• Aucun résultat trouvé

First and second order rational solutions to the Johnson equation and rogue waves

N/A
N/A
Protected

Academic year: 2021

Partager "First and second order rational solutions to the Johnson equation and rogue waves"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-01806297

https://hal.archives-ouvertes.fr/hal-01806297

Preprint submitted on 1 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

First and second order rational solutions to the Johnson equation and rogue waves

P Gaillard

To cite this version:

P Gaillard. First and second order rational solutions to the Johnson equation and rogue waves. 2018.

�hal-01806297�

(2)

First and second order rational solutions to the Johnson equation and

rogue waves.

P. Gaillard, Universit´ e de Bourgogne,

Institut de math´ ematiques de Bourgogne, 9 avenue Alain Savary BP 47870

21078 Dijon Cedex, France : E-mail : Pierre.Gaillard@u-bourgogne.fr

Abstract

Rational solutions to the Johnson equation are constructed as a quo- tient of two polynomials inx,yandtdepending on several real parame- ters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N(N+ 1) inx, andt, 4N(N+ 1) iny, depend- ing on 2N−2 real parameters for each positive integerN. We construct explicit expressions of the solutions in the casesN = 1 andN = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.

Key Words : Johnson equation, Fredholm determinants, wronskians, ratio- nal solutions, rogue waves.

PACS numbers :

33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

We consider the Johnson equation (J) which can be written in the form (ut+ 6uux+uxxx+ u

2t)x−3uyy

t2 = 0, where subscriptsx, yandt denote partial derivatives.

This equation first appears first in 1980, in a paper written by Johnson [1]. It gives the description of waves surfaces in shallow incompressible fluids [2]-[3].

This equation was widely accepted, and was later derived for internal waves in a stratified medium [4]. The physical model of this equation have the same degree

(3)

of universality as the Kadomtsev-Petviashvili equation [5].

The first solutions were constructed in 1980 by Johnson [1]. Various research were led and more general solutions of this equation were obtained, for example, some special solutions were found in [6]. In 2007, some important classes of so- lutions were obtained by using the Darboux transformation [7]. This equation is dissipative and there is no soliton-like solution with a linear front localized along straight lines in the (x, y) plane. The Johnson equation allows explaining the existence of the horseshoe like solitons and multisoliton solutions quite na- turally. Other extensions have been considered as for example the elliptic case [8].

In this paper, we study rational solutions of the Johnson equation. We presents multi parametric families of rational solutions as a quotient of two polynomials in x, y and tdepending on several real parameters. These solutions presented belong to an infinite hierarchy of rational solutions written in terms of polyno- mials of degrees 2N(N+ 1) inx,t and 4N(N+ 1) in y, depending on 2N −2 real parameters for each positive integer N. The study here is limited to the simplest cases whereN= 1 and N = 2.

The patterns of the modulus of the solutions in the (x, y) plane for different values of timet and parameters are studied.

2 First order rational solutions

We consider the Johnson equation

(ut+ 6uux+uxxx+ u

2t)x−3uyy

t2 = 0, (1)

We have the following result at orderN= 1 : Theorem 2.1 The functionv defined by

v(x, y, t) =−2|n(x, y, t)|2

d(x, y, t)2 (2)

where

n(x, y, t) = 144x2+ (6912t+ 24y2t)x+ 108 + 576iyt+y4t2+ 82944t2 (3) and

d(x, y, t) = 144x2+ (6912t+ 24y2t)x−36 +y4t2+ 82944t2, (4) is a rational solution to the Johnson equation (1), quotient of two polynomials

|n(x, y, t)|2 andd(x, y, t)2 of degree4 inx,t and8in y.

(4)

ProofWe have to replace the expression of the solution given by (2) and check that (1) is verified.

2

The modulus of the solution for different values oftare represented in the plane (x, y). It can be seen that as t tends to 0, the front of the solution contracts and is concentrated in a small strip along they axis.

When the timetgrows, we get peaks on special curves.

Figure 1. Solution of order 1 to (1), on the left fort= 0; in the center for t= 0,01; on the right fort= 1.

3 Second order rational solutions depending on 2 parameters

The Johnson equation defined by (1) is always considered. For this second order, we get the rational solutions given by :

Theorem 3.1 The functionv defined by

v(x, y, t) =−2|n(x, y, t)|2

d(x, y, t)2 (5)

is a rational solution to the Johnson equation (1), quotient of two polynomials

|n(x, y, t)|2 andd(x, y, t)2 of degree 12 in x, t and24 in y depending on 2 real parametersa1,b1.

