• Aucun résultat trouvé

ÉPREUVE COMMUNE DE TIPE - Partie D

N/A
N/A
Protected

Academic year: 2022

Partager "ÉPREUVE COMMUNE DE TIPE - Partie D"

Copied!
12
0
0

Texte intégral

(1)

ÉPREUVE COMMUNE DE TIPE - Partie D

TITRE :

Composition et décomposition d’automates temporisés

Temps de préparation : ………..….2 h 15 minutes Temps de présentation devant le jury : …….10 minutes Entretien avec le jury : ………..10 minutes

GUIDE POUR LE CANDIDAT :

Le dossier ci-joint comporte au total : 11 pages

Document principal ( 10 pages ) : composition et décomposition des automates temporisés Documents complémentaires (1 pages) : Annexe - exemple

Travail suggéré au candidat :

- Décrire le principe de fonctionnement des automates à contrainte de temps ainsi que le principe de la composition et de la décomposition de ces automates.

- Mettre en évidence, en s’appuyant sur les exemples donnés et, au besoin, en présentant d’autres exemples, l’intérêt et les limites des automates à contrainte de temps. Proposer d’autres domaines où de tels automates pourraient s’appliquer.

CONSEILS GENERAUX POUR LA PREPARATION DE L’EPREUVE :

* Lisez le dossier en entier dans un temps raisonnable.

* Réservez du temps pour préparer l'exposé devant le jury.

- Vous pouvez écrire sur le présent dossier, le surligner, le découper… mais tout sera à remettre au jury en fin d’oral.

- En fin de préparation, rassemblez et ordonnez soigneusement TOUS les documents (transparents, etc.) dont vous comptez vous servir pendant l’oral, ainsi que le dossier, les transparents et les brouillons utilisés pendant la préparation. En entrant dans la salle d'oral, vous devez être prêts à débuter votre exposé.

- A la fin de l'oral, vous devez remettre au jury le présent dossier, les transparents et les brouillons utilisés pour cette partie de l'oral, ainsi que TOUS les transparents et autres documents présentés pendant votre prestation.

(2)

&20326,7,21(7'(&20326,7,21'¶$8720$7(67(0325,6(6

1. Introduction

Les automates à états finis sont très couramment utilisés pour modéliser les systèmes réactifs. Ce type de modèles permet d'étudier l'ordre relatif des actions, comme « déclencher l'alarme après

5

toute réception d'un problème ». Mais il ne contient pas d'information quantitative sur le délai séparant deux actions consécutives. Les automates temporisés, proposé par Alur et Dill, sont une extension des automates finis classiques qui décrivent des comportements, mais à chaque action est ajouté une date, qui correspond à l'instant auquel elle a lieu. A chaque automate est associé un ensemble fini d'horloges, ces horloges étant des variables qui évoluent toutes à la même vitesse

10

(celle d'une horloge universelle externe, sur laquelle on ne peut pas agir) et pouvant être remises à zéro. On peut mettre des contraintes sur les transitions de l'automate, comme par exemple : « pour pouvoir effectuer cette transition, il faut que l'horloge [ ait sa valeur comprise entre 2 et 3 ».

Lorsque l’on étudie des systèmes réels, les modèles qui correspondent sont souvent très gros. Il est alors judicieux de les modéliser non plus par un gros automate, mais par un réseau

15

d'automates plus petits (synchronisés entre eux). On parle alors de décomposition des automates en modules de taille plus petite. Les propriétés que l'on cherche à étudier (au niveau du gros système) doivent alors être liées aux propriétés des petits systèmes.

2. Automate temporisé et générateurs contraints 2.1. mots temporisés et horloges

20

Soit = un ensemble. Notons =+ (respectivement =w) l'ensemble de séquences finies non vides (respectivement infinies) d’éléments de =, avec e pour la séquence vide, et =Š = =+ ­ =w l'ensemble de toutes les séquences non vides d’éléments de =.

