• Aucun résultat trouvé

HOT ELECTRON EMISSION FROM SILICON UNDER PULSED LASER EXCITATION

N/A
N/A
Protected

Academic year: 2021

Partager "HOT ELECTRON EMISSION FROM SILICON UNDER PULSED LASER EXCITATION"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00221653

https://hal.archives-ouvertes.fr/jpa-00221653

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HOT ELECTRON EMISSION FROM SILICON UNDER PULSED LASER EXCITATION

M. Bensoussan, J. Moison

To cite this version:

M. Bensoussan, J. Moison. HOT ELECTRON EMISSION FROM SILICON UNDER PULSED LASER EXCITATION. Journal de Physique Colloques, 1981, 42 (C7), pp.C7-149-C7-153.

�10.1051/jphyscol:1981717�. �jpa-00221653�

(2)

H O T ELECTRON EMISSION FROM SILICON UNDER PULSED LASER E X C I T A T I O N

M. Bensoussan and J.M. Moison

Centre National d'études des Têlêcommunioations, Département OMT/PMS, 196 rue de Paris, 92220 Bagneux, France

Résumé : - Sous excitation modérée par un laser â impulsions, le silicium émet des électrons dans le vide à des énergies de photon bien en dessous du travail de sortie $. Deux processus distincts sont observés : 1) une photo- émission à deux quanta à de faibles flux de photon et à de fortes énergies de photon (> $/2) et 2) une .thermoémission à de forts flux de photon ou à de faibles énergies de photon (< $/2). Alors que le premier effet donne des infor- mations sur les propriétés de structures de bande électronique du silicium

sous excitation, le second sonde les propriétés du plasma de porteurs photogé- nérés. La température de ce plasma est évaluée à (1800 ± 100) K pour une irra- diance de (0.04 Jcm , 2ns).

Abstract : - Under moderate pulsed laser excitation, silicon is shown to emit electrons in the vacuum at photon energies well below the work function $. Two distinct processes are observed, 1) a two-quantum photoemission at low photon fluxes and high photon energies (> $/2) arid, 2) a thermoemission at high pho- ton fluxes or low photon energies (< §/2). While the first effect yields infor- mation about the electronic structure of silicon under irradiation, the second one probes the properties of the carrier plasma. The temperature of this plas- ma has been evaluated to (1800 + 100) K for (0.04 Jem , 2 ns) irradiances.

1. Introduction - In the past few years, the behavior of semiconductors under intense pulsed laser excitation has attracted a great deal of attention, and several anoma- lous effects have been attributed to the high carrier densities involved (1). The in- terest for such topics has been renewed and focused by the controversy on pulsed la- ser annealing of silicon (2). It is usually agreed anyhow, that the formation of a hot electron-hole plasma precedes and initiates the observed effects. If thermaliza- tion of this plasma takes place, many electrons are likely to be driven high in the conduction band, and a number of them higher than the vacuum level. An electron emis- sion should then be observed, even when the excitation photon energy is lower than the surface barrier potential f. A study of these electrons (overall yields, angular distribution, energy distribution) must yield information about the "heating" mecha- nisms. Up to now, most experiments of this kind have been carried out on metals (3-6).

We report here the preliminary results of such a study on crystalline silicon.

2. Experimental set-up/results : - The experimental set-up has been described else- where (7). The sample is a (111) n-doped silicon wafer, cleaned and annealed under ultra-high vacuum to obtain a (7x7) surface structure, as checked by LEED/Auger mea- surements. Optical excitation is performed with a pulsed dye laser (pulse duration

= 2 ns, rep. rate = 20 Hz). The characteristics of the beam impact on the'sample,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981717

(3)

C7- 150 JOURNAL DE PHYSIQUE

i .e. energy, s p a t i a l and temporal energy d i s t r i b u t i o n , a r e c a r e f u l l y monitored and a peak photon f l u x Jph i s deduced. Photoemitted e l e c t r o n s a r e c o l l e c t e d i n a vacuum diode set-up. The photocurrent p u l s e i s monitored on a f a s t - r i s e o s c i l l o s c o p e and i n t e g r a t e d i n an a m p l i f i e r g i v i n g t h e charge/pulse Q.

