• Aucun résultat trouvé

Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece)

N/A
N/A
Protected

Academic year: 2021

Partager "Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece)"

Copied!
27
0
0

Texte intégral

(1)

HAL Id: insu-01293235

https://hal-insu.archives-ouvertes.fr/insu-01293235v2

Submitted on 13 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License

Vincent Roche, Valentin Laurent, Giovanni Luca Cardello, Laurent Jolivet, Stéphane Scaillet

To cite this version:

Vincent Roche, Valentin Laurent, Giovanni Luca Cardello, Laurent Jolivet, Stéphane Scaillet.

Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece). Journal of Geody-

namics, Elsevier, 2016, 97, pp.62-87. �10.1016/j.jog.2016.03.008�. �insu-01293235v2�

(2)

Contents lists available atScienceDirect

Journal of Geodynamics

j o u r n a l h o m e p a g e :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / j o g

Anatomy of the Cycladic Blueschist Unit on Sifnos Island (Cyclades, Greece)

Vincent Roche

a,b,c,∗

, Valentin Laurent

a,b,c

, Giovanni Luca Cardello

a,b,c

, Laurent Jolivet

a,b,c

, Stéphane Scaillet

a,b,c

aUniversitéd’Orléans,ISTO,UMR7327,45071Orléans,France

bCNRS/INSU,ISTO,UMR7327,45071Orléans,France

cBRGM,ISTO,UMR7327,BP36009,45060Orléans,France

a r t i c l e i n f o

Articlehistory:

Received11December2015

Receivedinrevisedform11March2016 Accepted17March2016

Availableonlinexxx

Keywords:

High-pressureandlow-temperature metamorphism

Syn-orogenicexhumation Post-orogenicextension Strainlocalization Sifnos

Aegeandomain

a b s t r a c t

Since35Ma,thekinematicsoftheAegeandomainhasbeenmainlycontrolledbythesouthwardretreat oftheAfricanslab,inducingback-arcextension.Themainstructuresandassociatedkinematicsarewell constrained,butthekinematicsofdeformationbefore35Ma,coevalwiththeexhumationofblueschists andeclogitesoftheCycladicBlueschistUnit,isstillpoorlyunderstood.TheearlierEocenesyn-orogenic evolutionisstronglydebatedandverydifferentgeometricalinterpretationsandkinematichistorieshave beenproposedintheliterature.Thisstudyfocusesonthehigh-pressureandlow-temperature(HP-LT) paragenesesspectacularlyexposedandwellpreservedonSifnosIsland.Thenewfieldworkprovidesnew structuralconstraintsonthetectonichistoryofHP-LTunitsgeneratedinthesubductionzoneduringthe Eocene.Itfurthershowshowlithologicalheterogeneitieslocalizestrainwithinanaccretionarywedge andhowthelocalisationofstrainevolvesthroughtimeduringexhumation.Weshow,throughnew geologicalandmetamorphicmaps,cross-sectionsandanalysesofkinematicindicators,thatSifnosis characterizedbyshallow-dippingshearzonesreactivatingweakzonesduetocompetencecontrastsor earliertectoniccontacts.Structuresandkinematicsassociatedwiththeseshearzones,showatop-to- the-Nto−NEductiledeformation.Thelowerpartofthetectonicpileshowsadownwardgradientof shearingdeformationandisactuallyathicktop-to-the-NEshearzone,whichwenametheApollonia ShearZone.Throughtimeshearingdeformationtendstolocalizedownward,leavingtheupperpartof thesubductioncomplexpreservedfromlatedeformation.Thepresent-dayshapeandtopographyofthe islandislargelycontrolledbylatebrittlefaultsreworkingtheearlierductileshearzones.Comparingwith thenearbyislandofSyros,weproposeanewtectono-metamorphicevolutionoftheCycladicBlueschist Unit,whichpartlyexplainsthedifferentdegreesofretrogressionobservedontheCycladicIslands.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Theexposureofhigh-pressureand low-temperature(HP-LT) metamorphicrocksresultsfromtheexhumationofmaterialburied alongtheplateinterfaceinsubductionzones.Partoftheexhuma- tioncanbeachievedduringsubductionindifferentways:1)by decouplingofcrustalunitsofvariablethicknessfromthesubduct- inglithospherewithintheplateinterface(Chemendaetal.,1995;

Jolivetetal.,2005;BrunandFaccenna,2008;Agardetal.,2009;

JolivetandBrun,2010;Ringetal.,2010;Tireletal.,2013);2)by

∗Correspondingauthorat:Universitéd’Orléans,ISTO,UMR7327,45071Orléans, France.

E-mailaddress:v.roche@brgm.fr(V.Roche).

circulationofweakmaterialwithinathickaccretionarycomplex (cornerflowmodel);3)inthesubductionchannel(Englandand Holland,1979;ShreveandCloos,1986;Platt,1993;Burovetal., 2001Geryaetal.,2002).Themaindifferencebetweenthedifferent typesofmodelsisthedegreeofstrainlocalization.Thesubduction channelconceptishighlyvariableintheliterature,fromtheini- tialsimpledoublecirculationmodelinthespaceleftbetweenthe twoplates(EnglandandHolland,1979;ShreveandCloos,1986)to moresophisticatedmodelswithseverallevelsofcirculationlikein Burovetal.(2001).Thistypeofmodelsdoesnotshowthedetails ofhowtectonicunitsarefinallydecoupledfromthesubducting plateand itonly suggestsexhumation fromlargedepthin low viscositymaterial,whichimpliesdistributeddeformation inthe channel.Othermodels,basedondecouplingofcrustalunitsofvari- ablethicknessfromthesubductinglithosphere(Chemendaetal.,

http://dx.doi.org/10.1016/j.jog.2016.03.008

0264-3707/©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(3)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.1.TectonicmapoftheAegeandomain.

TectonicmapoftheAegeandomainandschematicgeologicalmapoftheCycladesshowingthemainstructuresrelatedtobothsyn-orogenicandpost-orogenicepisodes, modifiedafterJolivetandBrun(2010).Theoriginalmaphasbeenmodifiedincorporatingrecentworks(Kumericsetal.,2005;Rosenbaumetal.,2007;Huetetal.,2009;

Grasemannetal.,2012;Augieretal.,2015;Laurentetal.,2015;Beaudoinetal.,2015).Stretching-parallelcross-sectionthroughAegeandomain(Fig.1a)andcentralAegean (Fig.1b)areindicated.Redbox:LocationofSifnos.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

1995;Jolivetetal.,2005;BrunandFaccenna,2008;Agardetal., 2009;JolivetandBrun,2010;Ringetal.,2010;Tireletal.,2013), alsopermittheexhumationofhigh-pressurerocks.However,the pieceofcrustisextrudedupwardbetweenafrontalthrustanda normalfaultabove,whichimpliesastronglocalizationclosetothis interfaceonly.Thesemodelsonlydifferfromtheprecedentbythe degreeoflocalizationofdeformation.Dependingonthesizeofthe exhumedunit,themodelismoreorlesssimilartothebasicsub- ductionchannelmodel.Theextremelocalizationcanbefoundin thepropositionsofChemendaetal.(1995),orBrunandFaccenna (2008)wheretheexhumedunitisonlyone,totallyrigid,between thefrontalthrustandthenormalfault.Whenexhumedunitsare morenumerousandsmallerthegeneralpictureisquitesimilarto thesubductionchannelmodel.Someofthemainproblemsarethus thedegreeandthecontrollingfactorsofstrainlocalizationinsub- ductioncomplexes.Inthispaperweshowhowstrainwaslocalized duringexhumationthroughanewfieldstudy.

IntheCycladicArchipelago,theexhumationofHP-LTmetamor- phicrockswasachievedintwostages:thefirststagecorrespondsto theexhumationwithinthesubductionchannelduringEoceneand thesecondstagetotheexhumationbelowshallow-dippingdetach- mentsintheback-arcregionintheOligoceneandMiocene.Inthe following,wenamethefirststage‘syn-orogenicexhumation’as opposedtothesecondstage‘post-orogenicexhumation’fordistin- guishingexhumationacquiredduringlithosphericshorteningfrom exhumationacquiredduringlaterlithosphericextension(Jolivetet al.,2003;JolivetandPatriat,1999;Jolivetetal.,2003,2013;Bonev andBeccaletto,2007;ForsterandLister,2009).Thesyn-orogenic partofexhumation, whichisofconcernhere,is alsocontrolled bykinematicboundaryconditionsofthesubductionchannel,with slabretreatprobablyfavouringfastexhumation(Jolivetetal.,1994;

Beaumontetal.,1996;BrunandFaccenna,2008;Tireletal.,2013).

Metamorphicunits maythus have differentP-T-time histories, startingwithinthesubductionchannel inHP-LTconditions and

endingwithintheback-arcregioninhigh-temperaturemetamor- phiccorecomplexes.

SyrosandSifnosislandsarelocatedinthecentralpartofthe CycladesArchipelago(Fig.1a)andshowspectacularpreservation of blueschistsand eclogites parageneses (Fig.1b;Altherr etal., 1979;Blakeetal.,1981;Avigadetal.,1992;Trotetetal.,2001a,b;

Rosenbaumet al.,2002; Philipponet al.,2011)that areworld- wideknownforthestudyofthegeodynamicprocessesoperating attheplateinterface.Severalpetrologicalstudies,P-Testimates andgeochronologicalconstraintsareavailableonthesetwoislands (Altherretal.,1979;Wijbransetal.,1990;Avigad,1993;Listerand Raouzaios,1996;Trotetetal.,2001a;SchmädickeandWill,2003;

Schumacheretal.,2008;Groppoetal.,2009;Dragovicetal.,2012;

Bröckeretal.,2013).However,structuralstudiesdevotedtothe relationsbetweendeformationandmetamorphism(Trotetetal., 2001b;Rosenbaumetal.,2002;Ringetal.,2003;Keiteretal.,2004, 2011;Bondetal.,2007;Philipponetal.,2011;Ringetal.,2011),are stilldebatedanddifferentgeometricalinterpretationsandkine- matichistorieshavebeenproposedrenderingdifficultthechoice ofamodelfortheexhumationmechanism.

Inthiswork,wethusrevisitthegeologyofSifnos,basedonnew geologicalmapsatthe1:20,000scale.Ouraimistostudythedis- tributionofdeformationthroughevolvingP-Tconditionstobetter describethedistributionofstrainwithinthesubductioncomplex andconstrainthemechanismsofexhumationofHP-LTunitsfrom thesubductionzone.

