• Aucun résultat trouvé

Photon mass limits from fast radio bursts

N/A
N/A
Protected

Academic year: 2021

Partager "Photon mass limits from fast radio bursts"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: insu-01316496

https://hal-insu.archives-ouvertes.fr/insu-01316496

Submitted on 19 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Photon mass limits from fast radio bursts

Luca Bonetti, John Ellis, Nikolaos E. Mavromatos, Alexander S. Sakharov, Edward K. Sarkisyan-Grinbaum, Alessandro D.A.M. Spallicci

To cite this version:

Luca Bonetti, John Ellis, Nikolaos E. Mavromatos, Alexander S. Sakharov, Edward K. Sarkisyan-

Grinbaum, et al.. Photon mass limits from fast radio bursts. Physics Letters B, Elsevier, 2016, 757,

pp.548-552. �10.1016/j.physletb.2016.04.035�. �insu-01316496�

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Photon mass limits from fast radio bursts

Luca Bonetti

a,b

, John Ellis

c,d

, Nikolaos E. Mavromatos

c,d

, Alexander S. Sakharov

e,f,g

, Edward K. Sarkisyan-Grinbaum

g,h

, Alessandro D.A.M. Spallicci

a,b

aObservatoiredesSciencesdel’UniversenrégionCentre,UMS3116,Universitéd’Orléans,1AruedelaFérollerie,45071Orléans,France

bLaboratoiredePhysiqueetChimiedel’Environnementetdel’Espace,UMR7328,CentreNationaledelaRechercheScientifique,LPC2E,CampusCNRS,3AAvenue delaRechercheScientifique,45071Orléans,France

cTheoreticalParticlePhysicsandCosmologyGroup,PhysicsDepartment,King’sCollegeLondon,Strand,LondonWC2R2LS,UnitedKingdom dTheoreticalPhysicsDepartment,CERN,CH-1211Genève23,Switzerland

eDepartmentofPhysics,NewYorkUniversity,4WashingtonPlace,NewYork,NY10003,UnitedStates fPhysicsDepartment,ManhattanCollege,4513ManhattanCollegeParkway,Riverdale,NY10471,UnitedStates gExperimentalPhysicsDepartment,CERN,CH-1211Genève23,Switzerland

hDepartmentofPhysics,TheUniversityofTexasatArlington,502YatesStreet,Box19059,Arlington,TX76019,UnitedStates

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received5March2016

Receivedinrevisedform30March2016 Accepted17April2016

Availableonlinexxxx Editor:G.F.Giudice

Wededicatethispapertothememoryof LevOkun,anexpertonphotonmass

The frequency-dependenttimedelaysinfastradiobursts(FRBs) canbeused toconstrain thephoton mass,iftheFRBredshiftsareknown,butthesimilaritybetweenthefrequencydependencesofdispersion duetoplasmaeffects and aphoton masscomplicatesthederivationofalimitonmγ.Thedispersion measure (DM)ofFRB150418 isknownto∼0.1%, andthereis aclaim tohavemeasureditsredshift withanaccuracy of∼2%,butthestrengthoftheconstraintonmγ is limitedbyuncertainties inthe modellingofthehostgalaxyandtheMilkyWay,aswellaspossibleinhomogeneitiesintheintergalactic medium (IGM). Allowing for theseuncertainties,the recent data on FRB150418 indicatethat mγ 1.1014eV c2(3.1050kg),ifFRB150418indeedhasaredshiftz=0.492 asinitiallyreported.

Inthe future,thedifferentredshiftdependencesoftheplasmaandphoton masscontributionstoDM canbeusedtoimprovethesensitivitytomγ ifmoreFRBredshiftsaremeasured.Forafixedfractional uncertainty inthe extra-galactic contribution tothe DMof anFRB, one withalower redshiftwould providegreatersensitivitytomγ.

©2016PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

When setting an upper limit on the photon mass, the Parti- cleDataGroup (PDG)[1]cites theoutcome ofmodelling theso- larsystemmagneticfield:firstat1 AU,mγ<5.1017eV c2 (=1052kg)[2,3], and later at 40 AU, mγ<8.1019eV c2 (=1.1054kg)[2].However,thelaboratoryupperlimitisfour orders of magnitude larger [4]; for reviewssee [5,6]. In [6], the authors state the concern that “Quotedphoton-masslimitshaveat timesbeenoverlyoptimisticinthestrengthsoftheircharacterizations.