Nous considérerons un domaine de temps T qui est l'ensemble des nombres entiers non négatifs … ou l'ensemble des nombres rationnels non négatifs ‰+. Une séquence de dates sur T est une

25

suite finie ou infinie de dates t = (ti)i˜1 d’éléments de T. Les actions des automates considérés sont données par un ensemble fini S. Un mot temporisé est un élément de (S™T)Š,LOpeut être vu comme un couple Z = (s,t), où s = (ai)i˜1 un mot dans SŠ et t = (ti)i˜1 une séquence de dates dans TŠ de même longueur que s. Par exemple, (a, 1.5)(b, 2)(a, p)(b, 3.9)(a, 3.9) est un mot temporisé fini, tandis que ((ab)w,(i + 1/i)i˜1) est un mot temporisé infini (avec pour m ³ =+, mw est la

30

répétition infinie de la séquence m).

(3)

La concaténation d'un mot temporisé fini u = (ai,ti)1ˆiˆn et d'un mot temporisé fini ou infini v = (a'i,t'i)1ˆi est définie si seulement si tn ˆ t'1 et est égal au mot temporisé u . v = (a''i,t''i)1ˆi avec (a''i,t''i) = (ai,ti) si 1 ˆ i ˆ n et (a''i,t''i) = (a'i-n,t'i-n) si n < i.

Soit; un ensemble de variables typées dans T, appelées horloges. Parmi les éléments de ;, nous

35

distinguons une horloge spéciale x0 qui dénotera le temps absolu.

A chaque transition de l’automate on associe un prédicat sur la valeur des horloges, appelé garde.

Les gardes (ou contraintes de temps) sur ; sont les formules définies comme suit :

œ est une garde (pas de contrainte)

œ [ ~ c et ([\ ~ c sont des gardes (avec [ et \ des horloges, c ³ T et ~ est un

40

opérateur binaire parmi { <, =, > })

œ g1¿ g2, g1¾ g2 et ½g1 sont des gardes ssi g1 et g2 sont des gardes.

L'ensemble des gardes de ; est noté Guards(;).

Une valuation des horloges de ; est une fonction a : ;“ T qui associe à chaque horloge [ une valeur du temps a([). L'ensemble de toutes les valuations d'horloge est noté T;. Si < est un sous-

45

ensemble de ;,a[< 0] désigne la valuation qui à [³< associe 0 et à [´< associe a([).

Poura valuation d’horloges, la relation de satisfaction suivante est définie, g étant une garde : a |= g Ÿ g([i/a([i)) est vraie où g([i/a([i)) désigne la valeur booléenne de g dans

lequel [i est remplacé par sa valeur a([i).

2.2. Automates temporisés et exécution

50

Un automate temporisé de Büchi défini sur S, T et ; est un quintuplet $ = (4,7,,,),5), où 4 est un ensemble fini d’états, 7²4™ [Guards(;)™ S ™3(;)] ™4 est l’ensemble des transitions (avec3(;) l’ensemble des parties de ;),,²4 est le sous-ensemble des états initiaux, )²4 est le sous-ensemble des états finaux et 5²4 est un sous-ensemble d’états répétés correspondant à une condition de Büchi, comme indiqué ci-après. Une transition a la forme (S,J,D,U,T), où J est

55

une garde, D une action de S et U²; le sous-ensemble des horloges à réinitialiser. Elle signifie que si le système se trouve dans l’état S et que la garde J est vérifiée, alors le système peut effectuer l’action D, mettre les horloges de U à zéro et aller dans l’état T.

Nous supposons que l'horloge particulière [0 n'est jamais réinitialisée.

L'ensemble de tous les automates temporisés définis sur l'ensemble d'actions S, le domaine

60

temporel T et l'ensemble des horloges ; est noté TA(S, T,;).

