• Aucun résultat trouvé

Determinant representation of NLS equation, Ninth Peregrine breather and multi-rogue waves

N/A
N/A
Protected

Academic year: 2021

Partager "Determinant representation of NLS equation, Ninth Peregrine breather and multi-rogue waves"

Copied!
105
0
0

Texte intégral

(1)

HAL Id: hal-00718003

https://hal.archives-ouvertes.fr/hal-00718003v2

Preprint submitted on 8 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

Determinant representation of NLS equation, Ninth Peregrine breather and multi-rogue waves

Pierre Gaillard

To cite this version:

Pierre Gaillard. Determinant representation of NLS equation, Ninth Peregrine breather and multi- rogue waves. 2012. �hal-00718003v2�

(2)

Determinant representation of solutions of the NLS equation, Ninth

Peregrine breather and multi-rogue waves.

+

Pierre Gaillard,

+

Universit´e de Bourgogne, Dijon, France : e-mail: Pierre.Gaillard@u-bourgogne.fr,

April 1, 2012

Abstract

This article is a continuation of a recent paper on the solutions of the focusing NLS equation. The representation in terms of a quotient of two determinants gives a very efficient method of determination of famous Peregrine breathers and its deformations.

Here we construct Peregrine breathers of order N = 9 and multi- rogue waves associated by deformation of parameters. The analytical expression corresponding to Peregrine breather is completely given.

1 Introduction

In 1972 Zakharov and Shabat solved the nonlinear Schr¨odinger equation (NLS) using the inverse scattering method. The case of periodic and al- most periodic algebro-geometric solutions to the focusing NLS equation were first constructed in 1976 by Its and Kotlyarov [14]. The first quasi-rational solutions of NLS equation were constructed in 1983 by Peregrine, nowadays called worldwide Peregrine breathers. In 1986 Eleonski, Akhmediev and Ku- lagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather[3].

Other families of higher order were constructed in a series of articles by

(3)

Akhmediev et al. [1, 2] using Darboux transformations.

In 2010, it has been shown in [6] that rational solutions of the NLS equation can be written as a quotient of two Wronskians. With this formulation, it was possible to recover as a particular case, Akhmediev’s quasi-rational so- lution of the NLS equation.

Recently, it has been constructed in [12] a new representation of the solutions of the NLS equation in terms of a ratio of two wronskians determinants of even order 2N composed of elementary functions; the related solutions of NLS are called of order N. Quasi-rational solutions of the NLS equation were obtained by the passage to the limit when some parameter tended to 0.

Here we obtain a new representation of quasi-rational solutions of NLS in term of a quotient of two determinants different from preceding works which does not involve wronskians. As a consequence we obtain a more efficient method than the preceding one, to obtain families of multi-rogue wave so- lutions of the focusing NLS equation depending on a certain number of pa- rameters.

2 Expression of solutions of NLS equation in terms of Wronskian determinant and quasi- rational limit

2.1 Solutions of NLS equation in terms of Wronskian determinant

We recall results obtained in [12]. We consider the focusing NLS equation

ivt+vxx+ 2|v|2v = 0. (1)

From [11], the solution of the NLS equation can be written in the form v(x, t) = det(I+A3(x, t))

det(I+A1(x, t))exp(2it−iϕ). (2) In (2), the matrix Ar = (aνµ)1ν,µ2N (r = 3, 1) is defined by

aνµ = (−1)ǫν Y

λ6

γλν γλ −γµ

exp(iκνx−2δνt+xr,ν +eν). (3)

(4)

κν, δν, γν are functions of the parameters λν, ν = 1, . . . ,2N satisfying the relations

0< λj <1, λN+j =−λj, 1≤j ≤N. (4) They are given by the following equations,

κν = 2p

1−λ2ν, δννλν, γν =

r1−λν

1 +λν

, (5)

and

κN+jj, δN+j =−δj, γN+j = 1/γj, j = 1. . . N. (6) The terms xr,ν (r= 3, 1) are defined by

xr,ν = (r−1) lnγν −i

γν +i, 1≤j ≤2N. (7)

The parameters eν are defined by

ej =iaj −bj, eN+j =iaj+bj, 1≤j ≤N, (8) where aj and bj, for 1≤j ≤N are arbitrary real numbers.

The terms ǫν are defined by :

ǫν = 0, 1≤ν ≤N

ǫν = 1, N + 1≤ν ≤2N.

We use the following notations :

Θr,ννx/2 +iδνt−ixr,ν/2 +γνy−ieν, 1≤ν ≤2N. We consider the functions

φr,ν(y) = sin Θr,ν, 1≤ν ≤N,

φr,ν(y) = cos Θr,ν, N + 1 ≤ν≤2N. (9) Wr(y) =W(φr,1, . . . , φr,2N) is the Wronskian

Wr(y) = det[(∂yµ1φr,ν)ν, µ∈[1,...,2N]]. (10) Then we get the following link between Fredholm and Wronskian determi- nants [9]

(5)

Proposition 2.1

det(I+Ar) = kr(0)×Wrr,1, . . . , φr,2N)(0), (11) where

kr(y) = 22Nexp(iP2N ν=1Θr,ν) Q2N

ν=2

Qν−1

µ=1ν −γµ). In (11), the matrix Ar is defined by (3).