2. Geologicalsetting

TheAegeandomain,locatedintheeasternMediterraneanSea (Fig. 1a),has undergonea tectonic and metamorphic evolution defined bytwo main steps.Firstly,fromthelate Cretaceousto the Eocene,the Africa-Eurasia convergence hasled to the for- mationoftheHellenides-Taurideschain(seelocationonFig.1a)

(4)

Fig.2. SimplifiedgeologicalmapofSifnosmodifiedafterAvigad(1993)andTrotetetal.(2001a,b).

that is composedof a stack of oceanic and continental nappes belonging to Apulia (Aubouin, 1957; Jacobshagen et al., 1978;

Jacobshagen,1986;Stampfli,2000).Thestratigraphicsequencesof themainHellenicnappesandtheirpaleogeographicorigincanstill berecognizedandcorrelationscanbemadefromthemainlandto theislands,despitetheintensityoflaterpost-orogenicextension (Bonneau,1984;Jolivetetal.,2004;VanHinsbergenetal.,2005).

Secondly,since35Ma,thekinematicsintheupperplatesofthe Mediterraneansubductionzoneshasmainlybeencontrolledbythe southwardretreatoftheAfricanslab(MalinvernoandRyan,1986;

JolivetandFaccenna,2000;Jolivetetal.,2008;JolivetandBrun, 2010),responsibleforback-arcextension.TheCycladesarchipelago resultsfromthecollapseoftheHellenides-Tauridesbeltcausedby thisretreatingsubductionwhichchangedthekinematicbound-

aryconditionsfromcompressionaltoextensionalintheback-arc region(Fig.1b;Listeretal.,1984;Jolivetetal.,2013).

ExtensionwasrecordedintheRhodopeMassifearlierthanin theAegeanSea.TheRhodopeMassifislocatedinthenorthernpart ofthestudieddomain,southoftheBalkans.TheRhodopeMas- sifunderwentaHPmetamorphism(i.e.12–17kbar,750–811C) withlocallyultra-HPconditions,nolaterthanthelateCretaceous (Liatietal., 2002;Bonev etal., 2006;Bauer etal.,2007).Then, MT-MPmetamorphism(i.e.8–10kbar,560–650C)wasrecorded in thePaleocene and exhumation of these rocksstarted in the centralRhodopemassif∼55Maagobelowtop-to-theNEductile- brittledetachmentsinback-arcdomain(Burgetal.,1996;Bonev etal.,2006).ExtensionstartedintheRhodopeearlierthaninthe Cyclades,sometimesintheEocene(BrunandSokoutis,2007).Dur- ing thesame period, syn-orogenicexhumation occurred in the

(5)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.3.P–TconditionsanddeformationageswithinCheronissosandFarosunits.

(a)GeologicalpileonSifnosshowingdifferentagesofmetamorphicpeakconditions,andblueschist-facies(BS)togreenschist-faciestransition(GS)withtheassociated depths.Superscriptnumbersindicatethecitations,1)Altherretal.,1979;2)SchliestedtandMatthews,1987;3)Wijbransetal.,1990;4)Avigadetal.,1992;5)Trotetetal., 2001a;6)SchmadickeandWill,2003;7)ForsterandLister,2005;8)Spearetal.,2006;9)Groppoetal.,2009;10)Ringetal.,2011;11)Dragovicetal.,2012;12)Bröckeretal., 2013;13)Ashleyetal.,2014.(b)CompilationofresultsofK-Ar,40Ar/39ArandRb-Sragesonphengite,paragoniteandfissiontrackonzircon.(c)DetailedP-Tpathmodified afterAshleyetal.(2014),subscriptnumbersindicatetheReferences.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

CycladesregionwithintheHellenicsubductionzoneandtheCBU underwentHP metamorphismat70–90km depthwhereas par- tialexposureatthesurfaceofthecentralRhodopecorecomplex

occurredintheback-arcdomain(JolivetandBrun,2010).Extension thenmigratedtotheCycladessome35MyrsagoandtheAegean Seastartedtoform.Thisnewepisodeofextensionassociatedwitha

(6)

fastmigrationofthemagmaticarc,duringslabretreat,whileduring thefirstextensionalepisode,thearcwasmoresteady,suggesting thatslabretreatwasquiteslow(JolivetandBrun,2010;seealso Menantetal.,2016).

2.1. Cycladicarchipelago

ThegeologyoftheCycladicarchipelagoisdividedintothree units,which arefrom toptobottom: theUpper Unit(UU),the CycladicBlueschistUnit(CBU),andtheCycladicBasementUnit.

In this framework,we focus ontheCBUthat mainlycrops out inthecentralpartofAegeandomain(Fig.1b).Thisunitiscorre- latedwiththePindosUnitincontinentalGreece(Bonneau,1982, 1984)andconsistsofalternatingmarbles,metapelites,metabasites andmeta-ophiolite.CBUrockshaveundergoneadominantHP-LT metamorphismintheEocene(K-Ar,40Ar-39ArandRb-Sronphen- giteafterAltherretal.,1979;BröckerandFranz,1998;Huet,2010), andareparticularlywellexposedinthemappedarea.Different paragenesesdisplaycontrastingP-T-timeevolutionsbutwiththe samepeakP-Tconditionsintheeclogite-faciesaround21kbarand 550C(Trotetetal.,2001b;Groppoetal.,2009;Dragovicetal., 2012;Ashleyetal.,2014).ThisHP-LTmetamorphismispartially overprintedbyOligo-MioceneHT-LPmetamorphism(Altherretal., 1979,1982;Keayetal.,2001;Vanderhaeghe,2004;Ducheneetal., 2006;Bröckeretal.,2013),whichtookplacecontemporaneously withback-arcextension.Theoverprintisgenerallycharacterized by greenschist-facies parageneses and locally by amphibolite- faciesones,reachingpartialmelting conditionsinNaxos, Ikaria andMykonos(Keayetal.,2001;Denèleetal.,2011;Laurentetal., 2015;Beaudoinetal.,2015).TheCBUrecordedtheirretrograde peaktemperaturein thecentreof theback-arc areaduringthe Miocene,atabout20MainNaxos(K-Ar,40Ar/39ArandRb-Sron phengite,Altherretal.,1982;Wijbransetal.,1990;Bröckeretal., 2013)or16 MainIkaria(Beaudoinetal.,2015).Previousstud- ies(Listeretal.,1984;Uraietal.,1990;GautierandBrun,1994;

Jolivetetal.,1994;Tireletal.,2009;JolivetandBrun,2010;Ring etal.,2010)haveshownthatMiocenelow-anglenormalfaultshave accommodatedthelate-stageexhumationofthemetamorphiccore complexesduringextension.Asaresult,severaldetachmentswere formedandarenowexposedinthenorthernandwesternCyclades, theyaretheNCDS(NorthCycladicDetachmentSystem)andWCDS (WestCycladicDetachmentSystem)(Jolivetetal.,2010;Lecomte etal.,2010;Iglsederetal.,2011;Grasemannetal.,2012).Those structuresareassociated withtop-to-the-NEandtop-to-the-SW kinematicindicators,respectively(Fig.1b).Duringthisperiodthe firstformedMCC(MetamorphicCoreComplex)wereexhumedin theOligoceneandEarlyMiocene,andtheypartlyescapedfromthe later(MiddleMiocene)completeretrogressionandpartialmelting observedinNaxos,Paros,MykonosorIkaria.

2.2. SifnosIslandgeology

Sifnosliesintheback-arcregionoftheHellenicsubductionand issituatedinthesouth-westernpartoftheAegeanSeabetween theSerifosmetamorphiccorecomplex(Iglsederetal.,2009)and theMilosQuaternaryvolcano(Fig.1b).AccordingtoRingetal.

(2011),themorphologyofSifnosispartlycontrolledbyNE-and SW-dippingnormalfaults,andE-orW-dippingyoungerfaults.This islandischaracterizedbyanapparentlyinversemetamorphicgra- dientwithintheCBU(SchliestedtandMatthews,1987;Wijbrans etal.,1993;ListerandRaouzaios,1996).Indeed,blueschistsfound atthetopofthestructuralpilearewellpreservedwhilethebase isstronglyretrogradedundergreenschist-faciesconditions.Nev- ertheless,high-pressuremarkersarelocallypreservedinallunits onSifnos(Avigadetal.,1992).Twomaintectonicsunitsseparated byashallow-dippingtectonicdiscontinuityhavebeenrecognized

(Trotetetal.,2001a):theCheronissosandtheFarosunits(Fig.2).

ThecontactbetweenthetwounitsisnamedCOF(CheronissosOver Faros)inthefollowing.

Cheronissos Unit (CU) layson top and it is furtherdivided intothreelithologicsubunits,whicharefromtoptobottom,1) theUpperMarbleComplex,exposedinthenorth-westernpartof theisland(mainlycalciticand dolomiticmarbleswithlensesof quartzitesand wellpreservedblueschists and eclogites),2) the EclogiteandBlueschistUnit(interbeddedquartzites,metabasites, metasedimentsandacidicgneisses),3)theMainMarbleUnit(a successionofthickmarblelevelsalternatingwithmetasediments andmetabasitesmetamorphosedintheblueschist-togreenschist- facies) (Schliestedt and Matthews,1987; Wijbrans et al.,1990;

Schmädickeand Will,2003;Ringet al.,2011;Fig.2).Faros unit (FU)cropsoutunderneathCheronissosUnitmainlyinthesouth- easternpartoftheisland(Fig.2).It iscomposedofmetabasites andmetasedimentsstronglyretrogradedinthegreenschist-facies.

Locally,lensesof albite-andepidote-bearingblueschists(AEBS- faciesofEvans,1990)arepreservedatthebaseofCheronissosUnit andthetopofFarosUnit(Trotetetal.,2001a).