A t photon energies between Q i 2 and 0, two d i s t i n c t behaviors a r e observed. A t low 25 -2 -1

photon fluxes (Jph < 5x10 cm s ), t h e photocharge/pulse Q i s p r o p o r t i o n n a l t o t h e square of t h e l a s e r energy and t o t h e r e c i p r o c a l o f t h e impact area. The r e l a - t i o n between Jph and the e l e c t r o n f l u x Je i s then :

Je = B(Eph) Jph 2

This r e l a t i o n i m p l i e s t h a t t h e photocharge c u r r e n t p u l s e d u r a t i o n i s s h o r t e r than t h e l a s e r p u l s e d u r a t i o n by about 1.4, which has been checked a t h i g h photon energy and h i g h f l u x . Then t h e r e l a t i o n i s c l e a r l y demonstrated over several orders o f ma- g n i t u d e (7) between @/2 = 2.3 eV (8) and 3.7 eV. The B(Eph) spectrum has been dedu- ced (9)

.

B i s an i n c r e a s i n g f u n c t i o n o f Eph and f a l l s t o zero below @/2.

On t h e o t h e r hand, a t h i g h e r photon f l u x e s ,

9

increases much more r a p i d e l y w i t h Jph. Again, the photocurrent p u l s e d u r a t i o n c o u l d be measured only a t h i g h values, and was found t o be about equal t o the l a s e r p u l s e d u r a t i o n . For comparison purposes, Je values were c a l c u l a t e d w i t h t h e assumption t h a t i t i s t r u e f o r lower photon fluxes. The Je vs Jph curve i s p l o t t e d i n f i g u r e 1.

F i g . 1 : E l e c t r o n f l u x Je vs

jShoton

f l u x Jph.

he

t r a n s i t i o n between t h e two behaviors takes p l a c e a t photon f l u x e s o f

( 7 + 2 ) ~ 2 0 ~ ~ c m - ~ s - ~ f o r photon energies ranging from 2.3 eV t o 3.7 eV. Below @/2, B i s zero and o n l y t h e second behavior i s observed from low photon f l u x e s upwards. I t

25 -2 -1 .

i s shown i n f i g u r e 2 f o r photon fluxes below 8x10 cm s 1.e. t h e range where t h e f i r s t behavior i s dominant above @/2.

3. Discussion :

-

The basic photon-semiconductor i n t e r a c t i o n f o r Eph > Eg i s t h e e l e c - t r o n - h o l e p a i r c r e a t i o n . Obviously, f o r Eph < @ t h i s mechanism cannot account f o r e l e c t r o n emission above the vacuum l e v e l . The processes by which t h e photon energy i s

(4)

l e v e l s , near t h e o p t i c a l damage l i m i t o r t h e l a s e r annealing l e v e l , which leads t o spurious effects. Indeed, most authors switched t o picosecond e x c i t a t i o n i n o r d e r t o a v o i d "thermal e f f e c t s " ( 4 )

.

A c t u a l l y , i t seems t h a t , i n t h e nanosecond range, seve- r a l processes can be observed. I t may be noted, b e f o r e any discussion o f bur r e s u l t s , t h a t a l l our measurements were r e v e r s i b l e and t h a t no v i s i b l e degradation o f t h e sample was observed, i n agreement w i t h t h e c l a s s i c a l value o f the annealing l e v e l ( 1 Jcm2for a 15 ns, 0.53

v

l a s e r pulSe(lO),when o u r t o p values a r e about Or.07 Jcm2).

25 -2 -1 Our experiments c l e a r l y show t h a t , a t moderate i r r a d i a n c e l e v e l s (Jph<5xlO cm s ) and photon energies above @/2, two-quantum photoemission i s t h e dominant process. We suggested two mechanisms accounting f o r it, 1) two-photon a b s o r p t i o n w i t h e i t h e r r e a l o r v i r t u a l t r a n s i t i o n s (genuine two-photon a b s o r p t i o n o r cascade o f one-photon absorp- t i o n s ) and, 2) n o n - r a d i a t i v e Auger recombination ( 7)

.