It can be deduced the following result : Proposition 2.2 The function v defined by

v(x, t) = W3(0)

W1(0)exp(2it−iϕ). (12)

is solution of the NLS equation (1)

ivt+vxx+ 2|v|2v = 0.

2.2 Quasi-rational solutions of NLS equation in terms of a limit of a ratio of wronskian determinants

In the following, we take the limit when the parametersλj →1 for 1≤j ≤N and λj → −1 for N+ 1 ≤j ≤2N.

For simplicity, we denote dj the term cj2.

We consider the parameter λj written in the form

λj = 1−2ǫ2d2j, 1≤j ≤N. (13) When ǫ goes to 0, we realize limited expansions at order p, for 1≤ j ≤ N, of the terms

κj = 4djǫ(1−ǫ2d2j)1/2j = 4djǫ(1−2ǫ2d2j)(1−ǫ2d2j)1/2, γj =djǫ(1−ǫ2d2j)−1/2, xr,j = (r−1) ln1+iǫdj(1ǫ

2d2j)1/2 1iǫdj(1ǫ2d2j)1/2,

κN+j = 4djǫ(1−ǫ2d2j)1/2, δN+j =−4djǫ(1−2ǫ2d2j)(1−ǫ2d2j)1/2, γN+j = 1/(djǫ)(1−ǫ2d2j)1/2, xr,N+j = (r−1) ln1−iǫdj(1−ǫ

2d2j)1/2 1+iǫdj(1−ǫ2d2j)1/2. The parameters aj and bj, for 1≤N are chosen in the form

aj = ˜ajǫM1, bj = ˜bjǫM1, 1≤j ≤N, M = 2N. (14) We have the result given in [11] :

(6)

Theorem 2.1 With the parameters λj defined by (13), aj and bj chosen as in (14), for 1≤j ≤N, the functionv defined by

v(x, t) = exp(2it−iϕ) lim

ǫ→0

W3(0)

W1(0), (15)

is a quasi-rational solution of the NLS equation (1) ivt+vxx+ 2|v|2v = 0, depending on 3N parameters dj, ˜aj, ˜bj, 1≤j ≤N.

3 Expression of solutions of NLS equation in terms of a ratio of two determinants

We construct here solutions of the NLS equation which does not involve Wronskian determinant and a passage to the limit, but which is expressed as a quotient of two determinants.

For this we need the following notations :

Aννx/2 +iδνt−ix3,ν/2−ieν/2, Bννx/2 +iδνt−ix1,ν/2−ieν/2, for 1≤ν ≤2N, with κν, δν, xr,ν defined in (5), (6) and (7).

The parameters eν are defined by (8). For simplicity of the reduction, we choose aj and bj in the form

aj = ˜a1j2N1ǫ2N1, bj = ˜b1j2N1ǫ2N1, 1≤j ≤N. (16) Below we use the following notations :

f4j+1,kk4j1sinAk, f4j+2,kk4jcosAk, f4j+3,k =−γk4j+1sinAk, f4j+4,k =−γk4j+2cosAk, for 1≤k ≤N, and

f4j+1,kk2N−4j−2cosAk, f4j+2,k =−γk2N−4j−3sinAk, f4j+3,k =−γk2N−4j−4cosAk, f4j+4,kk2N−4j−5sinAk,

(7)

for N + 1≤k ≤2N.

We define the functions gj,k for 1 ≤j ≤2N, 1 ≤ k ≤2N in the same way, we replace only the term Ak byBk.

g4j+1,kk4j−1sinBk, g4j+2,kk4jcosBk, g4j+3,k =−γk4j+1sinBk, g4j+4,k =−γk4j+2cosBk, for 1≤k ≤N, and

g4j+1,kk2N−4j−2cosBk, g4j+2,k =−γk2N−4j−3sinBk, g4j+3,k =−γk2N−4j−4cosBk, g4j+4,kk2N−4j−5sinBk, for N + 1≤k ≤2N.

Then it is clear that

q(x, t) := W3(0) W1(0) can be written as

q(x, t) = ∆3

1

= det(fj,k)j, k[1,2N]

det(gj,k)j, k[1,2N]

. (17)

We recall that λj = 1−2jǫ2. All the functionsfj,k and gj,k depend onǫ. We use the expansions

fj,k(x, t, ǫ) =

N−1

X

l=0

1

(2l)!fj,1[l]k2lǫ2l+O(ǫ2N), fj,1[l] = ∂2lfj,1

∂ǫ2l (x, t,0), fj,1[0] = fj,1(x, t,0), 1≤j ≤2N, 1≤k≤N, 1≤l ≤N −1, fj,N+k(x, t, ǫ) =

N−1

X

l=0

1

(2l)!fj,N+1[l]k2lǫ2l+O(ǫ2N), fj,N+1[l] = ∂2lfj,N+1

∂ǫ2l (x, t,0), fj,N+1[0] = fj,N+1(x, t,0), 1≤j ≤2N, 1≤k ≤N, 1≤l≤N −1.