Two main stages have been inferred in the metamorphic evolution of Sifnos during the Eocene and Miocene. The first wascharacterizedbyHP-LTmetamorphismunderblueschist-to eclogite-faciesconditionspossiblyduetothesubductionofApulia andthePindosoceanicbasinbelowEurasia(Avigad,1993)inthe Eocenewithpeakconditionsaround21kbarand550C(Fig.3a) (Trotetetal.,2001b;Groppoetal.,2009;Dragovicetal.,2012,2015;

Ashleyetal.,2014).Inarecentpaper,Aravadinouetal.(2015)have relatedthistectono-metamorphicevent(theirD1andD2stages) toa top-to-the-SE shearing event.Thisepisode hasbeendated around45MawithdifferentmethodssuchasK-ArandRb-Sron whitemicas(seecompilationonFig.3aandb;Altherretal.,1979;

Wijbrans etal.,1990), 40Ar/39Ar apparentagespectraonwhite micas(Fig.3a;ForsterandLister,2005)andSm-Ndisochronson garnets(Fig.3a;Dragovicetal.,2012,2015).Thesecondstage(D3 inAravadinouetal.,2015)overprintedtheblueschist-toeclogite- facies assemblages in the greenschist- to amphibolite-facies; it rangesinagefrom30to19MabasedonK-Ar,Rb-Srand40Ar/39Ar datingonwhitemicas(Fig.3aandb;Altherretal.,1979;Wijbrans etal.,1990;ForsterandLister,2005;Ringetal.,2011;Bröckeretal., 2013).

2.3. MaingeologicalcontroversiesaboutSifnos

Oneofthemaindifferencesofinterpretationofthegeological evolutionofSifnosrelatestothesignificanceofthesecondstageof deformationandtheretrogressionoftheeclogite-andblueschist- faciesparagenesesintogreenschist-faciesassemblages.Ithasbeen forinstanceeitherinterpretedasanextensionalepisode(Trotet etal.,2001b)orasacontractionalepisode(Aravadinouetal.,2015).

Inmoredetails,thenatureandoriginofthecontactbetweenChero- nissosandFarosunits,whichcanbebestobservedalongtheroad fromApolloniatoVathy(Fig.2),hasbeendebatedintheliterature (Avigad,1990,1993;Wijbransetal.,1990;ListerandRaouzaios, 1996;Trotetetal.,2001b;Bröckeretal.,2013).Thistectoniccon- tacthasbeendiverselyinterpretedas:abrittledetachmentwith top-to-the-northeastkinematics(Avigad1993);atop-to-the-south thrust(ListerandRaouzaios,1996);atop-to-the-northeastductile shearzone(Trotetetal.,2001a)and,morerecently,asadetachment markedbytop-to-the-southbrittle-ductiledeformation(Ringetal., 2011).

Conventional thermobarometry and multiphase equilibria (Matthewsand Schliestedt,1984; Schliestedt,1986; Schliestedt and Matthews, 1987; Avigad, 1993; Trotet et al., 2001b;

Schmadicke and Will, 2003; Groppo et al., 2009; Dragovic etal.,2012,2015),oxygenisotopethermometry(Matthewsand

(7)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Schliestedt,1984),Zr-in-rutilethermometry(Spearetal.,2006)and quartzinclusioningarnets(Ashleyetal.,2014)havebeenusedto estimatetheP-Tpathsandtheconditionsofpeakmetamorphism fortheEclogiteandBlueschistsubunitinCheronissosUnit(Fig.3a andc).The shapeoftheprogradepathissimilarforallstudies andfollowsaHP-LTgradientinferredfromthepresenceofpseu- domorphsoflawsonite(Trotetetal.,2001a).However,themain controversyrelatestotheretrogradeP-TpathsinCheronissosand Farosunits.SchmädickeandWill(2003)gaveasimilarP-Tgradi- entof10–12C/kmforboth unitswhereas Trotetetal.(2001b) proposedtwo differentpathswithacooler oneforCheronissos Unitstartingfroma commonpeakataround600Cand20kbar (Fig.3c).Consequently,differentexplanationswereproposedfor theapparentinversemetamorphic gradient in Sifnos(eclogites andblueschistsrocksoverlyinggreenschists;Altherretal.,1979;

MatthewsandSchliestedt,1984;Schliestedt,1986;Schliestedtand Matthews,1987;Trotetetal.,2001b;Wijbransetal.,1990;Avigad 1993; Groppoet al., 2009; Ringet al., 2011).It was suggested thatthegreenschistoverprintinFarosUnitresultedfromperva- sivefluidinfiltration(MatthewsandSchliestedt,1984;Schliestedt and Matthews,1987), theMain MarbleUnit being a relatively impermeablelayer,protecting theEclogite-BlueschistUnitfrom it.Wijbransetal.(1990)assumed insteadthatoverprintingwas duetoatemperatureincreaseatthebaseofthemetamorphicpile, fittingtheyounger40Ar/39Aragesfoundthere(Fig.3b).Another interpretationsuggeststhatbothCheronissosandFarosunitswere derivedfromdifferentstructurallevelsandwerejuxtaposednextto eachotherbyathrustduringthepost-orogenichistory(Listerand Raouzaios,1996),involvingasignificantdisplacementbetweenthe twounitsandimplyingdifferentpeaksofmetamorphisminthetwo units.Alternatively,Avigad(1993)andTrotetetal.(2001b),have proposeddifferentcoolinghistoriesbetweenthetwounitswitha similarpeakofmetamorphism,leadingtodifferentdegreesofret- rogression(Fig.3c).Inordertoclarifythesekindsofdiscrepancies wefocusedourfieldstudyontherelationsbetweendeformation andmetamorphismatdifferentscales.

3. AnewgeologicalmapofSifnos

Ournewgeologicaland structuralmapatthe1:20,000 scale (Fig.4)isentirelyredrawnfollowingfieldobservationsandsatel- liteimagesanalyses.Hence,amoredetaileddescriptionofthe3D geometryoflithologicalassemblagesandstructure,is provided.

Thenewdatashedlightontheshapeoflithologicalboundariesand onthenatureofthecontactbetweenCheronissosandFarosunits.

Themainoccurrencesofserpentiniteandeclogitearereportedon themap(Fig.4).Thegeometryandkinematicsoflaternormalfaults havealsobeenredrawn(Fig.4).Thismapisconsistentwiththe moredetailedmaprecentlyproposedforthenorthernpartofthe islandbyAravadinouetal.(2015).

3.1. Brittledeformation

The general structure of the island and the topography are controlledbya setof majornormal tooblique faultsthat con- trolthefirst-orderdistributionoflithologiesonSifnos(Ringetal., 2011).Wecarefullyremappedthesefaultsthatshouldnotbecon- fusedwiththemaincontactbetweenCheronissosandFarosunits (Fig.5a).ThelargestoftheselatefaultsaretheKastroFaultandthe TosoNeroFaultrespectivelyalongtheeasternandwesterncoastof theisland,whereasthesouthernandcentralpartsshowaseriesof SW-dippingnormaltoobliquefaultswithdifferentslicken-fibres generationssuchastheKamaresFaultortheVathyFault(seeFig.4 forlocation;Fig.5aandb).Inmostoutcrops,theyoungestbrittle movementistop-to-the-SWandbrittle-ductilecriteriaalsoindi- catetop-to-the-SWmotion(Fig.5c).Oneofthesefaults,theVathy Fault,locallymarkstheCOF(Fig.5d).Thishighanglefaultcross- cutsthecontactthatisparalleltotheregionalfoliation.Thefault showsacorewithathicktalc-richfaultgougeandthefaultplane showsslickensides(Fig.5f)andotherbrittle-ductilecriteriaindi- catingtop-to-the-SWand −Smovements(Fig.5eandg). Afew metersawayfromthedamagezone,theolderductiledeformation, characterizedbytop-to-the-northeastshearisvisiblelikeinmost oftheisland.Inthefarsouthof Sifnos,S-toSSE-dippingfaults occur(Fig.4).Theirexactkinematicsisnotwellestablishedbut theireffectonthedistributionofmetamorphicrocksandtheasso- ciatedscarpshowanormalcomponent.Thesefaultscutprobably theSW-dippingfaults.

3.2. Regionalfoliation

The intense ductile deformation is characterized by well- developed foliationsand stretching lineations shown on Fig.4.

Withinthesameunit,foliationplanesaregenerallyparalleltoeach otherindifferentlithologies.Atthescaleoftheisland,inthenorth, thefoliationdipstowardtheNW,whereasintherestoftheislandit

Fig.4.GeologicalmapofSifnos.

NewstretchinglineationmapofSifnoswithfoliationtrajectories.Lithologiccontourshavebeendefinedonthebasisofourfieldobservationsandsatelliteimages.Wehave alsoincludedsomeinformationofAravadinouetal.,2015.Themajorstructuresareindicated(TNF:TosoNeroFault;KF:KatroFault;VF:VathyFault;SSEF:S-SEFaults).

Lineationsassociatedwithblueschist-andgreenschist-faciesassemblagesarerespectivelyindicatedinblueandgreen;arrowsindicatethesenseofshear(top-to-the-Nto

−NEindifferentcoloursandtop-to-the-SWinblack).North–southcross-sectionshowingthegeneralarchitectureofSifnosandrelativesequenceofhigh-andlow-angle extensionalfaults.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)

Fig.4. (Continued)

(9)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.5.BrittledeformationonSifnos.

(a)Locationoffault-slipdatafromhigh-anglenormalfaults.Thediagramsshowgreatcirclesoffaultplanesandtheprojectedtraceofslickensidelineationsinalower hemisphereequal-areaprojection.Arrowsindicateextensiondirectionsfromthemeasuredfaultsets(paleostressorientationpatternswerecalculatedwiththewin-tensor computer-aidedinversionsoftwareofDelvauxandSperner,2003).Readersunfamiliarwiththemethod,ormoregenerallywithfault-slipdatainversionarereferredtothe workofAngelier(1990).(b)KamaresFaultshowingtwoslicken-fibregenerations.(c)Top-to-the-SWbrittle-ductilekinematicindicatorsassociatedwithKamaresFault.

(d)VathySWdippingnormalfaultwith(e)stereographicprojectionsofstriations.(f)Faultplanecharacterizedbyafewmetersthickreddishfaultgougeshowing(g) top-to-the-SWbrittle-ductilekinematicindicators.NotetheconsistencyoftheNNE-SSWtoE-Wdirectionofbrittleextensionallovertheisland.

(10)

dipstowardtheNNEwithalargediprange,between0and90and dipincreasingnorthward(Fig.6a).Differentfamiliesoffoliationcan bedistinguisheddependingontheassociatedparagenesesandthe apparentintensityofshearingdeformation(e.g.densityofshear bands,intensityofstretching...).Inthenorthernpartoftheisland, themainfoliation(S2)generallystrikesENE-WSWanddipstoward theNNW(Fig.6a).AnearlyS1foliationisseenasrelicswithingar- netsporphyroblasts(Trotetetal.,2001a;Aravadinouetal.,2015).

