. . . ,λm].

ST isthelocalizationofRT withrespecttothesetofnon-zerohomogeneouselements.

• Z[T]=KT(pt),sothatZ[T]=Z[e±λ1,. . . ,e±λm].

μl={z∈C×:zl= 1}isacyclicgroupoforderl.

2. Equivariantquantumcohomology

InthissectionweestablishnotationforvariousobjectsinequivariantGromov–Witten theory.WeintroduceequivariantChen–Ruancohomologyin §2.2,equivariantGromov–

Witteninvariantsin §2.3,equivariantquantumcohomologyin §2.4,Givental’ssymplectic formalismin §2.5, andtheequivariantquantumconnectionin §2.6.

2.1. SmoothDeligne–Mumford stackswithtorus action

Let X be a smooth Deligne–Mumford stack of finite type over C equipped with an actionof an algebraic torus T = (C×)m.Let |X|denote the coarse moduli spaceof X and letIX denote theinertia stack |X|X ofX: apoint on IX is given by apair (x,g) withx∈X andg∈Aut(x).Wewrite

IX =v∈B

Xv

(11)

for thedecompositionof IX into connectedcomponents.Weassumethefollowingcon- ditions:

(1) thecoarsemodulispace|X|issemi-projective,i.e. isprojectiveovertheaffinization SpecH0(|X|,O)= SpecH0(X,O);

(2) all the T-weights appearing in the T-representation H0(X,O) are contained in a strictly convexconeinLie(T),andtheT-invariantsubspaceH0(X,O)T isC; (3) theinertiastack IX isequivariantly formal,thatis, theT-equivariantcohomology

HT(IX;C) is afree module over RT := HT(pt;C) and onehas a (non-canonical) isomorphismofRT-modulesHT(IX;C)=H(IX;C)CRT.

TheseconditionsallowustodefineGromov–WitteninvariantsofXandalsotheequivari- ant(Dolbeault)indexofcoherentsheavesonX.Thefirstandsecondconditionstogether implythatthefixed setXT iscompact.Thethirdconditionseemstobe closelyrelated to thefirst two,butit implies forexample thelocalization of equivariantcohomology:

therestrictionHT(IX;C)→HT(IXT;C) to theT-fixed locusisinjectiveand becomes anisomorphismafter localization(see[45]).Later weshallrestricttothecasewhereX is atoricDeligne–Mumfordstack,whereconditions(1)–(3) automatically hold,butthe definitionsinthissectionmakesense forgeneralX satisfyingtheseconditions.

2.2. EquivariantChen–Ruan cohomology

Let HCR,T (X) denote theevenpartof theT-equivariantorbifoldcohomologygroup ofChenandRuan.ItisdefinedastheevendegreepartoftheT-equivariantcohomology

HCR,Tk (X) =

v∈B:k−2ιv∈2Z

HTkv(Xv;C)

oftheinertiastackIX.ThegradingofHCR,T (X) isshiftedfromthatofHT(IX) bythe so-calledage ordegree shiftingnumber ιvQ[24];notethatweconsideronlytheeven degree classes inHT(IX). (For toric stacks,all cohomology classeson IX are of even degree.)EquivariantformalityofIX givesthatHCR,T (X) isafreemoduleoverRT.We write

(α, β) =

IX

α∪invβ, α, β∈HCR,T (X)

fortheequivariantorbifoldPoincarépairing:hereinv :IX →IX denotestheinvolution on the inertiastack IX thatsends a point (x,g) with x∈ X, g Aut(x) to(x,g−1).

SinceX isnotnecessarilyproper,theequivariantintegralontheright-handsidehereis definedviatheAtiyah–Bottlocalizationformula[3]andtakes valuesinthelocalization ST ofRT withrespecttothemultiplicativesetofnon-zerohomogeneouselements3inRT.