We have the same expansions for the functions gj,k. gj,k(x, t, ǫ) =

N1

X

l=0

1

(2l)!gj,1[l]k2lǫ2l+O(ǫ2N), gj,1[l] = ∂2lgj,1

∂ǫ2l (x, t,0), gj,1[0] = gj,1(x, t,0), 1≤j ≤2N, 1≤k ≤N, 1≤l ≤N −1,

(8)

gj,N+k(x, t, ǫ) =

N1

X

l=0

1

(2l)!gj,N+1[l]k2lǫ2l+O(ǫ2N), gj,N+1[l] = ∂2lgj,N+1

∂ǫ2l (x, t,0), gj,N+1[0] =gj,N+1(x, t,0), 1≤j ≤2N, 1≤k≤N, N + 1≤k ≤2N..

Combining the columns of the determinants appearing in q(x, t) successively to eliminate in each columnk (or N+k) of them the powers of ǫlower than 2(k−1), and factorizing and simplifying each common terms, q(x, t) can be replaced by Q(x, t)

Q(x, t) :=

f1,1[0] . . . f1,1[N −1] f1,N+1[0] . . . f1,N+1[N −1]

f2,1[0] . . . f2,1[N −1] f2,N+1[0] . . . f2,N+1[N −1]

... ... ... ... ... ...

f2N,1[0] . . . f2N,1[N −1] f2N,N+1[0] . . . f2N,N+1[N −1]

g1,1[0] . . . g1,1[N −1] g1,N+1[0] . . . g1,N+1[N −1]

g2,1[0] . . . g2,1[N −1] g2,N+1[0] . . . g2,N+1[N −1]

... ... ... ... ... ...

g2N,1[0] . . . g2N,1[N −1] g2N,N+1[0] . . . g2N,N+1[N −1]

(18)

Then we get the following result :

Proposition 3.1 The function v defined by

v(x, t) = exp(2it−iϕ)×Q(x, t) (19) is a quasi-rational solution of the NLS equation (1)

ivt+vxx+ 2|v|2v = 0, where Q(x, t) is defined in (18).

4 Quasi-rational solutions of order N

Wa have already constructed in [12] solutions for the casesN = 1 untilN = 8 , and this method gives the same results. We don’t reproduce it here. We

(9)

only give solutions of (NLS) equation in the case N = 9.

Because of the length of the expressions of polynomials N and D in the solutions v of the NLS equation defined by

v(x, t) = N(x, t)

D(x, t)exp(2it−iϕ),

we only give in the appendix. In the following cases, we only give the plots for the modulus of v in the (x, t) coordinates.

(10)

Fora1 = 0, b1 = 0, we obtain Akhmediev’s breather.

Figure 1: Solution of NLS, N=9, a1 = 0, b1 = 0.

(11)

If we choose a1 = 0, b1 = 1000000000000, we obtain :

Figure 2: Solution of NLS, N=9, a1 = 0, b1 = 1000000000000.

(12)

If we choose a1 = 10000000000000000, b1 =−1000000000000, we have :

Figure 3: Solution of NLS, N=9, a1 = 10000000000000000, b1 =

−1000000000000.

5 Conclusion

The method described in the present paper provides a powerful tool to get explicitly solutions of the NLS equation.

As my knowledge, it is the first time that the Peregrine breather of order seven is presented.

It confirms the conjecture about the shape of the breather in the (x, t) co- ordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal toN(N + 1). This new formulation gives an infinite set of non singular solution of NLS equation. It opens a large way to future researches in this domain.

(13)

References

[1] N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Rogue waves and ra- tional solutions of nonlinear Schr¨odinger equation, Physical Review E, V. 80, N. 026601, (2009).

[2] N. Akhmediev, V. Eleonskii, N. Kulagin, Exact first order solutions of the nonlinear Schr¨odinger equation, Th. Math. Phys., V. 72, N. 2, 183-196, (1987).

[3] N. Akhmediev, V. Eleonsky, N. Kulagin, Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions, Sov. Phys.

J.E.T.P., V. 62, 894-899, (1985).

[4] N. Akhmediev, A. Ankiewicz, P.A. Clarkson, Rogue waves, rational solutions, the patterns of their zeros and integral relations, J. Phys. A : Math. Theor., V. 43, 122002, 1-9, (2010).

[5] E.D. Belokolos, A.i. Bobenko, A.R. its, V.Z. Enolskij and V.B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer series in nonlinear dynamics, Springer Verlag, 1-360, (1994).