IntheMainMarbleUnit,foliationisgenerallycharacterizedbyNW- SEstrikeanddipstotheNE(Fig.6a).AtthebaseofCheronissosUnit, lensesofmetabasicrockswrappedwithinmarblesarepreserved atthemesoscopic-scale.Locally,anewAEBS-faciesfoliation(S3)is developed,overprintingtheearlierfoliations(Trotetetal.,2001a;

Aravadinouetal.,2015).InFarosUnit,themainfoliation(S3)iswell developedwithaNNW-SSEstrike,dippingtowardtheNNE.Finally, alatergreenschist-faciesfoliation(S4)ischaracterizedbyalow northwarddipatthebaseofFarosUnit(Trotetetal.,2001a).Hence, fromCheronissostoFarosUnit,asuccessionofdeformationfrom blueschist-togreenschist-faciesconditionsisrecognized.More- over,goodexposuresofthetectoniccontactbetweenCheronissos andFarosUnitshowthatthefoliationplanesretainthesamestrike anddipacrossthecontactandacrossmajorlithologicalcontactsas well.

3.3. Stretchinglineation

Stretchinglineationsarewidespreadthroughalllithologiesand havebeendistinguishedaccordingtotheassociatedmineralogy, dominantmetamorphicfacies,and/orintensityofdeformation.In calciticanddolomiticmarbles,whitemicasandcalcitedefinethe lineation; inbasic rocks, theelongationand boudinage ofpris- maticminerals(glaucophane,epidote,albiteandchlorite)reflects acomponentofstretching,whichisalsolocallyexpressedwithin metaconglomeratesbyelongatedpebblescarryingpressureshad- ows.TheselineationsareprojectedonthemapofFig.4.Atthescale oftheislandandonmostoutcrops,stretchinglineationstrendcon- sistentlyNE-SW(Fig.6b),exceptforsomelocalNNW-SSE-trending lineations observedin thenorthernpartof theisland (seealso Aravadinouetal.,2015).Theplungeoflineationisgenerallyshallow anditrarelyexceeds40.Wehavedistinguishedthreesuccessive generationsoflineationsbasedonthemetamorphicgradecoeval withdeformation:1)underblueschist-faciesconditions,thetrend oflineations,definedbyglaucophaneinmostcases,showsadisper- sionbetweenN330EandN30EwithanaveragearoundN350E (Fig.6b);2)inFarosUnit,thelineationcharacterizedbyalbiteand chlorite,islessdispersedwithanaveragearoundofN52E(Fig.6b);

3)closetothemaincontact,inAEBS-faciesconditions,lineations definedbyepidote,albiteandrareglaucophane,trendinaverage aroundN30E(whichcorrespondtotheaverageofthetrendof blueschistandgreenschistlineation,seestretchinglineationonthe mapinFig.4).

3.4. Folddirections

Threefolding eventshave beenidentified inthefield.Inthe structurallyhighestandnorthernpartoftheisland,earlyisocli- naltoverytightmacroscopicfoldsF1 canbeseentoaffectthick massivedolomitesalternatingwithcalciticmarbles(Figs7band7;

seealsoAravadinouetal.,2015).Thesefoldsareasymmetricand generallysouth-vergent,withanaxialplaneparalleltothefolia- tion.Thegeometryandkinematicinterpretationofthesefoldsis detailedinSection6.AsecondgenerationoffoldsF2isparticularly welldevelopedatsmallscaleinbothunitsandgenerallyassociated withanintenseshearingdeformation.F2foldingisdominantlyNE- vergentbutcharacterizedbyvariableaxialtrendwithrespecttothe lineation.Theaxialplaneofthefirstfamilyislyingparalleltothe

foliationwiththefoldaxissub-paralleltothelocalstretchinglin- eations.ThetighttoisoclinalfoldsareoverturnedtowardtheNor NE.Thesefoldsaremainlyobservedinareaswherethedeformation isintensesuchasnearVroulidia(northernpartoftheisland,Fig.7d) orChryssopigi(southeastpartoftheisland,Fig.7e).Theyarebest expressedinmetabasitesandmetapelites.Thesecondsethasits axialplanesdippingtowardthenorthandtheaxesareroughlyper- pendiculartothelineation(Fig.7f).Thesefoldshavebeenobserved atsmallscaleinallunits.Finally,latestageF3foldsrefoldthemain foliationandtectoniccontactswithanorientationperpendicularto thesecondgeneration.TherelationbetweenF1,F2,F3foldsandthe top-to-the-northor−northeastshearingdeformationisdiscussed inSection6.

4. Kinematicindicatorsandmetamorphicconditions withinCheronissosUnit(CU)

4.1. Eclogite-Blueschistsubunit

Thisunit,whichoutcropsinthenorthernpart(Fig.4),iscom- posedbymaficandsiliceousrocks.Mostkinematicindicatorsare top-to-the-Nto−NE.Alllithologiesareaffectedby asymmetric structuresatvariousscales:1)Decametricasymmetricfoldsaffect themainfoliationeitherinmafic(Fig.8a)orinsiliceouslayers(e.g., quartzandphengiteaggregatesinFig.8b);2)Meter-scaleasym- metricboudinageofmafic(eclogite)layersembeddedinaweaker matrixindicatingatop-to-the-northeastshearsense(Fig.8c);3) Shearbandsinallunits(Fig.8dande).Spacingbetweenshearbands rangesfromafewmillimetrestoafewcentimetresintheweakest levels.Theanglebetweenshearbandsandfoliationvariesfromone outcroptoanother,dependingonlithology.Shearbandsarecom- monlymarkedbythinglaucophanecoatingsinmaficrocks(Fig.8f) andquartz/micainacidicrocks.Shearbandsgiverisetosigmoidal foliationatthecentimetricormetricscalecompatiblewithtop-to- the-northeastsenseofshear;4)Pressureshadowswithingarnet porphyroblastsconsistingofquartz,mica,rareglaucophaneand chloritealsoindicateatop-to-the-NEsenseofshear(Fig.8gandh).

4.2. UpperMarbleComplexsubunitandMainMarblesubunit

The marblesand schist lenses composingthe Upper Marble ComplexandtheMainMarbleunitsdisplaykinematicindicators showing a top-to-the-northeast sense of shear (Fig. 4) consis- tentwiththestructuresdescribedintheEclogite-BlueschistUnit, butwitha morelocalizeddistribution.Inmarbles,stretchingis expressedby boudinage at variousscales. In thenorthern part of theislandfor instance,competencecontrastbetweencalcite and dolomite resultsin domino and asymmetrical sigma/delta clastsindicatingatop-to-the-northeastshearsense(Fig.9bandc).

Stretchingisalsomarkedbytensiongashesandcalciterecrystal- lizationwithinmarbles(Fig.9d).Isoclinalfoldsoverturnedtoward the north,withan axisgenerally perpendicular to thestretch- ing lineation,arecommonly observed inthe Main MarbleUnit (Fig.9e).Fewkinematicsindicatorsareobservedinotherlithologies inthesetwosubunitsofCheronissosUnit.Theyallindicateatop-to- the-northeastsenseofshear(e.g.,asymmetricshapeofstretched carbonatepebblesinmetaconglomeratelayersinFig.9f).

4.3. Metamorphicconditionsofshearingdeformationin CheronissosUnit

In the northern part of the island, Upper Marble Complex andEclogite-BlueschistUnitarecharacterizedbyanoverallgood preservationofHP-LTparagenesessuchasfreshandveryabun- dantglaucophaneandomphacitewithinmetabasites.Shearbands andsometimesstrainshadowsaroundgarnetsareoftenfilledwith

(11)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.6.Mainplanarfabricsandstretchinglineation.

(a)StatisticsofthemainfoliationofdifferentunitsshowingdistributionfrequencyofdipschistosityandSchmidt’slowerhemisphereequal-areaprojectionofschistosity poles.(b)StatisticsofthepreferredorientationofstretchinglineationpresentedinSchmidt’slowerhemisphereequal-areaprojection.Weusedthe1%areacontouringto definethecontourlines.Inourcase,weusedacontourintervalvalueof2.

(12)

Fig.7. Differentfoldingphasesatvariousscales.

(a)Locationoffieldphotographs.(b)and(c)showfieldevidencesoffoldingofdolomiticmarblesandcalciticmarblesinthenorthernpartoftheisland.(d)Syn-blueschist foldingaffectedearlyfoldsinametabasite.NotethatF2foldaxesaremostlyperpendiculartothestretchingdirection.Twosetsofaxialplanesshowing,(e)axesparallelto thestretchingand(f)perpendiculartothestretchinglineationinthesouth-easternpartoftheisland.

glaucophaneandphengites,indicating syn-HP-LTconditionsfor thetop-to-the-Nto−NEshearing deformation(bluearrows on Fig.4).IntheMainMarbleUnit,HP-LTparagenesesaregenerally moreretrogradedwhenapproachingthecontactbetweenChero- nissos and Faros units. In this latter unit, top-to-the-northeast kinematic indicators in metabasite lenses are associated with glaucophane, epidote, phengite and sometimes chlorite, albite characteristicofAEBS-faciesP-Tconditions(green/bluearrowson Fig.4).

5. Kinematicindicatorsandmetamorphicconditions withinFarosunit

5.1. Top-to-the-NEductilesheardeformation

Top-to-the-northeast kinematic indicators are widely dis- tributedthroughFarosUnitbutmorecommoninzonesofstrain localization.Severaltypesofshear-derivedobjectsareobserved:1) metricshearbandsindicatingtop-to-the-northeastsenseofshear

(13)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.8.MicrostructuresandmacrostructuresobservedinSifnosEclogite-BlueschistUnit.

(a)DecametricasymmetricfoldsinmaficrocksclosetoKormos,showingaxesmostlyperpendiculartothestretchingdirection.(b)Asymmetricfoldsinsiliceouslevels withS1preservedingarnetsintheupperlevelofEclogite-BlueschistUnit.(c)Boudinageofeclogitesshowingatop-to-the-NEsenseofshear.(d)Top-to-the-NEshearbands affectingcompetentmaficrocksand(e)acidicrocksinthenorthoftheisland.(f)Detailsofshearbandsmarkedbyglaucophaneinmoreacidicrocks.(g)Pressureshadow ongarnetporphyroblastsinafieldphotographand(h)thinsection.Theyshowtop-to-the-NEsenseofshearclosetothecontactbetweenEclogite-BlueschistUnitandMain MarbleUnit.

nearKamaresFault(Fig.10b);2)asymmetricboudinsofcompe- tentlithologies,suchasthosepreservingmaficeclogiteboudins (Fig.10c);3)shearedquartz-carbonateveinsperpendicularorpar- alleltothemainfoliationshowingpressureshadowsfilledwith chloriteandalbitesuchasnearVathy,withNE-vergingshearingin greenschist-faciesconditions(Fig.10dande);4)syn-greenschist asymmetricfoldingaffectinglayersrichinglaucophaneandepi- doteclosetotheCOF(Fig.10f).Crenulationofanearlierfoliation compatible with top-to-the-northeastshearing is also frequent withinFarosUnitandespeciallynearzonesofstrainlocalization suchasChryssopigi(Fig.10g).