Thisisperhapsduetothetemptationtoasserttoostronglysomething one‘knows’tobetrue”. Thisconcernwas mainlyaddressedto the galacticmagneticfield modellimits[7],butitshouldbebornein mindalsowhenassessingthesolarsystemlimits.

Indeed,theestimateson thedeviations fromAmpère’s lawin thesolarwind[2,3]arenotbasedsimplyoninsitumeasurements.

Forexample: (i) the magnetic field is assumedto be exactly, al-

E-mailaddress:alexandre.sakharov@cern.ch(A.S. Sakharov).

waysandeverywherea Parkerspiral;(ii)the accuracyofparticle data measurements from, e.g., Pioneer or Voyager, has not been discussed; (iii) there is no error analysis, nor data presentation, instead; (iv)there is extensive useof a reductioadabsurdum ap- proachbased onearlier resultsofother authors, whichare often devotedtoother issuesthanestablishingabasisforanextremely difficultmeasurementofamassthatismanyordersofmagnitude lowerthanthatofanelectronoraneutrino.

In order to check theseestimates of the solar wind at 1 AU, a more experimental approach has beenpursued via a thorough analysis of Cluster data [8], leading to a mass upper limit lying between 1.1049 and 3.1051kg, according to the esti- mated potential. The difference between the results of this con- servativeapproachandpreviousestimates,aswellastheneedfor astrophysical modelling, motivates the development of additional methodsforconstrainingthephotonmass.

The time structures of electromagnetic emissions from astro- physicalsourcesatcosmologicaldistanceshavebeenusedtocon- strain other aspects ofphoton/electromagnetic wave propagation, http://dx.doi.org/10.1016/j.physletb.2016.04.035

0370-2693/©2016PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(3)

JID:PLB AID:31900 /SCO Doctopic: Theory [m5Gv1.3; v1.175; Prn:20/04/2016; 12:02] P.2 (1-5)

2 L. Bonetti et al. / Physics Letters B•••(••••)••••••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

sucha possibleLorentz-violatingenergy/frequencydependenceof thevelocityoflightinvacuo[9–13],andthepossibilityofdisper- sion in photon velocities of fixed energy/frequency, as suggested by some models of quantum gravity and space–time foam [14, 15]. Similarly, the gravitational waves recently observed by Ad- vancedLIGOfromthe sourceGW150914havebeen usedto con- strainaspectsofgraviton/gravitationalwavepropagation,including an upper limit on the graviton mass: mg<1.1022eV c2 (=2.1058kg) [16,17] and limits on Lorentz violation [18, 19],andthepossibleobservationby Fermiofanassociated

γ

-ray pulse [20] suggests that light and gravitational waves have the samevelocitiestowithin1017[18,21].

The time structures of electromagnetic emissions from astro- physicalsourcesatcosmologicaldistancescanalsobeusedtode- riveanupperlimitonthephotonmass,.Sincetheeffectofthe photonmassonthevelocityoflightisenhancedatlowfrequency

ν

(energy E): v∝ −m2γc4/h2

ν

2 (−m2γc4/E2), measurements of timestructuresatlow frequencyorenergyare particularlysensi- tiveto.Forthisreason,measurementsofshorttimestructures inradio emissionsfromsources atcosmologicaldistancesare es- peciallypowerfulforconstraining.Thisistobecontrastedwith probes ofLorentz violation, forinstance,where measurements of high-energyphotonssuchas

γ

raysareatapremium.Thisiswhy probesofthephotonmassusinggamma-raybursters (GRBs)[22]

and active galactic nuclei (AGNs) have not been competitive in constraining.As wementionlater,a strongerlimitcanbe ob- tainedbyusingtheapparentcoincidenceofaradioafterglowwith aGRB,butthisisalsonotcompetitivewiththesensitivityoffered byfastradiobursts(FRBs).