[6] P. Dubard, P. Gaillard, C. Klein, V.B. Matveev, On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Special Topics, V. 185, 247-258, (2010).

[7] P. Dubard, V.B. Matveev, Multi-rogue waves solutions of the focusing NLS equation and the KP-i equation, Nat. Hazards Earth Syst. Sci., V.

11, 667-672, (2011).

[8] V. Eleonskii, I. Krichever, N. Kulagin, Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect. Math. Phys., V. 287, 606-610, (1986).

[9] P. Gaillard, Quasi-rational solutions of the NLS equation and rogue waves, halshs-00536287, 2011

[10] P. Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order Peregrine breathers and multi-rogue waves

solutions of the NLS equation, halshs-00589556, 2011

(14)

[12] P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A : Meth. Theor., V. 44, 1-15, 2011 [13] A.R. Its, A.V. Rybin, M.A. Salle, Exact integration of nonlinear

Schr¨odinger equation, Teore. i Mat. Fiz., V. 74., N. 1, 29-45, (1988).

[14] A.R. Its, V.P. Kotlyarov, Explicit expressions for the solutions of non- linear Schr¨odinger equation, Dockl. Akad. Nauk. SSSR, S. A, V. 965., N. 11, (1976).

[15] V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer Verlag, Berlin, (1991).

[16] D. Peregrine, Water waves, nonlinear Schr¨odinger equations and their solutions, J. Austral. Math. Soc. Ser. B, V. 25, 16-43, (1983).

[17] V. E. Zakharov, Stability of periodic waves of finite amplitude on a surface of a deep fluid, J. Appl. Tech. Phys, V. 9, 86-94, (1968)

[18] V. E. Zakharov, A.B. Shabat Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media, Sov. Phys. JETP, V. 34, 62-69, (1972)

Appendix

In the following, we choose all the parameters a and b equal to 0.

The solution of NLS equation takes the form v(x, t) = N(x, t)

D(x, t)exp(2it−iϕ).

The polynomials N and D are defined by

N(x, t) =2040750399593901284181173976764705850604656591456991786533969098440704000000000t40x16

+3266445830368567852344743867785349963343788638865984369367068253880320000000t38x20

−1941031985001612723347156444528383560113330918639185605499980932028825600000000t38x18

418568035606917517473493841156820187574926430355172616997972279526686720000000t40x18

2269957745444806652865030262170353347213931376549401433668204794447134720000000t42x16 +15043292080172988652377844591366449031055200304351361339266840851277414400000000t42x14

−4685834629629540876781664123272506206506264181731281151195701001479782400000000t44x14 +60255611634159330176035202544391396867886066333173729139729723864540774400000000t44x12

(15)

+15157571618966936019068535510703952766138694219028596765438771200000000t26x34 +18323035371795160232474014729344601087206000044830313676432696071883325440000000t48x10 +270837300907840186510752210482993827198185139543175696853471927442027315200000000t48x8

1195509583969670999344298421883363699029888547707908807960294293053112320000000t46x12 +106802342555845274335710662135244570982314946567702542461020781613259161600000000t46x10

+71669872889754036107085006985837123362682620745708793040763900511618334720000000t50x8 +674560337974976313264071614324332702660847280491186060808303393275222425600000000t50x6

−48598642678742715464459197702084267135875341586308620312358215797964800000t68

3851267670921935278341354641465887598491852505979858398437500000x4

+182161799826330147699995111365894279347585971345986723734892728901781422080000000t52x6 +18828419724507239138557733802722117148182390029234863281250000000x6

+542799971120056348200484525580960457325019237910741255683926779281748787200000000t52x4

−218822026756928140814849695537834522641582528748855590820312500x2 +99733568722541375800602783900479578106129750821522851562500000000x8 +352858071557729495842731779977581918195666714826670156250000000000x10

122407588957661673944115611216750224394933659916212500000000000000x12

−637353888698574344056285932162492230131063791374010000000000000000x14

804684159922233847562583607469995519505628616019190000000000000000x16

−105281676401362842266764462794348361959127495083470724609375000000000t4 +5851273922521602784930185726621364370393209681847163665850000000000000000t8 +21643471598455493597925792567556006123826346624938727723694080000000000000000t12

−31685429474403194789990235913878438878501150162834289550781250000t2 +5961234951359170164570596447696339791756950438094789781250000000000000t6 +124564434386788178088009602499145524147261968413047112924320000000000000000t10

−225582882000805449226490638533794216925494025316343730856427520000000000000000t14 +172111086001594839286455592604217320034013487319487642778185236480000000t28x32

−5578052229845551504923696539420730111032906064153806294618603520000000000000000t16 +118002710267544489145918365987298019229348096765398494719811989232680960000000t62x2