3 NotethatRT ST Frac(RT);weuseST insteadofFrac(RT) sinceweneedagradingonST later.

(12)

2.3. Equivariant Gromov–Witteninvariants

LetXg,n,d denote themoduli spaceof degree-dstable mapsto X from genus g orb- ifoldcurves with nmarked points [1,2]; hered∈ H2(|X|;Z). Themoduli space carries a T-action and a virtual fundamental cycle [Xg,n,d]vir A•,T(Xg,n,d;Q). There are T-equivariant evaluation maps evi: Xg,n,d IX, 1 i n, to the rigidified iner- tia stack IX (see [2]). Let ψi HT2(Xg,n,d) denote the psi-class at the ith marked point, i.e. the equivariant first Chern class of the ith universal cotangent line bundle Li Xg,n,d. For α1,. . . ,αn HCR,T (X) and non-negative integers k1,. . . ,kn, the T-equivariantGromov–Witteninvariant isdefinedtobe:

α1ψk1, . . . , αnψknX g,n,d=

[Xg,n,d]vir

n i=1

(evi αikii (2.1)

where we regard αi as a class in HT(IX) via the canonical isomorphism HT(IX) = HT(IX). Themoduli space hereisnot necessarilyproper: theright-hand sideis again definedviathe Atiyah–Bottlocalizationformula and so belongs to ST. Conditions (1) and (2) in §2.1ensurethattheT-fixedlocusXg,n,dT inthemodulispaceiscompact,and thusthattheright-handsideof(2.1)iswell-defined.

2.4. Equivariant quantumcohomology

Considerthe cone NE(X) ⊂H2(|X|,R) generated byclasses ofeffective curves and setNE(X)Z:={d∈H2(|X|,Z):d∈NE(X)}.ForaringR,define RJQKtobe thering offormalpowerserieswithcoefficientsinR:

RJQK=

⎧⎨

d∈NE(X)Z

adQd:ad∈R

⎫⎬

so thatQ is aso-called Novikov variable [62, III 5.2.1]. Let φ01,. . . ,φN be ahomo- geneousbasisforHCR,T (X) over RT andletτ01,. . . ,τN bethecorresponding linear co-ordinates.Weassumethatφ0= 1 andφ1,. . . ,φr∈HT2(X) aredegree-twountwisted classesthatinduceaC-basisofH2(X;C)=HT2(X)/HT2(pt).Wewriteτ=N

i=0τiφifor ageneralelement ofHCR,T (X).Theequivariant quantum product τ atτ ∈HCR,T (X) isdefinedbytheformula

iτφj, φk) =

d∈NE(X)Z

n=0

Qd

n! φi, φj, φk, τ, . . . , τX0,n+3,d

or,equivalently, by

(13)

φiτφj =

dNE(X)Z

n=0

Qd

n! invev3,∗

ev1i) ev2j)

n+3

l=4

evl(τ)[X0,n+3,d]vir

.

(2.2) Conditions (1) and (2) in §2.1ensurethatev3:X0,n+3,d→IX isproper,andthusthat the push-forwardalong ev3 is well-definedwithoutinverting equivariantparameters.It follows that:

φiτφj∈HCR,T (X)RT RTJτ, QK

where RTJτ,QK=RTJτ0,. . . ,τNKJQK. Theproduct τ defines anassociativeand com- mutative ring structure on HCR,T (X)RT RTJτ,QK. The non-equivariant limit of τ exists, and this limit defines the non-equivariant quantum cohomology

HCR (X)C

CJτ,QK,τ

.

Remark 2.1. The divisor equation [2, Theorem 8.3.1] implies that exponentiated H2- variables andtheNovikovvariableQplaythesamerole:onehas

iτφj, φk) =

dNE(X)Z

n=0

Qdeσ,d

n! φi, φj, φk, τ, . . . , τX0,n+3,d where τ =σ+τ with σ=r

i=1τiφi andτ =τ0φ0+N

i=r+1τiφi. TheStringEqua- tion[2,Theorem8.3.1]impliesthattheright-handsidehereisinfactindependentofτ0. 2.5. Givental’sLagrangian cone

LetST((z1)) denote theringof formalLaurentseries inz1 withcoefficientsinST. Givental’ssymplecticvectorspaceisthespace

H=HCR,T (X)RT ST((z−1))JQK equipped withthenon-degenerateSTJQK-bilinear alternatingform:

Ω(f, g) =Resz=(f(−z), g(z))dz with f,g∈ H.Thespaceisequipped withastandardpolarization

H=H+⊕ H

where

H+:=HCR,T (X)RT ST[z]JQK and H:=z−1HCR,T (X)RT STJz−1KJQK

(14)

areisotropicsubspacesforΩ.ThestandardpolarizationidentifiesHwiththecotangent bundleofH+.Thegenus-zerodescendantGromov–Wittenpotential isaformalfunction FX0 : (H+,−z1) STJQK defined on the formal neighbourhood of −z·1 in H+ and takingvaluesinSTJQK:

FX0(−z1 +t(z)) =

d∈NE(X)Z

n=0

Qd

n! t(ψ), . . . ,t(ψ)X0,n,d Heret(z)=

n=0tnzn withtn∈HCR,T (X)RTSTJQK.Leti}⊂HCR,T (X)RT ST

denotethebasisPoincarédual toi},sothat(φij)=δij.

Definition2.2 ([29,43]).Givental’s Lagrangian cone LX (H,−z1) isthegraphofthe differentialdFX0 :H+→TH+=H.Itconsistsof pointsofHoftheform:

−z1 +t(z) +

dNE(X)Z

n=0

N i=0

Qd n!

φi

−z−ψ,t(ψ), . . . ,t(ψ)

0,n+1,d

φi (2.3)

where 1/(−z ψ) in the correlator should be expanded as the power series

k=0ψk(−z)k1 inz1. Inamoreformal language,we define thenotion ofa‘point onLX’asfollows.Letx= (x1,. . . ,xn) beformalparameters.AnSTJQ,xK-valuedpoint onLX isanelement ofHJxKoftheform (2.3)with t(z)∈ H+JxKsatisfying

t(z)|Q=x=0= 0.

Itshouldbethoughtofas aformal familyofelements onLX parametrizedbyx.

Thesubmanifold LX encodesallgenus-zero Gromov–Witten invariants (2.1). It has thefollowingspecialgeometricproperties[43]:itisacone,andatangentspaceT ofLX

istangenttoLX exactlyalongzT.KnowingGivental’sLagrangianconeLXisequivalent to knowingthe dataof thequantum product τ,i.e. LX canbe reconstructedfrom τ

andviceversa.SeeRemark 2.5.

2.6. The equivariantquantum connection anditsfundamental solution Letv∈HCR,T (X).Theequivariantquantumconnection

v:HCR,T (X)RT RT[z]Jτ, QK→z−1HCR,T (X)RT RT[z]Jτ, QK isdefinedby

vf(τ) =vf(τ) +z−1v τf(τ)

(15)

where vf(τ)= dsdf(τ+sv)|s=0 isthedirectional derivative.We writei for φi and

∇f for N

i=0(if)dτi. The associativity of τ implies that the connection is flat, that is, [i,∇j] = 0 forall i, j. Let ρ denote the equivariant firstChern class (in the untwisted sector):

ρ:=cT1(T X)∈HT2(X)⊂HCR,T2 (X)

For homogeneousφ∈ HCR,T (X),we write degφ forthe age-shifted(real)degree ofφ, so thatφ ∈HCR,Tdegφ(X). The equivariant Euler vector fieldE and the grading operator μ∈EndC(HCR,T (X)) aredefinedby

E:=

m i=1

λi

∂λi

+ N i=0

1degφi 2

τi

∂τi +ρ

μ(φ) :=

degφ

2 dimCX 2

φ

(2.4)

where λ1,. . . ,λm HT2(pt) are generators of RT (see §1.7). The grading operator on HCR,T (X)RT RT[z]Jτ,QKisdefinedby

Gr(f(τ, z)φ) =

z∂z +E f(τ, z)

φ+f(λ, τ, z)μ(φ)

where φ∈HCR,T (X) and f(λ,τ,z)∈RT[z]Jτ,QK.Thequantum connectioniscompat- ible with thegrading operatorinthesense that[Gr,i]=[E,∂τ i] = (12degφi1)i, i = 0,. . . ,N. This follows from the virtual dimensionformula for the moduli space of stable maps.