A t h i g h e r i r r a d i a t i o n l e v e l s , o r a t photon energies below @/2 where two-quantum photoemission i s impossible, ano- t h e r mechanism become much more e f f e c t i v e . S i m i l a r behaviors have already been obser- ved on metals (3). Owing t o t h e i r occurence a t low photon energy and t h e i r very f a s t increase w i t h i r r a d i a n c e , they have u s u a l l y been a t t r i b u t e d t o thermoemission, i . e . emission o f t h e e l e c t r o n s heated above t h e vacuum l e v e l by t h e r m a l i z a t i o n o f t h e c a r r i e r plasma, o r o f the whole c r y s t a l . We s h a l l examine t h e r e s u l t s o f f i g u r e 2 un- der t h i s assumption.

I t i s u s u a l l y admitted t h a t t h e r r n a l i z a t i o n i n s i d e t h e c a r r i e r plasma takes p l a c e i n t h e picosecond range by c a r r i e r - c a r r i e r i n t e r a c t i o n s as Auger recombination and impact i o n i z a t i o n (11). Thermalization o f t h e c a r r i e r plasma w i t h t h e l a t t i c e i s pro-

(5)

C7-152 JOURNAL DE PHYSIQUE

bably very much slower, although t h e s u b j e c t i s s t i l l a m a t t e r o f discussion. Anyhow, as we a r e i n t e r e s t e d i n t h e e l e c t r o n gas f o r thermionic c a l c u l a t i o n purposes, we can assume t h a t , w i t h i n t h e l a s e r pulse, t h e e l e c t r o n gas i s i n constant thermal e q u i l i - brium. Then i t s temperature Te can be d e f i n e d and deduced from Je by use o f the

-2 -1 29 2

Richardson equation (12 ) : (Je cm s ) = 10 (kTe) exp(-fia/kTe), where kTe i s expres- sed i n eV and where Qa i s t h e a c t u a l work f u n c t i o n . From t h e value o f t h e two-quan- tum photoemission t h r e s h o l d (3/2

+

0.1 eV), obtained a t t h e i r r a d i a n c e l e v e l s t h a t we a r e now considering, we i n f e r t h a t t h e s u r f a c e b a r r i e r i s n o t much a l t e r e d and

Qa = 4.6

+

0.2 eV. To deduce t h e t r u e values of Je from Q measurements, t h e photo- c u r r e n t p u l s e d u r a t i o n should be measured, even a t low photon f l u x e s . T h i s i s u n f o r - t u n a t e l y impossible w i t h t h e low c u r r e n t s involved. The assumption t h a t t h i s dura- t i o n i s , on t h e whole range o f photon f l u x , equal t o t h e l a s e r pulse d u r a t i o n i s doubtful. Indeed, c o n s i d e r i n g t h e f a s t increase o f Q w i t h Jph, one would expect a r a t h e r s h o r t e r photocurrent pulse duration, by a f a c t o r 3. The lengthening o f t h e thermoemission d u r a t i o n can be r e l a t e d t o observations performed a t v e r y h i g h i r r a - d i a t i o n l e v e l s showing t h a t t h e l a s e r pulse e f f e c t s l i n g e r nanoseconds a f t e r i t s end (13). I n view of these remarks, t h e lower Je values o f f i g u r e 2 may be underes- t i m a t e d by a f a c t o r 3. The e l e c t r o n temperatures deduced from them by use o f the Richardson equation w i t h Qa = 4.6 eV a r e p l o t t e d as a f u n c t i o n o f Jph i n f i g u r e 3.