+1605671010807066840657322404561774529186673893244974584274001854464000000t30x30

9823660106845527029178618075873998328463450177536000000000t4x50

−46362615867315474803383374983719942622176031539200000000t2x52

−441743832377408601067589888145947988722895051319456294756526329942895493120000000000t44

563787337568319933622876489688287560460957128743552129926488519651234938880000000000t42

−134441171499970495124093437211847162889333841968401762077915510939446149120000000000t40

940422339490723036539083050520313686940253067367486519684641145525695938560000000000t42x2

(16)

−181184092926073841135783659545537185870936384217852940816156539121890754560000000000t40x4

1989030995360703069563767662163539995200155137074626848395065994072031232000000000000t40x2 +8074344542754999452612899467042435731784964349548962086959815897749913600000000t38x16

1651632621510403746006298866723070467610622939848268289345272297186918400000000t36x18

−626779076740435728907176444293618954101881505292244214181895852156518400000000t34x20

−95991874135466296612228304798316094733745709809624522837440314579353600000000t32x22 +24985732748735898387349945049918459448026726400000t6x64

+2222160296132058906718792265259518957268762624000000000x52 +24400687246186916915822804509417872849948691660800000000x50 +217196718562004826209335141348504992510438801408000000000x48 +1091398467285154010886984938650108554984837611520000000000x46 +8196460548827370224421921178026587273877215678340827971584000000000t14x38 +247837617549159190472000595991924395423299341923583801688064000000000t14x36

5942900783393081196286022394354851929317947669462849452769280000000000t14x34 +20352148921965117545417327441387468991992845318561223399178240000000000t14x32

+402047465459491550446581075758653753634728151337780274790400000000t12x40 +7819815177350776286900404025406242109934315734836101251072000000000t12x38

184501171736150156862476430648587138616984533743721156444160000000000t12x36 +577424063418367952088613369504151482307341121675435987435520000000000t12x34 +235600490598534126905880374712960731103855362335506126890424451140157440000000t60x4

1623829730188575535939245140322316803227211158702399139348480000000000t12x32 +36069972636189579841618617803845515952103548256702397425909760000000000t12x30 +537027073812108896328085291630328063352056191572045684591820800000000000t12x28

+18119853319201992287899846470750644534566655561849288785920000000000t10x34 +1151805530130383419538733255252997345427651632363550539776000000000000t10x32 +11767803549604857403761360908309852481204939684929725016309760000000000t10x30

+1604251281521911138812727715328315340064092507914916331520000000000t8x36 +31780016991593953580922669912095197825308446857413368217600000000000t8x34 +288109222853743919145566565649115930895611269082401839513600000000000t8x32

+33820879101233600481613790703422824150070221389661470720000000000t6x38 +642359718202348348196127011109391945159276099300302520320000000000t6x36 +6096944079641816269743467940542409179646615724735699353600000000000t6x34

+391929725855684686485402988773264343417302029476823040000000000t4x40 +8680886234828256763648609128548736605382513130890854400000000000t4x38 +101124937581588656256335692312459298873776402885666406400000000000t4x36

(17)

−8063489246686926408904108261418357744345633909637120000000000t2x42

19765777549485740911961712100958058606470945424015360000000000t2x40 +405879618224083108406858435363538591110808037490688000000000000t2x38

5835039491973612162870366306869902864211792363520000000000x44

−186032649565387427309478748383108597491250600345600000000000x42

−1815302934786538247828286193539489489147133616455680000000000x40 +224326719471465873356242674521983674116283076184113152000000000t8x44 +5704615719627073575183352088091046534833109430125461504000000000t8x42

66999661545770893344959399064911742179561410040181030912000000000t8x40 +45223517276755668214418209447444914781446242321364418560000000000t8x38

+932141596974497050712553691766772850951922982164889600000000t6x46 +14901059900260891115166482152673659233255747820519273826672506306560000000t32x28 +122267476733230195530816688661987950860715545241431715209257964011520000000t34x26 +839541750577328774773622094471072931932880315668866501854495600803840000000t36x24 +5948408175339081340308822048019562229021357886836998445048576123863040000000t38x22 +31809934049340301697690294715647817402429239558596573909346235262697472000000t40x20

−1870517974737519615102304916786630288511207858803392089746006186561372160000000t48x12 +1167977943149446277658344145524274070096016936534361886050918459286487040000000t50x10 +12350993056907180206815801625795180091508461260805763208304517258600775680000000t52x8 +29114053164146571785746611740257809397401479153700830109497543886309949440000000t54x6 +138298892912058325552702298363460139070552459756035886446919483533767475200000000t56

−1106145940290105105235602481509743402466068240793600000000t2x50

10642014619624859884844518903195115968375761666048000000000t2x48

−114684911385248490137286294475390685569382432636928000000000t2x46

−1114939947049369998918779752380083258731706953236480000000000t2x44

404250962747902920708625439934818375775781129360930231891996239753904128000000000t52x2

−243989905471956052703952478020340096896347294589678903670005064135606272000000000t50x4 +1573382440958717493415267375033115002224291171955013116795528267306106880000000000t50x2