FRBsarepotentiallyveryinterestingbecausetheirradiosignals havewell-measuredtimedelaysthatexhibitthe1/

ν

2 dependence expectedforboththefreeelectrondensityalongthelineofsight andmasseffectsonphotonpropagation. Untilrecently,thedraw- backwasthatnoFRBhadhaditsredshiftmeasured,thoughthere wasconsiderableevidencethattheyoccurredatcosmologicaldis- tances. This has now changed with FRB150418 [23], which has beenreportedtohaveoccurredina galaxywithawell-measured redshiftz=0.492±0.008.Theidentificationofitshostgalaxyhas been questioned, andthe alternative possibility of a coincidence withan AGNflarehas beenraised [24], though thelikelihood of thisiscurrentlyanopenquestion[25].Inthefollowingweassume thehostgalaxyidentificationmadein[23],andalsodiscussmore generallyhownon-galacticFRBscouldbeusedtoconstrainphoton propagation.

Thefrequency-dependenttimelagofFRB150418 betweenthe arrivalsofpulseswith

ν

1=1.2 GHz and

ν

2=1.5 GHz ist12FRB≈ 0.8 s,andwas usedin [23]to extractvery accurately thedisper- sion measure (DM), which is given in the absence of a photon massbytheintegratedcolumndensityoffreeelectronsalongthe propagation path of a radio signal,

nedl. The delay of an elec- tromagneticwavewithfrequency

ν

propagatingthroughaplasma withanelectrondensityne,relativetoasignalinavacuum,makes the following frequency-dependent contribution to the time de- lay[26,27]

tDM

=

dl

c

ν

p2

2

ν

2

=

415

ν

1 GHz

2 DM

105pc cm3 s

,

(1) where

ν

p =(nee2/

π

me)1/2=8.98·103n1e/2Hz. As is discussed in[23],plasma effects withDM=776.2(5)cm3pc could bere- sponsiblefortheentiretFRB12 thatwasmeasured.1 Therearecon-

1 In[23]adifferentmethodhasbeenusedtoobtaintheDMvalue.However,for thisletteritisenoughtocomparethearrivaltimesofthesetwofrequencies,which reproducesquiteaccuratelytheresultof[23].

tributions to the DM of this extragalactic object from the free electrondensityinthehostgalaxy,estimatedtobe∼37 cm3pc, from the Milky Way and its halo, estimated to be 219 cm3pc, and the intergalactic medium (IGM). Subtracting the other con- tributions, the IGM contribution to the DMwas estimated to be 520 cm3pc, with uncertainties ∼38 cm3pc from the mod- elling of the Milky Way using NE2001 [28]2 and∼100 cm3pc frominhomogeneitiesintheIGM. TheDMIGM contributiontothe dispersiondelay(1)forasourceatredshiftzcanbeexpressedin termsofthedensityfractionIGMofionizedbaryons[26]:

DMIGM

=

3c H0

IGM 8

π

Gmp

He

(

z

) ,

(2)

where H0 isthepresentHubbleexpansionrate, G isthe Newton constant,mp istheprotonmass,andthefactor

He

(

z

)

z

0

(

1

+

z

)

dz

+ (

1

+

z

)

3

m

,

(3)

takes proper account of the time stretching in (1) and evolu- tion of the free-electron densitydue to the cosmological expan- sion [26,27,10,30].The relation (2)was used in [23] to estimate thedensityofionizedbaryonsintheIGM:FRBIGM=0.049±0.013, assuming that the heliumfraction inthe IGMhas thecosmolog- ical value of 24%. We also assume that the presentcosmological constantdensityfraction=0.714 andthepresentmatterden- sity fraction m=0.286, andset the reduced Hubble expansion rate, h0H0/(100 km s1Mpc1=0.69 [31]. This measurement ofIGMisquitecompatiblewiththedensityexpectedwithinstan- dardCDMcosmology[31]:IGMCDM=0.041±0.002.

The measurement of t12FRB can also be used to constrain the photonmass.Forthispurpose,wenotethatthedifferenceindis- tancecoveredbytwoparticlesemittedbyan objectataredshift zwithvelocitydifferenceu is

L

=

H01

z

0

udz

+ (

1

+

z

)

3

m

.