The i n c e r t i t u d e on these temperatures r e s u l t i n g from t h e above discussion o f Qa and Je, i s about

+

100 K. I n view o f t h e h i g h temperatures obtained (1600/2000 K) and

F i g . 3 : E l e c t r o n temperature Te

--

vs photon f l u x Je.

o f the moderate i r r a d i a t i o n l e v e l s considered, i t i s c l e a r t h a t t h e r m a l i z a t i o n o f t h e c a r r i e r plasma w i t h t h e l a t t i c e i s n o t achieved d u r i n g thermoemission and, when achieved, leads t o a peak l a t t i c e temperature w e l l below t h e m e l t i n g p o i n t . A rough estimate o f t h e s p e c i f i c heat i n v o l v e d i n t h e e l e c t r o n gas can be made by t h e r e l a - t i o n c = atL(dJph/dTe), where tL i s t h e l a s e r p u l s e d u r a t i o n and a t h e absorption

(6)

under h i g h i r r a d i a t i o n (13), we f i n d 0.008 < c ( J C ~ - ~ K - ' ) < 0.6. I f a mere heat ex- change between c a r r i e r plasma and l a t t i c e took place, the palsmon energy remaining low (11 ), t h e peak b u l k temperature would range between 5 K and 500 K, the upper boundary value being probably overestimated. T h i s f a c t , t o g e t h e r w i t h t h e r a t h e r s h o r t photocurrent p u l s e length, induces us t o b e l i e v e t h a t our experiments r e f e r t o t h e p r o p e r t i e s o f t h e "primary" c a r r i e r plasma obtained a t moderate i r r a d i a n c e l e v e l s . The mechanisms considered here, which a r e t h e precursors and p o s s i b l y t h e i n i t i a t o r s o f oulsed l a s e r annealing a r e under f u r t h e r study by now i n our laboratcry.

References

(1) W.B. Gauster and J.C. Bushell, J. Appl. Phys.

41,

3850 (1970) Y.S. L i n and K.L. Wang, Appl. Phys. L e t t .

2,

363 (1979).

D.H. Auston e t a l . , Appl. Phys. L e t t .

33,

437 (1978).

( 2 ) D.H. Auston e t a l . , i n "Laser-Solid I n t e r a c t i o n and Laser Processing"

(Am. I n s t . o f Physics, New York 1979).

J.A. Van Vechten, R. Tsu, W. S a r i s , D. Hoonhout, Phys. L e t t .

E ,

417 (1979) (3) E.M. L o g o t h e t i s and P.L. Hartman, Phys. Rev.

187,

460 (1969).

(4) J.H. Bechtel, W.L. Smith, N. Bloembergen, Phys. Rev.

E,

4557 (1977).

(5) R. Yen, P. L i u , M. Dagenais, N. Bloembergen, Opt. Comm.

31,

334 (1979).

(6) P.P. Barashev, Phys. S t a t . S o l i d i (a)?, 9 (1972).

(7) M. Bensoussan, J.M. Moison, B. Stoesz, C. Sebenne, Phys. Rev.

823,

992 (1981) (8) C. Sebenne, Bolmont, Guichar, Balkanski, Phys. Rev.

812,

3280 (1975).

(9) J.M. Moison, M. Bensoussan, S o l i d S t a t e Comm., on press.

(10) R.F. Wood, and G.E. G i l e s , Phys. Rev.

E,

2923 (1981).

(11) E.J. Yoffa, Phys. Rev. E,ZJ 2415 (1980).

(12) See f o r i n s t a n c e E. Spenke " E l e c t r o n i c Semiconductors" (1958).

(13) A. k y d i n l i , H.L$l. Lo, M.C. Lee and A. Compaan, Phys. Rev. L e t t .

-

46, 1640 (1981).

Références

Documents relatifs

The 1236 cm - 1 band was not found in any of the other piperidyl species studied, and is used as a quantitative indicator of the concentration of ~ N H groups remaining in

Cite this article as: Marie-Cardine et al.: Novel therapeutic and diagnostic antibodies against KIR3DL2, a unique tumor antigen overexpressed on subtypes of T cell lymphomas.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In a previous study, our group could show pituitary volume increase in first episode and ARMS patients with later transition to psychosis (ARMS-T).. However, there are no

Preferential field evaporation of one species is common in alloys that contain elements that differ significantly in their evaporation After pulsed laser assisted

The residual spectrum and KL-edge absorption cross sections. low frequency left in the EXAFS by the smooth polynomial which follows gradually the double excitation edge.

It is proposed to measure the concentration of metastable nuclei formed in isotopes having long-lived metastable levels which can be populated by the decay of the state