Polynomialsnanddare respectively given by

n(x, y, t) =A(x, y, t) +iB(x, y, t),d(x, y, t) =C(x, y, t) +iD(x, y, t) with A(x, y, t) =P6

k=0ak(y, t)xk, B(x, y, t) =P6

k=0bk(y, t)xk, C(x, y, t) =P6

k=0ck(y, t)xk, D(x, y, t) =P6

k=0dk(y, t)xk,

a6 = −2985984, a5 = (−1492992y2 429981696)t, a4 = 17915904tyb1+ (−311040y4 143327232y225798901760)t2+ 11197440a1

2+ 2239488b1

26718464, a3 = (−34560y6 17915904y4−5159780352y2−825564856320)t3+(5971968y3b1+1719926784yb1)t2−17915904a1b1+ (3732480y2a1

2+ 746496y2b1

22239488y271663616ya1+ 1074954240a1

2+ 214990848b1 2 931627008)t, a2= (2160y8995328y6358318080y482556485632y214860167413760)t4

(5)

2799360a1

43359232a1 2b1

2559872b1

4+ (746496y5b1+ 286654464y3b1+ 61917364224yb1)t3+ (466560y4a1

2+93312y4b1

2−279936y4−17915904y3a1+214990848y2a1

2+35831808y2−5159780352ya1+ 38698352640a1

2+7739670528b1

2−43858132992)t2+8398080a1

2+8398080b1

2+(−4478976y2a1b1 26873856ya1

2b18957952yb1

3+ 100776960yb11289945088a1b1)t+ 8398080, a1= (−72y10 20736y811943936y63439853568y4495338913792y2142657607172096)t5+ (41472y7b1+ 11943936y5b1+3439853568y3b1+990677827584yb1)t4+4478976a1

3b1+4478976a1b1

3+(25920y6a1 2+ 5184y6b1

215552y61492992y5a1+13436928y4a1

24478976y4b1

2+25380864y4573308928y3a1+ 3869835264y2a1

21289945088y2b1

2+ 2149908480y2123834728448ya1+ 619173642240a1 2+ 123834728448b1

2866843099136)t3+(373248y4a1b14478976y3a1

2b11492992y3b1

3+16796160y3b1 1289945088ya1

2b1429981696yb1

3+ 3117367296yb130958682112a1b1)t2+ (466560y2a1 4 559872y2a1

2b1

293312y2b1

4+1399680y2a1

2+1399680y2b1

2+17915904ya1

3+53747712ya1b1 2 134369280a1

4161243136a1 2b1

226873856b1

4+ 1399680y267184640ya1+ 618098688a1 2+ 188116992b1

2+ 1048080384)t, a0= (−y12248832y820639121408y4570630428688384)t6+ 46656a1

6+139968a1 4b1

2+139968a1 2b1

4+46656b1

6+(864y9b1+143327232y5b1+5944066965504yb1)t5+ (540y8a1

2+108y8b1

2324y841472y7a1+248832y6a1

2248832y6b1

2+1327104y611943936y5a1+ 89579520y4a1

2+17915904y4b1

2+89579520y43439853568y3a1+20639121408y2a1

220639121408y2b1 2 990677827584ya1+3715041853440a1

2+743008370688b1

26191736422400)t4279936a1

42519424a1 2b1

2 2239488b1

4+ (−10368y6a1b1186624y5a1

2b162208y5b1

3+ 699840y5b1+ 8957952y4a1b1 71663616y3a1

2b1+ 23887872y3b1

3179159040y3b1+ 2579890176y2a1b115479341056ya1 2b1 5159780352yb1

3+ 16769286144yb1247669456896a1b1)t3+ (−19440y4a1

423328y4a1 2b1

2 3888y4b1

4+ 58320y4a1

2+ 58320y4b1

2+ 1492992y3a1

3+ 4478976y3a1b1

2 8957952y2a1 4+ 8957952y2b1

4+ 58320y45598720y3a122394880y2a1

2165722112y2b1

2+ 429981696ya1 3+ 1289945088ya1b1

2−1612431360a1

4−1934917632a1 2b1

2−322486272b1

4+107495424ya1+9997074432a1 2 322486272b1

2+ 13436928000)t2734832a1

2734832b1

2+ (373248y2a1

3b1+ 373248y2a1b1 3+ 1119744ya1

4b1+2239488ya1 2b1

3+1119744yb1

5−28553472ya1

2b1−33032448yb1

3+107495424a1 3b1+ 107495424a1b1

335271936yb1+ 429981696a1b1)t+ 2099520

b6= 5971968, b5= (2985984y2+859963392)t, b4=,(622080y4+286654464y2+51597803520)t2 11197440a1

22239488b1

2+(17915904yb1+35831808y)t+13436928, b3= (69120y6+35831808y4+ 10319560704y2+1651129712640)t3+(5971968y3b1+11943936y31719926784yb1+3439853568y)t2+ 17915904a1b1+ (3732480y2a1

2746496y2b1

2+ 4478976y2+ 71663616ya11074954240a1 2 214990848b1

2+ 1863254016)t, b2= (4320y8+ 1990656y6+ 716636160y4+ 165112971264y2+ 29720334827520)t4+ 2799360a1

4+ 3359232a1 2b1

2+ 559872b1

4+ (746496y5b1+ 1492992y5 286654464y3b1+573308928y361917364224yb1+123834728448y)t3+(466560y4a1