+263853305369053268419179264122789342313733140001188976437025852706783232000000t58x6 +219879128685219407098311963132456364670976000000000x58

+10944802254915803313223293767593614688596787200000000x56 +610067697701569495748531367185609032870762905600000000t2x54

472736199042209156788859500116535114784832277708800000000t4x52 +191352519258695244543427147801282960055190159360000000t2x56

12305119667030691580972071075167144898684832972800000000t4x54

(18)

−32602656565833218601709047402656855885353420691865600000000t6x50

1150010703405049129114558132087363917670889155461120000000t6x52

−13421248719249679260374174346682612775387136000000x60

58977063127043133539777112139216549999167173044469760000000t8x50

−1497265629109348898372625560903192911163606555846246400000000t8x48

+24547620472941724079273946786881166853106630036300645320481235271680000000000000t18x12

47868591734913972803040829918980156335080435489593753083758352793600000000000000t18x10 +73745886287621974002702925546742500498882504162881958025691031142400000000000000t18x8 +123076527882826285503317952539857955609256047642071785552148955136000000000000000t18x6

−15733865503041823509110161433575624516033239060539736781813186560000000000000000t18x4

761891181189032759711269553569268368055467386326881362102875848704000000000000000t18x2 +13815552610171047129067770841412826828057489120633723084079104000000000000t10x20

−112114655407287746755220384552956126459446392165575724346900480000000000000t10x18

579006804464954896114504181022031908348601335544382461732454400000000000000t10x16 +1654932597948496598837707681001532270397399325789164123717632000000000000000t10x14

676935835729275823482916300331207851311964237327989528330240000000000000000t10x12

−4302127627044765740775953869875864312884459527975668884648755200000000000000t10x10

11930794519921202474255822509821282815456757464307683785261056000000000000000t10x8

−6374871799685061777739718075281806471311313825750822420480000000000000t6x24

−74650924160217505626542621550400054939411498494772673249280000000000000t6x22

250931172779743532812747517508976418920505144720228509286400000000000000t6x20 +325696435884320393892173927257130101077836141738706626150400000000000000t6x18

919844019948386236957516742776757472005145840024209217945600000000000000t6x16

−1553738643586333526682140839261231459558629419502501396480000000000000000t6x14

−1207794042324265510485333573491402582449366077319601141760000000000000000t6x12 +1332456282268807563067103006560743850180846545084088320000000000000t2x28

−2073171094175173039760506967912059481969131432464875520000000000000t2x26

29132662201047624490649033711546652861690763892504985600000000000000t2x24

−55530869822086987795522395376149035362048622494133452800000000000000t2x22

122392543551280293911793037499384496720662398172093030400000000000000t2x20

−216080049949886041465139330570503151049806104441935360000000000000000t2x18

−129835458317684653585431049472571292667449173320220768000000000000000t2x16 +27472327360380616195473651467691294646092286381378470855161226358004121600000000t58

−20947972558666526417334124888007882464095130091520000000t6x54 +14062462234204625902430896825196496206577008640000000t2x58

(19)

+3503747093384665877100064685567572337180437836201984000000000000x30 +21187284022202516584186349401372175320326751676006400000000000000x28 +49872189109018377714747727374464010749985112425676800000000000000x26 +108781530254781993027996883120639102318668811530547200000000000000x24 +133180791753006580843475473984246284763179888804096000000000000000x22

−153347928411299340898190894357057218614932887129996800000000000000x20

883488720053117226239462227520893998934199747508696000000000000000x18 +77020355752196861740017710390066334157414493262368065753800000000000000000t8x2

+22240227362444941437430094005598144193965915300182150425000000000000000t4x6

−1528813800087260460632726848321577106185448988892551113600000000000000000t8x4 +23509432329883789146621768810728665602175058615474401800000000000000000t4x8

−80944215872054906321227512260406294879058143225009166758666240000000000000000t12x2

−142804990354995858055248678771671277967751289459015928327680000000000000000t8x6 +11364271800646369447518273908140703215556305850463145440000000000000000t4x10

−34754614129304651494315411624293527790882732360222218828021760000000000000000t12x4 +152421422213385358558683731025055013850941454986547349355520000000000000000t8x8

+77871784957256049399443393049508597164030191804052305280000000000000000t4x12

19806167149191144347786779110662741268978799936218983301120000000000000t8x22

−2786950166442971727369845215702140201303957939792088651530240000000000000t8x20

−9172212436594435815470822612390062524085016071784398690713600000000000000t8x18 +40231520056130865330305269239282813068055965451258220275302400000000000000t8x16

−31533615582111435986790066346972946963088045961315549052928000000000000000t8x14

83713716942571178346752788110538957619880179499855741812736000000000000000t8x12

−112394456235577605182555086433018804775086169861693810954240000000000000000t8x10