Greenschist-facies ductile deformation is more localized in FarosUnitthaninotherunitsalongshearzones.Onespectacu- larexampleofsuchshearzonescanbeobservedatthesouthern

coast of the island (Fig. 11a). This area, located near thebase ofFarosUnit,showsadistinctgradientofshearingdeformation.

Inaverage,thefoliationstrikesalmostE-Wanddipsmoderately toward the southwest.The shear zone develops within micas- chistsandminormarbles, displaysthesameoverall distributed top-to-the-NEkinematicindicatorsoccurringatvariousscalesover thewholeFarosUnit.Suchkinematicindicatorsarealsoexposed neartheport of Faros.The N50Etrending stretchinglineation ismarkedby stretchedmicasand albitepods. Thedeformation stronglyincreasestowardthenorthwestandthegradientisclearly visibleonChryssopigipeninsula(Fig.11a).Approachingthepenin- sula,anincreasingnumberofveinscomposedofquartz,chlorite, andcarbonatesareshearedandtransposedintothemainfoliation (Fig.11c).Thefoliationandtheveinsarestronglyandasymmetri-

(14)

Fig.9. MicrostructuresandmacrostructuresobservedinUpperMarbleComplexandMainMarbleUnit.

(a)Locationoffieldphotographs.(b)Differenceofcompetencebetweencalciteanddolomiteshowingthedevelopmentofdominosand(c)delta/sigmaclastsindicating top-to-the-NEsenseofshear.(d)North-southstretchingshownbycalciterecrystallizationwithintensiongashes.(e)Centimetricfoldsshowingaxesmostlyperpendicular tothestretchingdirection.(f)Top-to-the-NEshearsensedefinedbytheasymmetricshapeofstretchedcarbonatepebblesinmetaconglomeratelayers.

callyfoldedconsistentlywiththemeanshearingdirection.Curved foldaxes aredispersed aroundadirectionperpendicular tothe stretchinglineation(Fig.11a,number1).Here,anaxialplanecrenu- lation cleavage develops in thehinge of these folds (Fig. 11d).

Shearedlensesofmetabasite,orquartzandcalciteveinsindicate atop-to-the-northeastsenseofshear(Fig.11e).Towardthetopof thepeninsula,movingupwardtowardthecoreoftheshearzone, thenon-coaxialdeformationincreasessharply.Foldaxestendto progressivelyrotatetowardtheshearingdirectionandarefinally deflectedparallel to thestretching lineation,although noclear closedeye-structurehasbeenobservedintheYZplane(Fig.11g).

Thesefoldsaretypically a-foldsthatshowa largesimple shear componentinthedirectionofthestretchinglineation(Fig.11a, number3).In themostdeformedareas,observations oftheXZ planeofthefinitestrainellipsoidshowadensenetworkofsmall- scaleshearbands,allcompatiblewithtop-to-the-northeastsense ofshear(Fig.11f).Theirspacingrangesfromafewmillimetresto afewcentimetresand theyareassociatedwithwhitemicaand albite.Chlorite,calciteandquartzveinsarestretchedandfolded andtotallytransposedintothefoliation.

5.2. Metamorphicconditionsofthetop-to-the-northeast deformation

In the Faros unit, metabasitesthat are deformed bytop-to- the-NE deformation show strongly retrograded blueschist- or greenschist-facies rocks. From top to bottom 1) eclogite and blueschistlensesarelocallypreservedclosetotheCOFinthenorth- ern part of theisland (Fig.10c). At macro-structural scale, the dominantparagenesisischaracterizedbyglaucophane,epidote, phengiteandalbite.Inthisstructurallevel,glaucophanefillingof top-to-the-NEshearbandsindicatesthatdeformationhaspartly actedinHP-LTconditions(seeFig.12);2)inthemiddlepartof FarosUnit,deformationislocallymoreintenseandtheretrogres- sionintogreenschist-faciesmoreadvanced.Chlorite-filledpressure shadowsdeveloparoundquartz-calcitelenses,attestingthattop- to-the-northeastdeformationhasalsoactedingreenschist-facies conditions(Fig.10e).Wehavefurthermoreobservedtop-to-the- northeastshearbandsfilledbylow-grademineralssuchaschlorite andalbite, leadingtothesameconclusion;3)thebaseofFaros Unitisthemostretrogradedzone(e.g.,Chryssopigi).Here,veins filledbycalcite,chloriteandalbitearemostly(ortotally)trans-

(15)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.10.MacrostructuresobservedinFarosUnit(FU).

(a)Locationoffieldphotographs.(b)S-CStructureswithtop-to-the-NEsenseofshearcharacterizedbymetricshearbandsinametapelite.(c)Asymmetricmaficeclogite boudinscrosscutbyquartz-carbonateveinsshowinganorth-southstretching.(d)Shearedquartz-carbonateveinscrosscutthemainfoliationand(e)arecommonly transposedinthefoliationwithpressureshadowsfilledinchloriteandalbiteshowingtop-to-the-NEsenseofshear.(f)Centimetricfoldsshowingaxesmostlyperpendicular tothestretchingdirection.(g)Axialplanecrenulationcleavageassociatedwiththehingeoffoldsatthebaseofthisunit.

posed in the main foliation. At the micro-structural scale, in thinsectionscollectedfromChryssopigi,shearingdeformationis localizedaroundsyn-kinematicporphyroblastsofalbitethatare surroundedbyquartz-micastrainshadows.Thesecriteria attest thattop-to-northeastdeformationhasactedduringacontinuum fromblueschist-togreenschist-faciesconditionsduringexhuma- tion.

6. Kinematicsofdeformationinthemainshearzones 6.1. ContactbetweenCheronissosandFarosunits(COF)

TheCOFcontact,asshownonthecross-section(Fig.4),isfolded byopenfoldsandthenlaterfaultedbyhigh-anglefaults.Thiscon- tactappearssub-parallel (oronly locally slightly discordant)to

(16)

Fig.11.Chryssopigishearzonedefinedbyadistinctgradientofshearingdeformation.

(a)LargescalerepresentativeviewoftheChryssopigishearzoneinthesouth-easternpartoftheisland.AlbitepodsmarkedthestretchinglineationtrendingN50E.All informationissummarizedwithsynthetic3-Ddiagrams.Thisshearzoneisdividedinthreeareas;zone1correspondsto(c)anintensefoldingand(a)associatedSchmidt’s lowerhemisphereequal-areaprojectionsshowingfoldaxesdispersion;zone2isdefinedby(d)axialplanecrenulationcleavageassociatedwiththehingeoffolds.(a)Fold axestendtoprogressivelyrotatetowardtheshearingdirection.(e)Shearedlensesofquartzandcalciteshowingatop-to-the-NEsenseofshear;zone3ismarkedbyintense non-coaxialshearingconsistentwithanoveralltop-to-the-NEkinematics.(f)Shearbandsspacingrangesfromfewmillimetresand(g)a-foldsarecommonlyobserved.Note thatfoldsaxesarenowparalleltothestretchingdirection.

themainfoliation.Itisparticularlywellexposedinthesouthern partoftheislandalongthecountryroadthatbringsfromVathy toFikiadasbeach(Fig.4).Thisareashowsadistinctgradientof

shearingdeformationclosetothemaincontactwiththeChero- nissosUnitandashallownortheast-dippingfoliation,sometimes stronglyfolded(Fig.12d).There,shearedcarbonatepebblesand

(17)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.12.COFcontact.

TheCOFcontactiswellexposed(a)Intenseductiledeformationshownbyfoldinginalllithologies.Top-to-the-NEshearbandsassociatedwithglaucophaneaffectthefoliation.

(b)Asymmetricboudinageofepidotiteboudinsshowingatop-to-the-NEshearsense.(c)Closely-spacedshearbandsassociatedwithwhitemicaindicatetop-to-the-NE senseofshearclosetoVathy.(d)SimilarfeaturesobservedclosetoKastro,justbelowthemaincontact.

asymmetricboudinageofepidotiteboudinsindicateatop-to-the- northeastshearsense(Fig.12bandc)togetherwithcloselyspaced shearbandsassociatedwithglaucophaneandwhitemicas.TheNE- trendingstretchinglineationisdefinedbytheelongationofalbite spotsandglaucophaneneedles.

ThesamefeaturesareobservedclosetoKastro,justbelowthe maincontactwiththeupperunit (Fig.4).In thisareathefolia- tionstrikesalmostN-Sanddipsshallowlytowardtheeast.The lineationismarkedbyepidote,glaucophaneandalbite.Numerous quartzlensesaretransposedinthefoliationandinshearbands withanasymmetrycompatiblewithatop-to-the-northeastsense

ofshear(Fig.12eandf).Asymmetricboudinageofepidotitesis alsowell developed and indicatesa top-to-the-northeast shear sense(Fig.12g).Lateveins,perpendiculartotheregionalstretching, filledwithchlorite,quartzandhematitecuttingthemainfoliation, suggestacontinuumofstretchingduringmorebrittleconditions ingreenschist-faciesconditions.Tosummarize,theCOFcontact ischaracterizedbyamoreintenseshearingdeformationandthe senseofshearisclearlytop-to-the-northeast,asobservedwithin CheronissosandFarosunits.Thisshearinghasbeenactiveduring theretrogressionfromblueschist-togreenschist-faciesconditions.

(18)

6.2. ShearzonesawayfromtheCOFcontact

TheEclogite-BlueschistUnitoverlaystheMainMarbleUnitand thecontactisexposedalongtheeastcoastclosetoTroulaki(see location onFig. 4).The average dipof foliation is about 50W (Fig. 13a). The stretching direction is provided by the mineral lineation(glaucophane,chlorite,albiteandcalcite)andtheelonga- tionofpebbleswithinmetaconglomeratelayersinterleavedwith metabasitesandmarbles.Dependingonthemineralparagenesis, thetrendoflineationschangesfromN70−80Eforthemoreretro- gradedlevelstoN45Eforthebetter-preservedblueschist-facies.