(4)

Afin de définir comment un mot temporisé est accepté par un automate temporisé, précisons les notions de chemin et de parcours de chemin temporisé. Un chemin dans $ est une séquence non vide, finie ou infinie, de transitions consécutives :

J D U T J D U T

T

3= £1,£ “£1, 1 ££ “£

65

où (TL-1,JL,DL,UL,TL7 pour tout L > 0. Le chemin 3 est valide (ou acceptable) s’il commence dans un état initial et, soit termine dans un état final, soit est infini et respecte une condition de Büchi : inf(3)¬5 est non vide, où inf(3) est l'ensemble d'états qui se produisent infiniment souvent dans 3.

Une exécution de l'automate selon un chemin 3 et pour une valuation d'horloge initiale a ³ T;

70

est un triplet 5 = (a, 3, (ti)i>0) où (ti)i>0 est une séquence non décroissante de dates de même longueur que 3 ; ti est l’instant où l’on a exécuté la transition TL- £gi,£“ai,riTL

. Intuitivement, cette transition peut être exécutée, seulement si la garde gi est satisfaite par la valuation de l’horloge courante, et à ce moment-là les horloges de ri sont réinitialisées. Plus précisément, la valeur de l'horloge [ au temps t se note [(t), de sorte que la valuation d'horloge au temps t puisse être écrite

75

comme le n-uplet ;(t) = ([(t))[³;. En commençant au temps t0 = a(x0) et toute horloge [ étant initialement valuée à [(t0) = a([), la valuation d'horloge au temps t est complètement déterminé par l’exécution : pour tout i  1,

ÓÒÑ ³

-

= - + - sinon

r x si i

WL [ WL WL WL [

et [(t) = [(ti-1) + t – ti-1 pour ti-1~ t < ti. De plus, nous avons besoin que ;(ti-1) + ti – ti-1 |= gi pour

80

tout i  1.

A toute exécution finie (resp. infinie) nous pouvons naturellement associer un mot temporisé fini (resp. infini), désigné comme une étiquette de 5 par

)(5) = (a1, t1)(a2, t2)…³ (S ™T)£.

Si)(5) est fini et de longueur n, nous définissons aussi la valuation d’horloge Ends(5) ³T; « à

85

la fin de 5 » de la façon suivante : Ends(5)([) =

ÓÒÑ ³ sinon

r si[ n W

[Q

Puisque nous avons posé que x0 n’est jamais réinitialisé, on a toujours Ends(5)(x0) = tn.

(5)

2.3. Automate temporisé et générateurs contraints

90

Avec cette définition, nous n’associons pas seulement un langage temporisé (i.e. un ensemble de mots temporisés) à un automate temporisé mais une famille de langages temporisés classés par les valuations initiales des horloges. Plus précisément, pour n'importe quelle valuation d'horloge a ³T;, nous définissons

/ (a) = { )(5) | 5 = (a,3,(ti)i>0) pour tout chemin 3 acceptable dans }

95

Par soucis de simplicité, nous noterons /,+ (a) pour / (a)¬ (S ™T)+ et /,Z (a) pour / (a)

¬ (S ™T)Z.

Remarque 1 : Il n'est pas difficile de prouver que pour tout automate temporisé et toute valuation d'horloge a, il existe un automate temporisé tel que / (a) = / (0), où 0 dénote la valuation d'horloge définie par 0([) = 0 pour toute horloge [.

100

La fonction Ends définie sur l’ensemble des exécutions permet aussi de définir l’ensemble des valuations d’horloges possibles après reconnaissance d’un mot temporisé fini. Précisément, pour tout mot temporisé u ³ (S ™T)+ et toute valuation initiale d’horloge a ³T;, nous posons

Ends(a,u) = {Ends(5) | 5 = (a,3, (ti)i>0)

pour les chemins possibles 3 dans tels que )(5) = u}

105

Notons que si u ´ /,+ (a), il en résulte que Ends(a,u) = «. Cette nouvelle fonction Ends peut-être vue comme une contrainte sur les mots temporisés de /,+ (a) dans la mesure où cette fonction permet de vérifier qu’un mot est dans le langage si et seulement si la valeur de la fonction appliquée au mot n’est pas vide.