(4)

In case of the cosmologicalpropagation of two massive photons withenergies E2>E1thevelocitydifferenceis

u

=

m

2γ 2

(

1

+

z

)

2

1 E21

1

E22

,

(5)

wheretheredshiftsofthephotonenergiesaretakenintoaccount andwe useunits:h¯ =c=k=1.Thus, differenceinarrival times of two photonsof differentenergies froma remote cosmological objectduetoanon-zerophotonmasscanbeparametrizedasfol- lows:

tlag

=

m

2γ

2H0

·

F

(

E1

,

E2

) ·

Hγ

(

z

) +

tDM

+

bsf

(

1

+

z

) ,

(6) where F(E1,E2)E12

1E12 2

,

Hγ

(

z

)

z

0

dz

(

1

+

z

)

2

+ (

1

+

z

)

3

m

,

(7)

and we include in (6) the contribution tDM to the time delay due to plasma effects anda possible, generally unknown, source

2 ForlimitationsofNE2001,see[29].

(4)

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

time lag bsf in the source frame. Inverting (6)and transforming to experimental units FGHz(1 GHzν1 ,1 GHzν2 ) and expressingall time measurementsinsecondswearriveat

mγ

= (

1

.

05

·

1014eV s1/2

)

×

h0

FGHzHγ

(

tlag

tDM

bsf

(

1

+

z

)) .

(8) Themostconservativebound

mγ

<

2

.

6

×

1014eV c2

(

4

.

6

×

1050kg

)

(9) wouldbe obtained ifthe entireDM ofFRB 150418 were due to =0, i.e., tlagt12FRB, tDM=0 and bsf=0 in (8). How- ever,this approach is probablytoo conservative, anda very rea- sonable assumption would be to subtract from the DMFRBIGM the IGMcontributioncorresponding toIGMCDM.Inthiscase, sincethe 95% CL estimate of the IGM dispersion measure is DMFRBIGM(2σ) 520±(2·138)cm3pc[23],oneshould assume,accordingto(2) and (1), that tlag 0.82 s at the 95% CL, tDM0.45 s and bsf=0 in(8).Inthiscase,onewouldfind

mγ

<

1

.

8

×

1014eV c2

(

3

.

2

×

1050kg

)

(10) atthe 95% CL.3 Thesebounds are much stronger than thoseob- tainedfromGRBs[22] andAGNs,andaregettingwithin shouting distanceofthePDGlimit[2,1,3].We regardthisasthemostrea- sonableinterpretationofthedataonFRB150418.

Thequestionthenarises,howmuchtheFRBlimitcouldbeim- provedinthefuture?

The DMof FRB150418 hasbeen measured with an accuracy of0.1%,buttheuncertaintiesinsubtractingthecontributionsfrom the host galaxy, the IGM andthe MilkyWay amount to >20%.

Inparticular,uncertaintiesassociatedwithinhomogeneitiesinthe IGM approach 20%, dwarfing uncertainties associated withIGM, which approach 5%, and in modelling the Milky Way [28,29], whichexceed 5%.We doubt that the corresponding uncertainties forotherFRBscouldsoonbe reducedtothe0.1%leveloftheFRB 150418DMmeasurement,andconsiderthataplausibleobjective may be to constrain the sum of DMIGM and a possible photon- masseffectforanygivenFRBwithan accuracyof10%.4 Oneway to improvethe sensitivity to maybe to use datafrom FRBs atdifferentredshifts. As we discussbelow, therelative contribu- tionsoftheIGMandaphotonmassvarywiththeredshiftz,and the sensitivity to is greater for FRBs with smaller redshifts.

Ahypothetical10%measurements ofthenon-hostandnon-Milky WaycontributionstotheDMofaFRBwithz=0.1 wouldyielda prospectivesensitivityto=6.1015eV c2(1.1050kg).

Asalreadycommented,thefrequencydependencesoftheIGM and effects, Eqs. (1) and(8), are similar, butthe degeneracy betweenthemisbrokenbythedifferentzdependencesof He (3) and (7).Inparticular, wenote the effectgainsinrelative moreimportance atsmaller z because ofthe difference between thepowersof(1+z)intheintegrandsofHeand.Inpractice, ifin thefutureastatistically relevantsample ofFRBsatdifferent redshiftsisobservedonemightusetheparametrization(6)tore- covertheintrinsictimelagofeverysourcefromthesampleas

bisf

=

1

(

1

+

zi

) (

aiγ

·

F

(

E1

,

E2

) ·

Hγ

(

z

) +

tiDM

tilag

) .