In particularcloseto theMainMarbleUnit, ametric metacon- glomerate level, which mainly contains calcitic and dolomitic pebbles, shows near its base eclogite pebbles when approach- ingtheEclogite-BlueschistUnit(Fig.13c).Immediatelyabove,a pileoffullyretrogradedmetabasitescropsout(Fig.13d).Associ- atedwithgreenschist-faciesparageneses,quartzveinsparallelor perpendiculartothemainfoliationareobserved(Fig.13e).Well preservedeclogite-andblueschist-faciesparageneses withpris- tinegarnetsoccurjustabove(Fig.13g).Kinematicindicatorssuch asdominostructures(Fig.13b),stretchedpebblesinmetaconglom- erates(Fig.13c),shearbands(Fig.13f)andasymmetricaleclogite boudins(Fig.13g), arecommonin allunitsatall metamorphic gradesandarecharacterizedbyatop-to-the-NEto−Esenseof shear.

In thenorth-eastern partof theisland, closeto Cheronissos (Fig.4),thecontactbetweenUpperMarbleComplexandEclogite- BlueschistUnitiswellexposedalongthecoast.Thiscontactappears similartothepreviousoneexceptfortheabsenceofmetaconglom- eratelevel.Kinematicindicatorsaretop-to-the-northeastinboth unitsandthedegreeofretrogressionseemstobethesameasin thecontactdescribedabove.

7. Discussion

7.1. Timingofdeformationandmetamorphism

Basedonkinematicindicatorsandtheirrelationswithmeta- morphicparagenesesdescribedaboveandthosereportedinthe literature,weproposeanewmetamorphicmap(Fig.14).Thismap isintendedtodisplaythefirst-orderdistributionofthedominant paragenesesasseeninthefield,keeping inmindthatthepeak ofmetamorphismwaseverywhere insimilarP-T conditions,in theeclogite-facies.Inthissection,were-evaluatethechronolog- icalevidenceusedtosupporttherelativetimingoftectonicand metamorphiceventsrecordedonSifnos.

ThroughoutmostofCheronissosUnit,HP-LTparagenesesare particularlywell preserved. In the northern part of the island, syn-kinematicmineralsinshearbandandpressureshadowsare developedduringsyn-orogenicdeformation.Locally,anearlyS1

foliationhasbeenobserved asrelicsintogarnet porphyroblasts butkinematicindicatorsrelatedtothiseventareunknown.Most kinematicindicatorsassociated withtheretrogradepath(under HP-LTconditions)aredistributedheterogeneouslyinalllithologies andindicateapenetrativetop-to-the-Nshearsenseintheupper partandtop-to-the-NEto−Eintherestofthisunit.Aravadinou etal.(2015)haverecognizedtop-to-the-SEkinematicindicators in thin-sectionscut in zonespreserved fromthebulk of retro- gradedeformationinnorthernSifnos.Ifoneadmitsthattheoriginal stretchingdirectionhasbeenpreservedinthesezones,theshear senseduringthebeginningofS2formationwastop-to-the-SE.This isdebatablebecausethefoldsrefoldingS2areacuteanditisnot surewhethertheoriginaldirectionofstretchingdirectionwaspre- servedbutthisistheonlyavailableinformationinfavourofatop-SE shearingevent,whichcouldrepresenttheearlyshearingrelatedto

thrustingnearthepeakofpressure,asproposedbyAravadinou etal.(2015),beforethetop-to-the-NEshearing.Thissecond-stage shearingisinsteadobservedallovertheislandanditstartedbefore therockshadlefttheblueschist-faciesduringtheirexhumation.

Itispossiblethatthischangeofshearsensecorrespondstothe transitionfromburialtoexhumationathighpressure.

Ductiledeformationislocallymoreintenseincertainareassuch asinthenorthernpartoftheislandatVroulidia.Thispervasive deformationis linkedwiththeexhumationof CheronissosUnit fromitsmaximumburialdepthandisdatedaround45Ma(Altherr etal.,1979;Wijbransetal.,1990;ForsterandLister,2005;Dragovic etal.,2015).AtthebaseofCheronissosUnitandtopofFarosUnit, closetothemaincontact,astrongdeformationgradientinAEBS- faciesP-TconditionsisobservednearKastroandclosetoRizomata Mountain(Fig.12).Greenschist-faciesconditionsarerecordedin thewholeFaros Unitandlocally alsoin CheronissosUnitclose totectoniccontacts(Fig.14),andarealwaysassociatedwithtop- to-the-NEor−Ekinematicindicators.StrainlocalizationinFaros Unitissystematicallyassociatedwithgreenschist-faciesconditions suchasnearChryssopigi(Fig.11).Availableradiochronologicaldata (Altherretal.,1979;Wijbransetal.,1990;Ringetal.,2011;Bröcker etal., 2013), obtainedonrockssampledinFaros Unit,datethe greenschist-faciesretrogressionfromtheOligoceneandMiocene likeonmostotherislandsoftheCyclades(e.g.,SyrosIsland,Maluski etal.,1987;Baldwin,1996;Wijbransetal.,1990;TinosandAndros Islands,Bröckeretal.,1993;Huet,2010).

AlllithologiesareaffectedbyearlyisoclinalfoldsF1,overturned totheSWFigs.4and7b)andparticularlywellexpressedbyalter- natingfoldedcalciticanddolomiticmarblesinthenorthernpartof theisland,whereHProcksarebestpreserved.Therelationbetween F1foldsandthetop-to-the-northto−northeastsheardeformation isdebated.Avigad(1990)suggestedthattheywereformedbefore thepeakofmetamorphismintheorogenicwedge(orsubduction channel)duringthesubductionoftheAfricanslabinvolvingduc- tilekinematicindicatorstop-to-the-SW,hencetheiroverturning totheSW.Alternatively,theymayhaveformedcontinuouslydur- ingexhumationfromblueschist-togreenschist-faciesconditions duringthedominanttop-to-the-northeastshearingandtheirover- turningtotheSWis onlyapparent.Basedonfieldobservations (e.g.,relationshipsbetweendolomiticmarblesandmarbles),we suggest that themetamorphic pile ofSifnos underwentimpor- tant flattening andshearing beforethepeakof metamorphism.

Thisfoldingcouldbeassociatedwithtop-to-the-southdeformation thatwasactivewithinthesubductionzone,insyn-orogeniccon- ditions(Huetetal.,2009;Philipponetal.,2011;Aravadinouetal., 2015).Theexcellentpreservationofeclogite-andblueschist-facies paragenesesinthenorthofCheronissosUnitsuggeststhatthese foldsstartedtoformwithinHP-LTconditionsandevolvedcontin- uouslyduringexhumationfromblueschist-togreenschist-facies conditionsduringthedominanttop-to-the-northeastshearing.A laterfoldgenerationF3deformstheCOFcontactwherewehave observedacertainlocalizationofgreenschist-faciesdeformation.

7.2. P-T-timepathsofSifnosandlinkstodeformation

Ourstudyshowsthattheintensegreenschistretrogressionof Faros Unitisclosely associated withthedeformationalong the maintectoniccontactbetweenCheronissosandFaros Unitdur- ingexhumation.ConspicuouspreservationofHP-LTparageneses in Cheronissos Unit largely reflects the fact that greenschist- facies deformation localized in deeper parts of CBU and only locallyaffectedthisunit.Thus,CheronissosUnitwasalreadypartly exhumedwhileFarosUnitwasexhumingbelowit.Theobserva- tionthatthelowerpartofFarosUnitisdominatedbylow-pressure parageneses suggests that deformation progressively migrated downwardduringexhumation.TheP-TestimatesofTrotetetal.

(19)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

Fig.13. ContactbetweentheEclogite-BlueschistUnitandMainMarbleUnit(a)Thiscontactischaracterizedbyanaveragedipofthefoliationisabout50westwardand showingalocalgreenschist-faciesretrogression.Allkinematicindicatorsindicatetop-to-the-NEsenseofshear.Bottomtotop,(b)dominosstructuresinmarblesand(c) asymmetricmetabasitepebbleswithinametaconglomeratelevelshowingatop-to-the-NEsenseofshear.(d)Metabasitefullyretrogradedinthegreenschist-faciesconditions isassociatedwith(e)quartz-calciteveinswhichareparallelorperpendiculartothefoliation.Atmicroscale,(f)millimetricshearbandsfilledinchloriteshowingaconsistent top-to-the-NEto−Esenseofshear.(g)Metabasitesformasymmetricpinchboudinageindicatingtop-to-the-NEkinematicsinblueschist-faciescondition.

(2001a,b)plotatslightlyhighertemperature(around600C)than thoseofGroppoetal.(2009),whosepeakisaround560C(Fig.3c).

Whetherthisdiscrepancyisduetodifferentsamplingstrategies ortodifferentpetrologicalapproachesisbeyondthescopeofthis paper.However,thehighertemperatureproposedbyTrotetetal.

(2001b)forthegreenschist-faciesconditionsfitsquitewelltheHT pulseproposedaround19MabyWijbransetal.(1990)basedon

40Ar/39ArdataonphengiteinFarosUnit(seeagesinFig.3aandb).

Furtherpetrologicalandchronologicalstudiesareneededtoclarify theblueschist-togreenschist-faciestransitiononSifnos.

7.3. NatureofthecontactbetweenCheronissosandFarosunits

In this study,we interpret theCOF contactas a top-to-the- northeastductileshearzoneasproposedbyTrotetetal.(2001a) (Figs.4 and14).Atsmall-scale,localbrittledeformationmaybe observed,butnottothepointofsuggestingalarge-scalebrittle

detachment.Locally,brittleorbrittle-ductilekinematicindicators withatop-to-the-SWsenseofshearareobserved,whichledRing etal.(2011)tosuggestthatthiscontactbelongstoatop-to-the- southdetachmentsystem.Ourobservationsindicateinsteadthat thesekinematicindicatorsarerelatedtothesouth-dippinglate- stagenormalfaultsthatcutthroughtheregionalfoliation.

This shear zone along the COF contact is coeval with the greenschist-faciesdeformationobservedinthewholeFarosUnit, andmorelocallyinCheronissosUnit,aswellasalongafewlocal- izedshearzonessuchastheChryssopigiShearZone.TheCOFShear Zonethusbelongstoathickstrainlocalizationzonethatencom- passesthewholeFarosUnitwithadownwardgradientofstrain andprogressivedownwardlocalizationthroughtime,withlocal smallerscaleshearzoneswhereshearinghasbeenpreferentially partitioned.WethenrefertothisthickshearzoneastheApollonia ShearZone.