Nous définirons maintenant la notion de générateur contraint comme une généralisation de ces

110

fonctions/ et Ends. Cette notion sera un outil fondamental pour la suite.

Un générateur contraint est un couple (,L) tel que

1. : T;“3((S ™T)£) Rappelons que 3(() est l’ensemble 2. L : T;™ (S ™T)+“3(T;) des parties de l’ensemble ( 3. " u ³ (S ™T)+, u ³(a)À L(a, u) ž «

115

A partir des résultats précédents, il est clair que pour tout automate temporisé , le couple (/, Ends) est un générateur contraint associé à .

(6)

Deux automates temporisés et sont dits équivalents, noté = , si leurs générateurs contraints associés ®et® sont égaux. Dans ce cas, on a en particulier / (0) = / (0).

3. Composition d’automates temporisés

120

3.1. Union

L’union de deux automates temporisés = (Q1, T1, I1, F1, R1) et = (Q2, T2, I2, F2, R2) avec Q1

¬Q2 = « est simplement l’automate temporisé + = (Q1­Q2, T1­T2, I1­I2, F1­F2, R1

­R2).

3.2. Composition

125

Le principal problème dans la composition de systèmes temporisés vient des horloges. Supposons que nous voulions concaténer deux automates temporisés et . Alors, lorsque l’automate résultant de la concaténation effectue pour la première fois une transition vers un état de , il y deux possibilités, soit réinitialiser toutes les horloges de soit au contraire ne réinitialiser aucune horloge de . Mais dans de nombreux cas, ces possibilités extrêmes ne sont pas

130

satisfaisantes. Supposons par exemple que nous voulions construire un produit complexe ayant des contraintes de temps globales et que cette construction se fasse en plusieurs parties, chacune ayant ses propres contraintes de temps. Il est alors plus naturel de permettre, dans la concaténation des automates temporisés modélisant chaque sous-système, de réinitialiser certaines horloges et pas d’autres.

135

En suivant cette idée, simple mais puissante, la concaténation de deux automates temporisés est définie en fonction d’un ensemble fixe d’horloges. Supposons que deux automates temporisés et et un ensemble d’horloges & soient donnés (avec x0 ´&). Intuitivement, la concaténation

&& est donnée par la Figure 1 (avec \ une horloge utilisée ni dans ni dans ).

J, D, U ­ {\}

L

I \ = 0, e, & := 0 L

140

Figure 1 : Automate &&

(7)

/¶XWLOLVDWLRQ G¶ –transitions n’est pas permise dans notre modèle. Néanmoins, il est facile de vérifier que && peut-être défini formellement, sans utiliser de telles transitions, de la manière suivante. Soit = (Q1, T1, I1, F1, R1) et = (Q2, T2, I2, F2, R2) avec Q1 ¬ Q2 = «. Nous considérons une copie )a de F1, disjoint de Q1 ­ Q2. Alors && est l’automate temporisé

145

(Q1­Q2­ )a,7, I1, F2, R1­R2) avec

7 = T1­T2­ {(q1, g1, a1, r1­&, aI) | f1³F1, (q1, g1, a1, r1, f1T1}

­ {(aI, g2, a2, r2, q2) | $i2³I2, (i2, g2, a2, r2, q2T2} 3.3. Itérations

150

Nous dérivons maintenant de l’opérateur de concaténation && les deux opérateurs &+ et &w qui correspondent aux itérations finie et infinie. Soit $ 47,)5 un automate temporisé et soit & un sous-ensemble d’horloges. Nous considérons une copie )a de ), disjoint de 4. Alors l’automate temporisé $&+ est défini comme suit, $&+)a 7¸,)a 5 avec

= 7­ {(T,J,D,U ­&, aI ) | I³), (T,J,D,U,IT}

155

­ {(aI ,J,D,U,T) | $L³I, (L,J,D,U,TT}

De façon similaire, l’itération infinie de $, notée $&w, est définie par $&w = 4­)a 7¸,«5

­)a où est défini ci-dessus.