(11)

3 Similarboundsweregivenin[32],whichwereceivedwhileworkingonthis paper.

4 Inthisrespectweareconsiderablylessoptimisticthantheauthorsof[32].

Fig. 1.The (mγ,IGM)plane,showingasathinhorizontal redbandthe CDM expectationthatIGM=0.041±0.002,acurvedgreyshadedbandrepresentingthe FRB150418constraintasdiscussedinthetext,andotherbandsrepresentingthe impactsofhypotheticalfuture10%measurementsoftheextragalacticDMforFRBs withredshiftsz=0.1 (greenandmauve)andz=1.0 (blue).(Forinterpretationof thereferencestocolorinthisfigure,thereaderisreferredtothewebversionof thisarticle.)

AssumingidenticaloriginsfortheFRBs,onecouldoptimizetheset ofbisfwithrespecttoaiγ andiIGM(tiDM),separatingthenon-zero photon mass contribution out from the plasma effect. The opti- mizationcanbeperformedonabasisofsomeestimator:asimple onecouldbejustaminimizationoftheRMSofbisf.5

As discussed above,we consider that future measurements of thenon-hostgalaxyandnon-MilkyWaycontributionstotheDMs ofotherFRBsatthe10%levelmaybe feasibleobjectives.Accord- ingly, we have made a first assessment of their possible future impacts on the photon masslimit. Fig. 1 displays an (mγ,IGM) plane, featuringasa thinhorizontalbandthe CDMexpectation thatIGMCDM.Theothercurveshavetheforms

mγ

=

A

B

C (12)

that follows from (8), where A is a numerical pre-factor deter- mined by the factor Hγ(z) of an object, the term B represents anobservedtimelagintermsofintergalacticDM

B

= (

103

.

1 s

) ·

DM

obs IGM

105pc cm3 (13)

andC definesthefractionofanactualcontributionoftheionized plasmaeffecttotheobservedtimelagrelativetothepredictionof thestandardCDM modelforagivenobject

C

=

tIGM

·

IGM

IGMCDM

.

(14)

The curves in Fig. 1 assume an ionization fraction 0.9 but al- low IGM to be a free parameter. The curved grey shaded band shows the FRB 150418 constraint discussed above, at the 68%

CL,whichimplies A=2.96·1014eV s1/2,DMobsIGM=DMFRBIGM and tIGM=0.45 s. The intersectionof thisband with the IGM=0 axiscorrespondstothe(overly?)conservative95%CLlimit(9)and itsintersectionwiththeCDMbandforIGM correspondstothe

‘reasonable’95%CLbound(10).

TheFigurealsodisplaysotherbands,showingthepotentialim- pacts ofhypothetical 10% measurements of the extragalactic DM

5 Avariantofsuchalgorithmhasbeenusedin[34]forneutrinomassestimations fromasupernovasignal.

(5)

JID:PLB AID:31900 /SCO Doctopic: Theory [m5Gv1.3; v1.175; Prn:20/04/2016; 12:02] P.4 (1-5)

4 L. Bonetti et al. / Physics Letters B•••(••••)••••••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

for FRBs with redshift z=0.1 (green and mauve) and z=1.0 (blue).6 The hypothetical z=0.1 green band has the same cen- tral value as expected for IGMCDM and a massless photon, for which case A=1.97·1014eV s1/2, DMobsIGM=83 pc cm3 and tIGM=0.086 s havebeen used in (13) and (14).7 The z=1.0 blue band has been calculated with A=4.60·1014 eV s1/2, DMobsIGM=903 pc cm3andtIGM=0.94 s appliedin(13)and(14).

Thehypotheticalz=0.1 mauvebandhasthesameupperlimiton IGM astheFRB150418 measurementanddiffersfromthegreen oneinhavingDMobsIGM=103 pc cm3 usedin(13)and(14).Asex- pected, we see that a 10% measurement of an FRB with z=0.1 yielding theexpectedcentral value (greenband) wouldimposea morestringentconstrainton,namely

mγ

<

6

.

0

×

1015eV c2

(

1

.

1

×

1050kg

) .