(20)

Fig.14.AnewmetamorphicmapofSifnos.

Colourscorrespondtothedominantmetamorphicfaciesobservedinthefieldandcolourgradientsshowthegradualtransitionsduetoprogressivetop-to-the-NEshearing deformationandcoevalretrogression(redshowsdominanteclogite-facies,bluedominantblueschist-faciesandgreendominantgreenschist-facies).Thewhitearrows indicatethesenseofshearinallunits.Themainshearzonesareindicatedinthemap.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

7.4. Evolutionofshearzonesandstrainlocalization

AlthoughsomeuncertaintiesremainonthedetailedP-Tevolu- tion,weshowthat,fromtheEocene(45Ma)totheMiocene(19Ma), acontinuumofsyn-syn-blueschisttosyn-greenschisttop-to-the- N/NEshearingalongtheApolloniaShearZoneaccommodatedthe exhumation.Inthenorthernpartoftheisland,peaktoretrograde HP-LTdeformationislocallywellpreservednearVroulidia,without significantgreenschist-faciesretrogressionnordeformation.This partofthetop-to-the-northshearzonewasthusdeactivatedearly

intheexhumationprocess.Thedeformationisprogressivelylocal- izedwithinthemajorApolloniaShearZone,towardthebaseofthe CBUofSifnosduringexhumation.Thislarge-scalestructureappears tobemoreretrograded(fromAEBS-togreenschist-facies)toward itslowerpart.Moreover,progressivelocalizationofdeformationis linkedwitharejuvenationofapparentages,fromnorthern(around 47Ma)tosouthern(30–19Ma)partoftheisland,especiallyshown by40Ar/39ArandRb-Srdataonphengite(seecompilationonFig.3a andb;Altherretal.,1982;Wijbransetal.,1990;Ringetal.,2011;

Bröckeretal.,2013).Hence,fromageodynamicpointofview,we

(21)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

proposethatthisprogressivedownwardlocalizationofstrainfirst occurredatthestageofexhumationwithinthesubductionchan- nel(Eocene,syn-orogenicexhumationsensuJolivetetal.,2003).In alaterstage,strainlocalizationoccurredwithintheback-arcregion (OligocenetoMiocene,post-orogenicexhumation).Theobserved shearzones,intheAEBS-orgreenschist-facies,tendedtolocalize duetorheologicalcontrastalonglithologicalboundariessuchas thebaseoftheMainMarbleUnit.Someshearzones(e.g.,Chrys- sopigi)arelocalizedwithinasinglelithologicalunit. Hence,the downwardmigrationofdeformationcouldbelinkedto1)theini- tiallithologicalheterogeneityoftheCBU.Shearzoneswerethus activeduringsyn-orogenicandpost-orogenicstagesofexhuma- tionshowingthatthekinematicoftheAegeanextensioninthe OligocenetoMiocenewasinfluencedbyheterogeneitiescreated duringburialandsyn-orogenicstage;2)anintensefluidcircula- tionwhichisreflectedbymanysyn-kinematicveins;3)increased thermalinfluxatthebaseofthemetamorphicpileassuggested byvariousauthors(MatthewsandSchliestedt,1984;Schliestedt andMatthews,1987; Avigad,1993;Trotetetal.,2001b).What- evertheactualcauseforthis downwardstrainlocalization one importantconsequenceisthatitleavestheupperpartoftheaccre- tionarycomplexpreservedfromlatedeformationandallowsitto reachthesurfacealmostintact.Thisprocessofprogressivelocal- isationisimportanttoexplainhowpristineblueschists-faciesor eclogite-faciesunitscannowbeobservedatthesurface.

7.5. Tectono-metamorphicevolutionofSifnos

Ourobservationsofthetectono-metamorphicevolutionofthe cycladic blueschists of Sifnos show that, after a phase of pro- gradetop-to-the-SEshearing(Aravadinouetal.,2015),exhumation involvedatop-to-the-NEshearingcoevalwithdecompressionand progressivelocalizationofstraininthelowerpartofthetectonic pile,fromtheEocenetotheEarlyMiocene.Thisevolution thus encompassesboththesyn-orogenicstagewithinthesubduction zoneandthepost-orogenicstageinaback-arcposition.

Inmoredetailsthetectono-metamorphicevolutionofSifnoscan besummarizedinfourstages(Fig.15):

•Before 47 Ma, during the convergence between African and EurasianplatesandthesubductionofthePindosoceanicbasin belowthesouthernmarginofEurasia,theCBUofSifnosrecorded afirstdeformationphaseinthesubductionchannel,creatingan earlyfoliationS1,onlypreservedasinclusionsingarnets,inpar- ticularinthenorthernpartofSifnoswhereHP-LTparageneses arewellpreserved.ThesporadicpreservationofS1 structures doesnotallowconstrainingthekinematicsassociatedwiththis firstdeformationstage.However,weinterpretthelarge-scale foldsobservedinthenorthernpartoftheislandastheconse- quenceofthisfirstductiledeformationevent(Figs.4,7band c).Thistop-to-the-SSWkinematicsmayberelatedtothetop-to- the-SEshearingdescribedonSifnosbyAravadinouetal.(2015) orthetop-to-the-SW senseofshear described intheCBUon SyrosIslandbyPhilipponetal.(2011)andinterpretedbythese authorsassynchronouswiththeprogradehigh-pressuredefor- mationphase.OnSifnos,duringthisfirststageofdeformation inthemid-Eocene,theMarbleComplex,Eclogite-BlueschistUnit andMainMarbleUnitwererespectivelythrustsouthwardonthe topofFarosUnit,buttheamountofdisplacementcannotbefur- therconstrained.AllrocksofSifnoshaveprobablyrecordedthis progradetop-to-the-SWkinematicsthatwasalmostcompletely overprintedbythelaterdeformationphases.

•Between47and30Ma,themetamorphicrocksofSifnosreached peakP-Tconditionsandstartedtheirexhumation.During this syn-orogenicexhumationperiod,asyn-blueschistdeformation phasehasresultedintheformationofthefoliationinEclogite-

BlueschistUnitwithtop-to-the-Nto−NEsenseofshear(Fig.14).

Manyfoldshavedevelopedduringthisphase,somewiththeir axesperpendiculartothetransportdirection;locally,a-typefolds wereformedindicating astrongnon-coaxialshearingcompo- nent.

•From30Ma,whichcorrespondstothebeginningofpost-orogenic extension and formation of the Aegean Sea, P-T conditions evolvedfromAEBS-togreenschist-faciesconditions.Duringthis phase,thedeformationwasmainlydistributedinthewholeFaros Unit,and morelocally inCheronissosUnit.Kinematic criteria indicateatop-to-the-NEsenseofshear.TheentireFarosUnitcan beinterpretedasathickshearzone(ApolloniaShearZone)with strainlocalizationalongtheCOFcontactand,later,nearthebase ofFarosUnitalongdiscreteshearzonessuchastheChryssopigi Shear Zone (Fig. 14). Extensive downward greenschist-facies overprint during this event may be related to enhance fluid circulationandincreasedthermalinfluxatthebaseofthemeta- morphicpile (Matthewsand Schiestedt,1984;Schiestedt and Matthews,1987;Avigad,1990;Trotetetal.,2001b).

•Between19MaandPresent,thetimingofCBUexhumationis constrainedbyzirconfissiontrackdata(Ringetal.,2011).ZFT agesof13–10MasuggestthatFarosUnitwasexhumedacross the250–300Cisothermduringthisperiod.Theyoungestages associatedwithductiledeformationarethoseobtainedonmicas withthe40Ar/39Armethod(Wijbransetal.,1990)around19Ma.

ThelatefoldsF3 developedduringthebeginningofthisperiod andtheyrefoldbothFarosandCheronissosUnit.Thesouthwest- dippingnormalfaultsthatoffsetthemainCOFcontactarelocally low-anglestructuresdisplaying brittle-ductilemicrostructures Fig.5candg).However,theirthrowisnotlargeanditisdifficultto saywhetherthesestructureshadasignificanteffectonthefinal exhumationofFarosUnit.Therefore,thetimingofthetransition fromtop-to-the-NEductileshearing tolate brittletop-to-the- SW normalfaults observedonSifnosis not wellconstrained.

SimilarSW-dippinglistric normalfaultsandflat-ramp system havebeendescribedrespectivelyonFolegandrosIsland(Augier etal.,2015)andonSyrosIsland(Philipponetal.,2011).Likeon Sifnos,faultscrosscuttherethemetamorphicpileoftheCBUand thegreenschist-faciesfoliation,whicharebothassociatedwith ductiletop-to-the-northshearsense.Thesignificanceofthese SW-dippingfaultsisdebated.Ringetal.(2011)interpretedthe contactbetweenCheronissosandFarosUnitasatop-to-the-SW brittledetachment,whichtheycoinedasthe“Sifnosdetachment”

belongingtothe“SouthCycladicDetachmentSystem”outcrop- pingontheislandsofSerifos,IosandSifnos.Thetop-to-the-south senseofshearpreviouslydescribedonIos(Listeretal.,1984)has beenreinterpretedbyHuetetal.(2009)asathrust-relatedshear- ingevent,thuspredatingthetop-to-the-northAegeanextension.

In a more recent paper, Mizera and Behrmann (2015) have addressedthisdebateagainandarguedinfavouroftheexten- sionalmodelfortheCycladicBlueschist/BasementUnitcontact onIos.Theyhavestudiedthedistributionofkinematicindica- torsand quantifiedtheamountofstretchinginthebasement orthogneissandconcludedthatthebasementhasbeenstretched andflattenedbyrespectively70%and40%.Theyusetheupward straingradientinthebasementtoconcludethatthecontactwas mainlyextensionalandtheyestimatethetotaldisplacementdur- ingextensiontosome13km.Theyalsorecognizedthat,before extension,themaincontacthadtobeathrustasshownbyHuet etal.(2009).Themainpointofdisagreementstemsfromdifferent interpretationsofthedeformationinthebasement.Huetetal.

(2009)didnotconsiderthattheupwardstraingradientinthe basementwasindicativeofextensionandwesticktotheirinter- pretation.Itshowstheexistenceofamajorshearzonethere,butit doesnotsaywhetheritwasextensionorcompressional.Besides, the late extension is clearly shown in the overlying cycladic

(22)

Fig.15.Seriesofstep-by-stepnorth-southcross-sectionsoftheAegeandomainfrom65Mato10MamodifiedafterJolivetandBrun(2010).SeelocationinFig.1a.