3.4. Construction modulaire d’automates temporisés

Pour toute garde J ³ Guards(;) et toute action D ³ S, nous notons $dD!J l’automate simple

160

temporisé de la Figure 2. Pour toute valuation d’horloge a ³T; et tout W³T, nous notons a + W la valuation d'horloge définie pour toute horloge [ par, (a + W)([) = a([) + t. Il devient alors immédiat de vérifier que /<dD>g (a) est égal à { (D,W) | a + W |= J }.

De plus, Ends$<dD>g (a,D) = { a + W | a + W |= J }.

J,D

165

Figure 2 : Automate $dD!J

(8)

A partir des automates de base et des opérateurs de composition définis ci-dessus, nous définissons maintenant une famille modulaire d’automates temporisés.

Définition 2 : Soit Mod(S, T,;) le plus petit ensemble d’automates temporisés de TA(S, T,;), les éléments de cet ensemble sont les automates de la forme :

170

œ $dD!JD est une action de S, J ³ Guards(;) une garde sur ; et &²; un sous- ensemble d’horloges tel que x0´&.

œ $$ , $&&$, $&+ et $&w ssi $ et $ appartiennent à Mod(S, T,;)

Nous allons prouver le théorème 3 en résolvant des systèmes d’équations sur les générateurs contraints. N’étant pas sûr, a priori, que la solution est toujours un générateur contraint associé à

175

un automate temporisé, il nous faut définir certaines opérations sur les générateurs contraints.

Théorème 3 : tout automate temporisé de TA(S, T,;) est équivalent à un automate de Mod(S, T,

;).

4. Composition de générateurs contraints

Le but de cette section est d'obtenir des définitions telles que la proposition suivante se tienne.

180

Proposition 4 : Soit $ et % deux automates temporisés de TA(S, T, ;) et & ² ; un sous- ensemble d’horloges. Alors, on a :

1. $‚ + % = $

ƒ

+ %

ƒ

2. $‚&&% = $

ƒ

&& %

ƒ

3. ‚$&+ = $

ƒ

&+

185

4. ‚$&w = $

ƒ

&w

4.1 Union de générateurs contraints

Dans cette section, (, L) et ( ’, L’) sont deux générateurs contraints et & ²; est un sous- ensemble d'horloges.

L’union de (, L) et ( ’, L’), noté (, L) + ( ’, L’), est naturellement le générateur contraint

190

( ’’, L’’) où, pour toute valuation d’horloge a ³ T; et tout mot temporisé fini 4 ³ (S ™ T)+, ’’(a) = (a)­ ’(a) et L’’(a,2) = L(a,2) ­ L’(a,2).

(9)

4.2 Composition de générateurs contraints

195

Nous définissons la composition (, L)F& ( ’, L’) comme le générateur contraint ( ’’, L’’) où, pour toute valuation d’horloge a ³T; et tout mot temporisé1 fini 4³ (S ™T)+,

’’(a) = { 2.3 | X³ (a)¬ (S ™T)+ et

3³ ’(b[& := 0]) ¬ (S ™T)Š pour b ³ L(a,2) } et L’’(a,4) = { L’(b[& := 0], 3) | il existe 2³ (a)

200

avec 4 = 2.3 et b ³ L(a,2) } 4.3 Itérations de générateurs contraints

Nous définissons maintenant de façon inductive, le générateur contraint , (,L) &FL , pour i ˜ 1, par (,L)

F& = (,L) et (,L)

L+

F& = (,L)F& (,L)

FL

&

Et nous posons (,L)F+ = Si˜ 1 (,L)

FL

& .

205

Enfin, soit (, L) un générateur contraint et (1, L1) = (,L)F+ . Nous définissons (,L)Fw = ( ’’, L’’) par : pour toute valuation d’horloge a ³T; et tout mot temporisé fini 4³ (S ™T)+,

’’(a) = (1(a) ¬ (S ™ T)w) ­ { u0.u1… | il existe une séquence (ai)i˜0 de valuations d’horloges avec a0 = a pour tout i˜ 1, ui+1³(ai)¬ (S ™T)+ et ai+1³ L(ai, ui) }

Et L’’(a,4) = «.