−128406827952265325480955773190862200655893711565633598303254376129495040000000000000t28x2 +50048346364861828667520916894938228078309807417065141707263815649853440000000000000t24x6 +29480372545107473799930584530180242958443067118807884683949556681932800000000000000t24x4 +82257224185634250332390511241543389305373424912526916966381551144140800000000000000t24x2 +404579157396012797532656436363784898038594420692735499457334500917248000000000000t20x10

1259923715813114659516049262109026729242185284831849144230874898759680000000000000t20x8 +1374078008400581658950585307407726305158174338652885545240263812710400000000000000t20x6 +1030938305221945698173850788164269344793605816254679016060018386534400000000000000t20x4

3283236041411204166217693771694128904465750569931655031018519265280000000000000000t20x2 +712392209830995860903083902574319812272843071637353165639122944000000000000000t16x14

2230353417407049200624933980260160621262997030022292613754571980800000000000000t16x12

(20)

−11674766576726272186810725241248750481248128033147024936092355788800000000000000t16x10 +23408276615639502378427885124383538309773122772157291239676313600000000000000000t16x8

−18596357775298497725208082748512046611495601456362127688793168281600000000000000t16x6

78642660384758962569935042000051009125723971344347794438094848000000000000000000t16x4 +11951862552864817510163194566053843065068252553796147971046768640000000000000000t16x2 +1519748093068327338657728708767424075370073810708406052700815360000000000000t12x18

812818205234550638922118641457001083334727270036803418901708800000000000000t12x16

−38496266506302122872833530088844300621914883296077585401774080000000000000000t12x14

2249405266817889144357855943835120006799099265056487526891520000000000000000t12x12

−112252385111590610595658834678065050592740762244092687101722624000000000000000t12x10

201811095420678168453137945439305587974775611510357052960014336000000000000000t12x8

−256544018108546320670171255442291420942370728232739752943419392000000000000000t12x6

−98952654378972701133077626857671973616731020711732183040000000000000t4x26

1084173750058307571633044517174397274634885882799403827200000000000000t4x24

−4219670567018908899469948211553957285089881928810771251200000000000000t4x22

183197601515891940973846528375314748969965905832198144000000000000000t4x20

−6405972363457983288141147298999754615679948339360141312000000000000000t4x18

11725849148592474979568183884441326938164344004955053056000000000000000t4x16 +7644473194040216767137536543488904885679888317122091520000000000000000t4x14 +523097685926692781580189110363772594108237940684256442571317439063130112000000000000t30

+81527530369599615433155125857352633826927425658155398235652749053132800000000000000t26

−549335340224485873971666452468104180965547576662275712145238576332800000000000000t22

173282543352034719498012264901317470877275616424392919888240312320000000000000000t18 +761400131137729502957300838851527291787106160178588648437500000000000x2t4

−631599184051820754198463489852529926164562172849774156250000000000000t4x4

2372380885287912131458274459142986760670981143683592773437500000000x2t2

−5415738182576445875854242704710252605168098368409009765625000000000x4t2

39791847386568960851566316133527227952581375830996871875000000000000t2x6 +159631803151910410944422263226604924890485188853920703125000000000000t2x8

1394865268030062285819405880565121386842002020106240000000t8x52

−58144470375265123563176993085766641360935690208878756781353542688440320000000000000t30x8 +130179210134046825592188548696800682337917474044344894010216918900801536000000000000t30x6

3065482679636615910244298548502109236568263405626173049538780897004748800000000000t28x10 +86941362108371771902169434314714748441021043301925623066070769171693568000000000000t28x8 +348262932623406745265775464850923962721938587593098851682752572550021120000000000000t28x6

(21)

−1777785854214777014563928474927382778602117611971634290600432924989849600000000000t26x12 +3933402956835087898773973796438664598419635333182572888585135628222464000000000000t26x10 +24563285069218431610075393847118721292283843689798707039470825536225280000000000000t26x8 +168276126120231791787887139066639574765778887667056304306938625340211200000000000000t26x6

−274816529408248370896563672201572979982381217548554267288549174804480000000000000t24x14

−222618568167294643073191434740686965054678172764594877248303274131456000000000000t24x12 +2362776065171397890090422223441020567904083421701949312077206587965440000000000000t24x10 +16766888549131992670459012472209193384342712051596682501562552528404480000000000000t24x8

12610631836088640941671761149609421312796369668123432823374273419673600000000000t22x16

−65366841064257857211517402762080681797710245568063649218228817756160000000000000t22x14 +237320357720778759812996254125365934959648187652894027852385473265664000000000000t22x12 +1435925765035185456230344310592822307431539472644853983798483528712192000000000000t22x10

+1019697483168031451531620635973943112358388567249061097932087046963200000000000t20x18

6930343809874983208600058736976346792011638305415777207344173154304000000000000t20x16 +28035388083230483845052407768286157641047436519846984003213007519744000000000000t20x14 +152927424244550712474527773387682742673807386133304001487236413521920000000000000t20x12