Notation 2.3. Letv∈HT2(X) be adegree-two classintheuntwisted sector.The action of v on HCR,T (X) is defined by v·α = q(v)∪α, where q:IX X is the natural projection. (Thiscoincideswiththeactionofv viatheChen–Ruancupproduct.)

Considertheflatsectionequationsfor,and afundamentalsolution L(τ, z)∈EndRT(HCR,T (X))RT RT((z1))Jτ, QK determined bythefollowingconditions:

iL(τ, z)φ= 0 fori= 0, . . . , N (flatness) (2.5)

vQ

∂Q−∂v

L(τ, z)φ=L(τ, z)v

forv∈HT2(X) (divisor equation) (2.6)

(16)

L(τ, z)|τ=Q=0 = id (initial condition) (2.7) Here φ HCR,T (X) and vQ∂Q with v HT2(X) acts on Novikov variables as Qd v, dQd(itactsbyzerowhenv∈HT2(pt)⊂HT2(X)).TheflatnessequationfixesL(τ,z) uptorightmultiplication byanendomorphism-valuedfunctiong(z;Q) inz andQ;the divisorequation impliesthattheambiguity g(z;Q) isindependent ofQ andcommutes withv∪,v∈HT2(X);finallytheinitialconditionfixesL(τ,z) uniquely.Thefundamental solution satisfying these conditions can be written explicitly interms of (descendant) Gromov–Witteninvariants:

L(τ, z)φi =φi+ N j=0

d∈NE(X)Z

(n≥1 ifn=0d=0)

Qd n!

φi

−z−ψ, τ, . . . , τ, φj

X 0,n+2,d

φj (2.8)

This is defined over RT (without inverting equivariant parameters) becauseit canbe rewrittenintermsofthepush-forwardalongthelast evaluationmapevn+2 as in(2.2).

A straightforward equivariant generalizationof [41, Corollary 6.3], [66, Proposition 2], [49,Proposition2.4]gives:

Proposition 2.4. The fundamental solution L(τ,z) in (2.8) satisfies the conditions (2.5)–(2.7).Furthermore itsatisfies:

L(τ, z) = id +O(z−1) (regularity atz=) GrL(τ, z)φ=L(τ, z)

μ−ρ z

φ (homogeneity) (α, β) = (L(τ,−z)α, L(τ, z)β) (unitarity) whereφ,α,β ∈HCR,T (X).

Remark 2.5 ([43]). The fundamental solution L(τ,z) is determined by the quantum productτ viadifferentialequations (2.5)–(2.7).Thenτ →Tτ =L(τ,−z)1H+ givesa versalfamilyoftangentspacestoGivental’sconeLX.TheconeLX isreconstructedas LX =

τzTτ.

We now study -flat sections s(τ,z) that are homogeneous of degree zero:

Gr(s(τ,z)) = 0. By Proposition 2.4, if a flat section L(τ,z)f(z) is homogeneous of degreezero,then:

z

∂z+μ−ρ z

f(z) = 0

Thisdifferentialequationhasthefundamentalsolution:

Références

Documents relatifs

This conjecture can be regarded as a more precise reformulation of a conjecture of Gross and Siebert [43, Conjecture 0.2 and Remark 5.1] where they predicted that period integrals

In [4] Brion and Vergne express the Todd class in equivariant cohomology, in the case when the associated fan is simplicial, as a linear combination of products of the

The toric residue mirror conjecture of Batyrev-Materov states that this generating series is an expansion of the rational function P B ( z ) in a certain domain of values of

In particular, as observed by Danilov in the seventies, finding a closed formula for the Todd class of complete toric varieties would have important consequences for enumeration

In the spirit of a theorem of Wood [21], we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to

As a consequence of the spectral theory we develop, we answer the isospectrality question for quantum toric integrable systems, in any finite dimension: the semiclassical joint

This equivalence preserves simple equivariant perverse sheaves, so we may replace X by Xl. For the rest of this paper we assume that X is a normal toric variety,

Abstract. — We extend the usual projective Abel-Radon transform to the larger context of a smooth complete toric variety X. We define and study toric E-concavity attached to a