210

Avec ces définitions, la preuve de la proposition 4 est maintenant technique mais sans difficulté majeure.

4.4 Propriétés de base

Le résultat suivant récapitule les propriétés des opérateurs F& et F+ nécessaires pour la suite.

Proposition 5 : Soient (,L), ( ’, L’) et ( ’’, L’’) trois générateurs contraints et soient &, '

215

deux sous-ensembles d’horloges. Alors, on a :

1. (,L) F& (( ’, L’) + ( ’’, L’’)) = ((,L)F& ( ’, L’)) + ((,L) F& ( ’’, L’’))

(10)

2. ((,L) + ( ’, L’)) F& ( ’’, L’’) = ((,L) F& ( ’’, L’’)) + (( ’, L’) F& ( ’’, L’’)) 3. ((,L)F& ( ’, L’)) '& ( ’’, L’’) = (,L) F& (( ’, L’) '& ( ’’, L’’))

4. (,L)F+ F& ( ’, L’) =

S

i˜1(,L) & F& ( ’, L’)

220

4.5 Equations sur les générateurs contraints

Nous considérons deux générateurs contraints (1, L1) et (2, L2) et un sous-ensemble &

d’horloges. Le lemme suivant est le résultat fondamental permettant de résoudre le système d’équations sur les générateurs contraints.

Lemme 6 : L’équation sur les générateurs contraints

225

(,L) = (1,L1) F& (,L) + (2,L2)

a pour solution unique le générateur contraint (1,L1)F+ F& (2,L2) + (2,L2).

5. Décomposition d’automates temporisés

Nous sommes maintenant prêts à prouver notre résultat principal, le théorème 3. Soit $ 47 , ) 5 un automate temporisé. Nous supposons que pour n'importe quel état T il existe des

230

sous-ensembles &T ² ; tels que pour n'importe quelle transition (T’, J, D, U, T), on a U = &T. Notez que, en remplaçant l'ensemble des états 4 par le produit cartésien 4™3(;), il est facile de transformer n'importe quel automate temporisé en automate temporisé équivalent vérifiant cette propriété. Nous proposerons maintenant un algorithme pour trouver un automate temporisé % dans Mod(S, T,;) qui soit équivalent à $.

235

Pour tous les états i, f ³ 4, nous prenons $i,f = (4, 7; {i}; {f}, «) et nous considérons le générateur contraint ‚$i, f associé à $i,f. A partir de la définition de l’exécution d’un automate temporisé (voir la section 2), il est facile de vérifier l'équation suivante

Ê

³

=³ ) I ,

$ L

® ‚$LI +L ³

Ê

,T³5‚$LT F&T ‚$TT FwT

ce qui, en terme d’automates temporisés et en utilisant la proposition 4, peut être réécrit de

240

manière équivalente en

1 Rappelons que la concaténation de deux mots temporisés est une opération partielle définie dans la section 2.1

(11)

T T T ) I , L

T L )

I , L

I

L $ F $

$

$

Ê

&

Ê

³ ³ ³

³ +

Ÿ FwT (

Par conséquent, afin de montrer que $ est équivalent à un automate de Mod(S, T,;), il suffit de prouver que pour tout T,T’³4, l'automate $T, T’ appartient à Mod(S, T,;).