+142701011903104734796298499805825144311040937521681598051704740249600000000000t18x20

250878718493061867727812247662850734030713334480258227236094607360000000000000t18x18 +3419406649788569047682427304657433847133962934794494257145447448576000000000000t18x16 +11432308004850481905496710465185027737225271974629637508022046556160000000000000t18x14

+6725279660795726868423692519725122723209675990516261733520323379200000000000t16x22

−5863843570751192204112369501340404470702215044079680211069698048000000000000t16x20 +149273815588881750152348606609068169110920019729040808607173574656000000000000t16x18 +306180594989046438564357442378275021548571602009824135253877325824000000000000t16x16 +127583126715861273554254876956673120778834581472474455320035328000000000000t14x24

435085540093613678422862452478963254769622461547888152043061248000000000000t14x22 +5299528406263482223391472936134337610153453180633095819189288960000000000000t14x20 +10780816404812855818819983256025975278128502669171305461317632000000000000000t14x18

+1180382796064767276733415088462211714326005550410167934464819200000000000t12x26

25285283082120354503377490577290356148604917143794705959485440000000000000t12x24 +126050709653522901314520038317097915957084557051428451280486400000000000000t12x22 +117371457410671270124243260472184982258529754972888294248939520000000000000t12x20

2199847556057129348596288565064405185252606772640273661952000000000000t10x28

−704848376524574458890861595367140334736549408495109605949440000000000000t10x26 +3516593007797675285531500660382200675269930981698538999644160000000000000t10x24

(22)

+3006160581129867186752846042342874904658349714197194494443520000000000000t10x22 +170338134212520651072438394512270615472833182853436853452800000000000t8x30

−12687708530827607042710454452350444614646156123943376781312000000000000t8x28 +74387078109184166038702725572720143307430649038116524916736000000000000t8x26 +103819572496544121196320629860542628740875478598138755809280000000000000t8x24

+13132175931634045298666583896632962998545878125154769305600000000000t6x32

196342202026170813693276650989796921939903575287153033216000000000000t6x30 +557687189369696376820784124341187037529985184891001634816000000000000t6x28 +837003113897590006045216615676135161863436192351355142144000000000000t6x26 +512362446262426612259038755531433077196871248197451776000000000000t4x34

543619433026046958184421833224682377339519617703346176000000000000t4x32 +2121860047711385991119578674409033564560222751127764992000000000000t4x30 +4543900151136972166469916942602389178648277240187453440000000000000t4x28 +5323816316974556939255940583448540293059694026974822400000000000t2x36 +24353731158690515993196753519519577218986310805487616000000000000t2x34 +122957937776533422432781566740679357419475609650724864000000000000t2x32 +526341154580250042923947144072548662196060861782556672000000000000t2x30

9634256033372087609512852520657721967442180387635200000000000x38

−48913022272444838780415027909391435524680517156864000000000000x36

−175918060282397201988416413453396297227690936631296000000000000x34

101053216326655100552113362388819019046952296775680000000000000x32 +305749075605036380814546039515711785237368196249461719040000000t14x46

1944896612499639486137830969471510261273147710113002291200000000t12x44

−62217676901410695278128769901729891236028658897681121280000000t12x46

−5832458140514450283819223778649277212965433597562020870809357806416691200000000000t36x2

711053811158111647311064522779727134887035604449015745490674167823990784000000000000t34x4 +2032121332812761722685024431218019962289845198069394640985055825162665984000000000000t34x2

161278283388798160421075886163791884960269115346712009394245543578619084800000000000t32x6 +139342627751794214468564670700647492739661850848771663831547961587793920000000000000t32x4 +2236786571987952960204161734410628517606970717994018379694150596243226624000000000000t32x2 +1192397756652235282606863152465943042686620375412858114186772860658253824000000000000t30x4

−661118144164158241305454889497538152634571783286570120766921127021772800000000000000t30x2 +322423425106719890917767625341772796912607861896335727078249527183933440000000000000t28x4

+332921110136718533396735477114067473687207099951353859219716193648640000000000t22x20 +3787711293656288805689456247801096720084802267075650538834081559347200000000000t22x18

Références

Documents relatifs

Eighth order Peregrine breather solution of the NLS equation and their deformations with fourteen parameters.... Eighth order Peregrine breather solution of the NLS

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

Gaillard, Two parameters wronskian representation of solutions of nonlinear Schr¨odinger equation, eight Peregrine breather and multi-rogue waves, J.. Gaillard, Hierarchy of

The present paper presents Peregrine breathers as particular case of multi-parametric families of quasi rational solutions to NLS of order N depending on 2N − 2 real parameters

Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order

In this paper, we use the representation of the solutions of the focusing nonlinear Schr¨ odinger equation we have constructed recently, in terms of wronskians; when we perform

Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order

Gaillard, Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation, halshs-00589556, 2011..