Reconstructionsindicatethetectono-metamorphicevolutionofSifnos,SyrosandTinos,respectivelyshownbynumbers1,2and3.Thelastcross-section,seelocationin Fig.1b,showingthePresentgeometryoftheseislands.AbbreviationsWCDS,VD,NCDSindicaterespectivelytheWestCycladicDetachmentSystem,theVariDetachment andtheNorthCycladicDetachmentSystem.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(23)

Pleasecitethisarticleinpressas:Roche,V.,etal.,AnatomyoftheCycladicBlueschistUnitonSifnosIsland(Cyclades,Greece).J.Geodyn.

blueschistsbyretrogradetop-to-the-Nshearbandsatallscales, whiletop-to-the-Ssyn-blueschistsshearinghasbeenpreserved onlyinthevicinityofthemaincontact.Suchintensetop-to-the-N shearing,thatHuetetal.(2009)attributetoextensionisobserved allovertheisland,alsointhemaincontactanditisdifficultto confidentlysaywhetherthetop-to-the-Nandtop-to-the-Sshear zonesinthebasementwerecoevalornot.

Grasemann et al. (2012) have described the West Cycladic DetachmentSystem(WCDS)exposedonKea,KythnosandSeri- fosIslands.TheWCDSconsistsintwomaindetachments,aductile oneintrudedbyagranodioriteplutonandabrittleonecuttingthe roofofthesamepluton(seealsoRabillardetal.,2015).Thesenseof shearontheWCDSiseverywheretop-to-the-south,fromSerifosall thewaytoLavrion(Fig.1b).Basedonournewfieldobservationsof thedeformationrecordedonSifnosandespeciallyalongthecontact betweenCheronissosandFarosunits,weproposeaninterpretation significantlydifferentfromthatofRingetal.(2011)whoassociated IosandSifnoswithintheSouthCycladic Detachment.AsAugier etal.(2015)onFolegandrosIslandandJolivetetal.(2015),wesug- gesttoassociatethetop-to-the-SWfaultsthatoffsettheCOFShear ZonetoabrittleexpressionoftheWCDSthatmaybeextendedfrom SerifostooffshoreSifnos.Inthisscenario,theN-S-trendingnormal faultsdippingeitherwestoreastoneithersidesoftheislandare takentoreflectthelatestbrittlestagesaccommodatingtheendof exhumationonSifnos.

7.6. ImplicationsfortheexhumationoftheCycladicBlueschist Unit(CBU)

Currentassumptionsonthetectonicandmetamorphichistory oftheCBUneedtoberevisedin thelightof ournewobserva- tions.ForsterandLister(2005)proposedareconstructioninvolving thesuccessionofseveralsubduction/exhumationepisodeswith repeatedinversionofthesenseofmotionalongthemaincontacts.

However,theexhumationoftheCBUismainlycharacterizedbya top-to-the-Nto−EductiledeformationsincetheEocenewith,most notably,thesamemetamorphicpeakconditionsacrossthewhole pile.Thesecanhardlybereconciledwiththeinversionshypothe- sizedfortheevolutionoftheCBUonSifnos.Basedontheextrusion wedgemodel ofChemenda etal. (1995),Ringand Reischmann (2002)suggestedadecouplingofcrustalunitsaccommodatedby adetachmentatthetopandathrustatthebasetoexplainapart ofCBUexhumation.Brunand Faccenna(2008)proposedasim- ilarmodel withanextremelocalizationofstrainatthetopand baseoftheCBU,theirmodelalsoemphasizingtheimportanceof slabretreattofavourexhumation.However,ourfieldobservations showtheexistenceofseveralshearzonesactivesincetheEocene duringexhumation,showingthattheCBUdidnotbehaveasasingle coherentunit.

Thisstudyhasclarifiedsomeoftheuncertaintiesaboutthegen- eralstructureoftheCBUofSifnos,whichshowssomesimilarities withSyrosIsland.Indeed,onSyrosthemetamorphicpeakisesti- matedaround20kbarand500–550C(Trotetetal.,2001b)and datedaround52Ma(Lagosetal.,2007).TheHP-LTparagenesesare alsowellpreservedandthesyn-exhumationkinematicsarechar- acterizedbytop-to-the-Esenseofshearactiveinblueschist-facies andgreenschist-faciesconditions(Trotetetal.,2001a,b;Laurent etal.,2016).Hence,theoverallstructureofSyrosisverysimilar tothatofSifnoswiththenotableadditionoftheVariDetachment croppingoutonSyros.Bothislandsshowthesamearchitecture withtheuppermostunitsbelowthemaindetachmentdisplaying thebest-preservedHP-LTparageneseswithaprogressivelocaliza- tionofdeformationtowardthebaseofthetectonicstackduring exhumation(seeTrotetetal.,2001aandLaurentetal.,2016for SyrosIsland).However,thisEocenesyn-orogenicexhumationgra-

dientisassociatedwithdifferentshearingdirections(E-vergingon Syros,N-NE-vergingonSifnos;Trotetetal.,2001a,b).Everywhere else,theCBUshows mostlytop-to-the-N orNEkinematic indi- catorsrelated tosyn-blueschistexhumation.Thesearefoundto varyaccordingtotheirpositionwithinthearcsubduction,north- directedinthefront,(e.g.,Ios),moreeast-directedonthenorthern sideofthearc(e.g.,Andros,Tinos,Fig.1b).

ThehistoryofexhumationoftheCBUthusinvolvedathrustat thebase(seenonIosorSikinos),amaindetachmentatthetop (theVariDetachmentseenonSyros;Trotetetal.,2001a;Soukis andStöckli,2013;Laurentetal.,2016)andadistributionofstrain withintheexhumedunitalongaseriesofshearzonessyntheticof themainupperdetachment(top-to-the-Nor−E).Sotheexhuma- tionscenarioshouldbeintermediatebetweentheextrusionmode where allthe deformation is concentrated atthe topand base and a subductionchannel inthe senseofEngland and Holland (1979)orShreveandCloos(1986)wherethedeformationisfully distributed.WesuggestthatHPunitsareprogressivelydetached fromthesubductinglithospherewhentheyreachthepeakofpres- surebytop-to-the-Ssyn-HPthrustsandarethenexhumedwithin thechannel,progressivelyshearedtop-to-the-Nor−NEwhenthe approachtheroofofthechannel,likeinJolivetetal.(2005).Pre- ciselydatingthepeakofmetamorphisminthedifferentunitsas wellasstrainlocalizationalongthemainshearzonewouldhelp reachingaconsensusonthisquestion.

AftertheEocenesyn-orogenicepisode,exhumationwascom- pletedfrom35to30MaduringtheformationoftheAegeanSea bycrustalthinningandaccommodatedbytheNCDS(Jolivetetal., 2010),theNaxos-Parosdetachment(Gautieretal.,1993)orthe WCDS(Grasemannetal.(2012).Thispost-orogenicexhumationis characterizedbyaprogressivelocalizationofdeformationalong extensionalshearzonesandaconsistentsenseofshearduringthe Oligo-Miocene.ItiswellexpressedonTinos,markedbyaNE-SW gradientofnon-coaxialstrainacrossamajorextensionalshearzone (Parraetal.,2002).Agreenschist-faciesdeformationgradient,asso- ciatedtotheNCDS,separatestheCBUfromtheUpperUnit.The top-to-the-northretrogradeshearingdeformationobservedonIos isprobablyrelatedtothisepisode(Huetetal.,2009).Radiometric agesshowthatthisepisodeisalsorecordedonSifnosduringthe latelocalizationofshearingtowardthedeeppartsoftheedifice.

Wethensuggestthatsouth-dipping brittlenormalfaultsare thebrittleexpressionoftheWCDS.TheCBUofSifnosarelocalized withinthefootwalloftheWCDS,justasKea,KythnosandSerifos, butprobablydeeperandtheydidnotseetheintenseductileshear- ingassociatedwiththeWCDS,theyonlyrecordedthisextension assomelatebrittlenormal faults.Similarsouth-dippingnormal faultsareobservedonFolegandrosIsland, furthertothesouth- eastandthesearetheonlyexpressionoftheWCDSthere.Atthis period,theCBUofSifnoshasundergonepenetrativetop-to-the-NE deformationwhereastheCBUofSerifoshasrecordedpost-orogenic deformationwithtop-to-the-Wsenseofshear.Apossibilityisthat themaindetachment(WCDS)associatedwithductiledeformation diesouttowardthesoutheastorreachesthesurfaceoffthewest coastofSifnosandFolegandrosIslands.

Combining our new structural observations with published petrological and geochronological data, we propose a tectonic modelfortheexhumationoftheCBUintheAegeandomainwith particularemphasisplacedonevolutionoftheCycladicislandsof Sifnos,SyrosandTinos.Theinitiallithosphericscalegeometryof thesubductionandthedispositionofthedifferentunitsaretaken fromJolivetandBrun(2010).Ourmodelispresentedasaseries ofstep-by-stepnorth-southcross-sectionsoftheAegeandomain from50Matothepresentdaywithdifferentnumberstrackingthe evolutionofSifnos(1),Syros(2)andTinos(3)(seeFig.15).

Early Eocene(50Ma)to Late Eocene-EarlyOligocene (30–35 Ma):

Références

Documents relatifs

(2007) model with labour adjustment costs, we showed that the e¢cient unit root tests proposed by Ng and Perron (2001) are more powerful than the standard ADF unit root test..

For specific requests about statistical resources and databases, you can address to the documentalist responsible for the document collection, which is in an

This map, based on macrostructural criteria, highlights a strong strain gradient in both intrusions from base to top, when approaching the Gialiskari

during retrogression of eclogites in blueschist-facies conditions (Fig. This characteristic 373.. top-to-the east ductile deformation increases up-section toward the

Copyright and disclaimer: The project EASIT has received funding from the European Commission under the Erasmus+ Strategic Partnerships for Higher Education programme, grant

Top-to-the-north deformation exhibits series of strain gradients in the vicinity of four main intra-Cycladic Blueschists unit shear zones and the Cycladic Blueschists/Cycladic

Namely, if {L,} is an interpolating sequences of hyperp lanes, then {aj\ is an interpolating sequence of points, so they must satisfy Varopoulos's necessary condition (cf.. the

Representations of linear functionals In this section we prove the following main result of the paper.. Theorem