(15) ifone(veryconservatively)allowsanyIGM0,strengtheningto

<1015eV c2 forIGMCDM. Alternatively,we see thatconsis- tency of the green band with the FRB 150418 constraint would requiremγ<2.1015eV c2,withoutanyassumptiononIGM. We also see that consistency between a ‘high’ measurement froman FRB with z=0.1 (mauve band)and an ‘expected’ mea- surementfromanFRBwithz=1.0 (blue band)wouldbeconsis- tentwithIGMCDM onlyifonerequiresanon-zero∈ [2.5,4.0]× 1015eV c2. These are just examples of possible future develop- ments in the interpretation of possible DM measurements from futureFRBswithmeasuredredshifts, andspecificallyhow theef- fectsoftheIGM anda photonmass could inprinciplebe distin- guished.Significantimprovementsontheseestimatedsensitivities wouldrequiremorecarefulestimatesofpossiblereductionsinthe uncertainties in DMIGM, in particular, and would benefit from a combinedanalysisofalargernumberofFRBs.

Forcompleteness, we mention anotherway to bound us- ingradioemissions,namelybycomparingthe arrivaltimeofradio afterglow and

γ

-ray emission from a GRB. The most promising exampleseemstobeGRB 071109whichwasobserved[33]toex- hibit a radio afterglow at 8.46 GHz about0.03 d after its

γ

-ray emission.8 Although the redshift of this GRB was not measured, assuming that its redshift lies within the range z∈ [0.1,5], we findanupperlimit onthephotonmass2.1011eV c2 (=5.1047kg).9 The weakness ofthe limit comparedto the FRBlimit discussed earlier is dueto the much larger time delay beforethe observationofthe radioafterglow. Whilst thislimitis not competitive withthe FRBlimit givenabove or thelimit cur- rently quoted by the PDG, this GRB afterglow method has the interest of involving a different type of astrophysical modelling.

Moreover,ithaspotentialforfutureimprovement,e.g.,ifonecould uselower-frequencywavesand/orobserveanafterglowsooneraf- tertheparentGRB,andparticularlyiftime structureintheradio emissionsanalogoustothoseinthe

γ

-rayemissionscouldbede- tected.

We finish our discussion with come comments and specula- tions.Thepresentlackofredshiftmeasurementsforother FRBsis anobstacleforobtainingamorerobustupperbound onthepho- ton mass. However, one could also reverse the logic used above forFRB150418 and, assumingthe expectedcosmologicaldensity oftheIGMandtheupperlimitonthephotonmassderived from

6 ThelowluminositiesofFRBswouldrenderthemdifficulttodetectatlargerz.

7 Forallhypotheticalsourcesa10%uncertainty inDMobsIGMisapplied.

8 OtherGRBshavelesssensitivity,becausetherewerelargerdelaysbeforetheir afterglowsweredetected.

9 Hereweassumesimultaneousemissionoftheradiowavesandγ rays,which maynotbethecase.Iftheradiowaveswereemittedbeforetheγrays(foreglow), anydelayduetothephotonmasswouldbemaskedbytheearliertimeofemission.

FRB 150418,estimate the redshifts ofother observed FRBs.Their redshift distribution might help pin down their origins. Another optionwouldbetousegravitationallensing,whichwouldbecome frequency dependent in the presence of a photon mass [5]. The lensingisindependentofthedistancefromthesource,andapho- ton of mass and energy E froma source of mass M would be gravitationallydeflectedby an angleθ= 4MRc2G

1+m2E2γc24

γ

,for aphoton ofenergy E (orfrequency

ν

=E/h), whereR isthesize of the celestial body and G is the gravitational constant. In [5], thephoton-massdeflectionθ wassetequaltothedifferencebe- tween the value observedforsome celestial object,e.g., theSun, andthestandardtheoreticalcaseformasslessphoton,therebyob- taining anupper boundh

ν

c2

2θ/θ0,where θ0=4MRc2G

is the standard massless photon deflection. Limits of the order of 1044 kg can be obtained this way. Conversely, using upper bounds ofthe photon mass obtainedfrom other methods liketheFRBsdiscussedherewouldremoveoneuncertaintyinthe predictions for expecteddeflection angles, sharpeningthe use of comparisons with observationsto constrain better the properties oflensingobjects.

Acknowledgements

The research of JE and NMwas supported partlyby the Lon- don Centre for Terauniverse Studies (LCTS), using funding from theEuropeanResearchCouncilviatheAdvancedInvestigatorGrant 26732,andpartlybytheSTFCGrantST/L000326/1.JEthanksDale FrailforusefulcommunicationsandtheUniversidaddeAntioquia, Medellín, for its hospitality while this work was initiated, using GrantFP44842-035-2015fromCOLCIENCIAS (Colombia).Thework ofASwassupportedpartlybytheUSNationalScienceFoundation underGrantsNo. PHY-1205376andNo. PHY-1402964.