293312y4b1 2+ 559872y4+ 17915904y3a1214990848y2a1

271663616y2+ 5159780352ya138698352640a1 2 7739670528b1

2+87716265984)t28398080a1

28398080b1

2+(4478976y2a1b1+26873856ya1 2b1+ 8957952yb1

3100776960yb1+ 1289945088a1b1+ 53747712y)t16796160, b1 = (144y10+ 41472y8+ 23887872y6+ 6879707136y4+ 990677827584y2+ 285315214344192)t5+ (41472y7b1+ 82944y711943936y5b1+ 23887872y53439853568y3b1+ 6879707136y3990677827584yb1+ 1981355655168y)t44478976a1

3b14478976a1b1

3+ (−25920y6a1

25184y6b1

2+ 31104y6+ 1492992y5a1−13436928y4a1

2+4478976y4b1

2−50761728y4+573308928y3a1−3869835264y2a1 2+ 1289945088y2b1

24299816960y2+ 123834728448ya1619173642240a1

2123834728448b1 2+ 1733686198272)t3+(373248y4a1b1+4478976y3a1

2b1+1492992y3b1

3−16796160y3b1+1289945088ya1 2b1+ 429981696yb1

3+8957952y3−3117367296yb1+30958682112a1b1−859963392y)t2+(466560y2a1 4+ 559872y2a1

2b1

2+93312y2b1

4−1399680y2a1

2−1399680y2b1

2−17915904ya1

3−53747712ya1b1 2+ 134369280a1

4+ 161243136a1 2b1

2+ 26873856b1

42799360y2+ 67184640ya1618098688a1 2 188116992b1

22096160768)t, b0= (2y12+ 497664y8+ 41278242816y4+ 1141260857376768)t6 46656a1

6139968a1 4b1

2139968a1 2b1

446656b1

6+ (−864y9b1+ 1728y9143327232y5b1+ 286654464y55944066965504yb1+ 11888133931008y)t5+ (540y8a1

2108y8b1

2+ 648y8+ 41472y7a1248832y6a1

2+248832y6b1

22654208y6+11943936y5a189579520y4a1

217915904y4b1 2 179159040y4+ 3439853568y3a120639121408y2a1

2+ 20639121408y2b1

2+ 990677827584ya1 3715041853440a1

2743008370688b1

2+12383472844800)t4+279936a1

4+2519424a1 2b1

2+2239488b1 4+ (10368y6a1b1+ 186624y5a1

2b1+ 62208y5b1

3699840y5b18957952y4a1b1+ 71663616y3a1 2b1 23887872y3b1

3+373248y5+179159040y3b12579890176y2a1b1+15479341056ya1

2b1+5159780352yb1 3 16769286144yb1+247669456896a1b151597803520y)t3+(19440y4a1

4+23328y4a1 2b1

2+3888y4b1 4 58320y4a1

258320y4b1

21492992y3a1

34478976y3a1b1

2+ 8957952y2a1

48957952y2b1 4 116640y4+5598720y3a1+22394880y2a1

2+165722112y2b1

2429981696ya1

31289945088ya1b1 2+ 1612431360a1

4+1934917632a1 2b1

2+322486272b1

4107495424ya19997074432a1

2+322486272b1 2 26873856000)t2+ 734832a1

2+ 734832b1

2+ (373248y2a1

3b1373248y2a1b1

31119744ya1 4b1 2239488ya1

2b1

31119744yb1

5+28553472ya1

2b1+33032448yb1

3107495424a1

3b1107495424a1b1 3+ 35271936yb1429981696a1b133592320y)t4199040

c6=−2985984, c5= (−1492992y2−429981696)t, c4= 17915904tyb1+(−311040y4−143327232y2 25798901760)t2+11197440a1

2+2239488b1

2+2239488, c3= (−34560y6−17915904y4−5159780352y2 825564856320)t3+ (5971968y3b1+ 1719926784yb1)t2+ (3732480y2a1

2+ 746496y2b1

2+ 746496y2+ 1074954240a1

2+ 214990848b1

271663616)t, c2 = (−2160y8995328y6358318080y4 82556485632y214860167413760)t42799360a1

43359232a1 2b1

2559872b1

4+ (746496y5b1+ 286654464y3b1+ 61917364224yb1)t3+ (466560y4a1

2+ 93312y4b1

2+ 93312y4+ 214990848y2a1 2+

Références

Documents relatifs

In this paper, we use the representation of the solutions of the focusing nonlinear Schr¨ odinger equation we have constructed recently, in terms of wronskians; when we perform

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves,

Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order

Gaillard, Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation, halshs-00589556, 2011..

With this method, we construct the analytical expressions of deformations of the Pere- grine breather of order 4 with 6 real parameters and plot different types of rogue waves..

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

2014 Two parameters wronskian representation of solutions of nonlinear Schr¨ odinger equation, eight Peregrine breather and multi-rogue waves Jour. 2014 Eighteen parameter