Supposons maintenant que f ³ 4 soit fixé, puis que la famille des générateurs contraints (‚$TI)T

245

³4 vérifie le système d’équations sur les générateurs contraints - où d D g dénote le générateur contraint associé à l'automate temporisé de base $ dD g défini dans la section 3.4 :

‚$TI = +

Ê

TJD&TT³7 dD JU& ‚$TI si T = I

‚$TI =

Ê

TJD&TT³7 dD JU& ‚$TI sinon

Considérons maintenant un ordre arbitraire q1 < q2 < … < qn sur les éléments de 4. L'équation

250

dont le membre gauche est ‚$TQI est alors résolue, avec ‚$TQI en tant qu'inconnue, en utilisant le lemme fondamental 6 - e doit être ajouté si qn = I :

‚TQI

$ =

ÜÜÝÛ ÌÌÍË +

ÜÜÝÛ ÌÌÍË

Ê Ê

T Q³ +Q Q T ³ ž Q

Q TI T JD& T 7T T T I

TQ T 7 T

&

D J T

J $

F F D

Q

A d

Nous remplaçons alors ‚$TQI par cette formule dans les Q - 1 autres équations. Pas à pas, nous résolvons le système en utilisant le lemme 6. La dernière étape prouve que le générateur contraint

255

‚T I

$ peut être exprimé en utilisant des générateurs contraints élémentaires du type d D g, pour tout a ³ HW OHV RSérateurs de composition, ce qui revient à dire que l'automate $TI est équivalent à un automate de Mod(S, T, ;). Nous en déduisons que $TI, puis $TI , …, $TQI

sont également équivalents à un automate de Mod(S, T,;).

Finalement, pour tout T, T’ ³ 4, tout automate $TT est équivalent à un automate de

260

Mod(S, T,;), et donc en utilisant l’équation ( $ est également équivalent à un automate de Mod(S, T,;). Le théorème 3 est donc prouvé.

Cette méthode est illustrée dans un exemple de l’annexe A.

ÔÓ ÔÒ Ñ

(12)

Annexe A : exemple

265

Nous illustrons l’algorithme sur l’exemple d’automate suivant.

Figure 3 : Automate $

L’automate $ de la Figure 3 définit le système d’équations linéaires temporisées suivant :

ÔÔ Ó ÔÔ Ò Ñ

+

=

=

+ +

=

=

=

<

>

<

<

=

=

>

; D

; G

;

; F

;

; F

; E

;

; D

;

\ D

\ G

[ F [

F [ E

\

\ D [

d d

d

d d

e d

270

En utilisant l’algorithme présenté dans la section 5, on peut résoudre le système d’équations et obtenir comme solution :

( )

{ }ÜÜ

Ü Ý Û ÌÌ

Ì Í

Ë +

<

<

=

=

> + +

= D [ D\ E \ E F [ F= F [ F= \

; d e d d d

(

>

)

«+ÜÝÛ« < =

ÌÍË +

= G [ G D \ D\

= e d &d

275

Ceci définit donc une décomposition modulaire de $ en automates temporisés simples comme

D D[

$d > , $dF[<F, …

Références

Documents relatifs

Cette approche de chaînes en série doit être bien distinguée de l’approche de chaînes en parallèle pour laquelle la rupture de la chaîne qui possède le maillon le plus

Diffusion produite par les défauts microscopiques de la fibre optique, dont la taille est infime par rapport à la longueur d’onde de la lumière. Dans les fibres optiques, la

Un mot temporisé fini (resp. Si cette somme est infinie, la durée du mot est ∞. La durée d’un mot infini n’est pas forcé- ment ∞ car il y a des mots zénon... La sémantique

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Ainsi, dans le cas d'un bruit additif de faible niveau le signal pourra être recueilli de façon parfaite; ce qui n'est pas le cas pour un signal analogique

Nous présentons deux approches pour étudier ce problème : l’une est basée sur une modélisation du programme s’exécutant sur la plate-forme, l’étude des propriétés se

Dans la section 3 nous don- nons le codage de DEVS en un r´eseau de Pe- tri temporis´e TPN pour un composant atomique et le codage des s´emantiques CDEVS (Clas- sic DEVS) et

ƒ Les modèles qui ne tiennent pas compte du comportement cyclique. Ces modèles sont essentiellement destinés à l’analyse statique des programmes. ƒ Les modèles qui ne prennent