References

[1] K.A. Olive, et al., Particle Data Group Collaboration, Review of particle physics,Chin.Phys.C38(2014)090001,http://dx.doi.org/10.1088/1674-1137/

38/9/090001.

[2] D.D.Ryutov,Theroleoffinitephotonmassinmagnetohydrodynamicsofspace plasmas,PlasmaPhys.Control.Fusion39(1997)A73,http://dx.doi.org/10.1088/

0741-3335/39/5A/008.

[3] D.D.Ryutov,Usingplasmaphysicstoweighthephoton,PlasmaPhys.Control.

Fusion49(2007)B429,http://dx.doi.org/10.1088/0741-3335/49/12B/S40.

[4] E.R.Williams,J.E.Faller,H.A.Hill,NewexperimentaltestofCoulomb’slaw:a laboratoryupperlimitonthephotonrestmass,Phys.Rev.Lett.26(1971)721, http://dx.doi.org/10.1103/PhysRevLett.26.721.

[5] D.D. Lowenthal, Limits on the photon mass, Phys. Rev. D 8(1973) 2349, http://dx.doi.org/10.1103/PhysRevD.8.2349;

L.C.Tu,J.Luo,G.T.Gillies,Themassofthephoton,Rep.Prog.Phys.68(2005) 77,http://dx.doi.org/10.1088/0034-4885/68/1/R02;

L.B.Okun, Photon: history,mass, charge, Acta Phys. Pol.B 37(2006) 565, arXiv:hep-ph/0602036;

G.Spavieri,J.Quintero,G.T.Gillies,M.Rodriguez,Asurveyofexistingandpro- posedclassicalandquantumapproachestothephotonmass,Eur.Phys.J.D61 (2011)531,http://dx.doi.org/10.1140/epjd/e2011-10508-7.

[6] A.S.Goldhaber,M.M.Nieto,Photonandgravitonmasslimits,Rev.Mod.Phys.

82(2010)939,http://dx.doi.org/10.1103/RevModPhys.82.939,arXiv:0809.1003 [hep-ph].

[7] Y.Yamaguchi,Acompositetheoryofelementaryparticles,Prog.Theor.Phys.

Suppl.11(1959)1,http://dx.doi.org/10.1143/PTPS.11.1;

G.V.Chibisov,Astrophysicalupperlimitsonthephotonrestmass,Sov.Phys.

Usp. 19 (1976) 624, http://dx.doi.org/10.1070/PU1976v019n07ABEH005277, Usp.Fiz.Nauk119(1976)551;

E.Adelberger,G. Dvali,A. Gruzinov,Photon-mass bounddestroyed byvor- tices,Phys.Rev.Lett.98(2007)010402,http://dx.doi.org/10.1103/PhysRevLett.

98.010402,arXiv:hep-ph/0306245.

[8] A.Retinò,A.D.A.M.Spallicci, A.Vaivads,Solar wind testofthe deBroglie–

Proca’smassivephotonwithClustermulti-spacecraftdata,versionfromFebru- ary2016,arXiv:1302.6168v3[hep-ph].

Références

Documents relatifs

- staticLex(makespan, workers, decalages) (i) - staticLex(makespan, decalages, workers) (ii) - staticLex(workers, makespan, decalages) (iii) - staticLex(workers,

The photon is generally expected to be massless, but a num- ber of theorists have challenged this assumption, starting from de Broglie and nowadays considering models with

By this, we mean the process of producing from time series of total power in a large number of narrow frequency channels, time series of total power over a large range of DM

– If we take into consideration a long observation period for a given frequency f i not dominated by any terrestrial emit- ter (using an interval of 7 h of duration), the

The single z LSV shift from a single SNIa may be small or large, red or blue, depending on the orientations of the LSV (vector or tensor) and of the EM fields (host

Mafic eclogites from the Arbole region exhibit complex deformation associated to fluid-rock interactions that occurred under eclogite-facies conditions during Alpine subduction.. A

In France, a game called carom is played, where only 3 balls are used on a pocket-less table, and the player must attempt to contact both object balls with the cue ball.. In the

However, we found similar global behavioural responses to the stimulation for both stimulation sites, showing that the muscle responses of all muscles involved in the force control