• Aucun résultat trouvé

Tenth Peregrine breather solution of the NLS equation.

N/A
N/A
Protected

Academic year: 2021

Partager "Tenth Peregrine breather solution of the NLS equation."

Copied!
132
0
0

Texte intégral

(1)

HAL Id: hal-00743859

https://hal.archives-ouvertes.fr/hal-00743859v2

Preprint submitted on 8 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

Tenth Peregrine breather solution of the NLS equation.

Pierre Gaillard

To cite this version:

Pierre Gaillard. Tenth Peregrine breather solution of the NLS equation.. 2012. �hal-00743859v2�

(2)

Tenth Peregrine breather solution of the NLS equation.

+Pierre Gaillard, + Universit´e de Bourgogne, Dijon, France : e-mail: Pierre.Gaillard@u-bourgogne.fr,

October 21, 2012

Abstract

We go on in this paper, in the study of the solutions of the focusing NLS equation. With a new representation given in a preceding paper, a very compact formulation without limit as a quotient of two determi- nants, we construct Peregrine breathers of orderN = 10. The explicit analytical expression of the Akhmediev’s solution is completely given.

1 Introduction

In 1972 Zakharov and Shabat solved the nonlinear Schr¨odinger equation (NLS) using the inverse scattering method. The case of periodic and al- most periodic algebro-geometric solutions to the focusing NLS equation were first constructed in 1976 by Its and Kotlyarov [14]. The first quasi-rational solutions of NLS equation were constructed in 1983 by Peregrine, nowadays called worldwide Peregrine breathers. In 1986 Eleonski, Akhmediev and Ku- lagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather[3].

Other families of higher order were constructed in a series of articles by Akhmediev et al. [1, 2] using Darboux transformations.

In 2010, it has been shown in [6] that rational solutions of the NLS equation can be written as a quotient of two Wronskians. With this formulation, it was possible to recover as a particular case, Akhmediev’s quasi-rational so- lution of the NLS equation.

(3)

Recently, it has been constructed in [12] a new representation of the solutions of the NLS equation in terms of a ratio of two wronskians determinants of even order 2N composed of elementary functions; the related solutions of NLS are called of order N. Quasi-rational solutions of the NLS equation were obtained by the passage to the limit when some parameter tended to 0.

Here we obtain a new representation of quasi-rational solutions of NLS in term of a quotient of two determinants different from preceding works which does not involve wronskians. As a consequence we obtain a more efficient method than the preceding one, to obtain families of multi-rogue wave so- lutions of the focusing NLS equation depending on a certain number of pa- rameters.

2 Expression of solutions of NLS equation in terms of Wronskian determinant and quasi- rational limit

2.1 Solutions of NLS equation in terms of Wronskian determinant

We recall results obtained in [12]. We consider the focusing NLS equation

ivt+vxx+ 2|v|2v = 0. (1)

From [11], the solution of the NLS equation can be written in the form v(x, t) = det(I+A3(x, t))

det(I+A1(x, t))exp(2itiϕ). (2) In (2), the matrix Ar = (aνµ)1ν,µ2N (r = 3, 1) is defined by

aνµ = (−1)ǫν Y

λ6

γλ+γν

γλ γµ

exp(iκνxνt+xr,ν +eν). (3) κν, δν, γν are functions of the parameters λν, ν = 1, . . . ,2N satisfying the relations

0< λj <1, λN+j =−λj, 1j N. (4)

(4)

They are given by the following equations, κν = 2p

1λ2ν, δν =κνλν, γν =

r1λν

1 +λν

, (5)

and

κN+j =κj, δN+j =−δj, γN+j = 1/γj, j = 1. . . N. (6) The terms xr,ν (r= 3, 1) are defined by

xr,ν = (r1) lnγν i

γν +i, 1j 2N. (7)

The parameters eν are defined by

ej =iaj bj, eN+j =iaj+bj, 1j N, (8) where aj and bj, for 1j N are arbitrary real numbers.

The terms ǫν are defined by :

ǫν = 0, 1ν N

ǫν = 1, N + 1ν 2N.

We use the following notations :

Θr,ν =κνx/2 +νtixr,ν/2 +γνyieν, 1ν 2N. We consider the functions

φr,ν(y) = sin Θr,ν, 1ν N,

φr,ν(y) = cos Θr,ν, N + 1 ν2N. (9) Wr(y) =Wr,1, . . . , φr,2N) is the Wronskian

Wr(y) = det[(∂yµ−1φr,ν)ν, µ[1,...,2N]]. (10) Then we get the following link between Fredholm and Wronskian determi- nants [9]

Proposition 2.1

det(I+Ar) = kr(0)×Wrr,1, . . . , φr,2N)(0), (11) where

kr(y) = 22Nexp(iP2N ν=1Θr,ν) Q2N

ν=2

Qν−1

µ=1ν γµ).

(5)

In (11), the matrix Ar is defined by (3).

It can be deduced the following result : Proposition 2.2 The function v defined by

v(x, t) = W3(0)

W1(0)exp(2itiϕ). (12)

is solution of the NLS equation (1)

ivt+vxx+ 2|v|2v = 0.

2.2 Quasi-rational solutions of NLS equation in terms of a limit of a ratio of wronskian determinants

In the following, we take the limit when the parametersλj 1 for 1j N and λj → −1 for N+ 1 j 2N.

For simplicity, we denote dj the term cj2.

We consider the parameter λj written in the form

λj = 12d2j, 1j N. (13) When ǫ goes to 0, we realize limited expansions at order p, for 1 j N, of the terms

κj = 4djǫ(1ǫ2d2j)1/2,δj = 4djǫ(12d2j)(1ǫ2d2j)1/2, γj =djǫ(1ǫ2d2j)−1/2, xr,j = (r1) ln1+iǫd1iǫdj(1ǫ2d2j)−1/2

j(1ǫ2d2j)−1/2,

κN+j = 4djǫ(1ǫ2d2j)1/2, δN+j =−4djǫ(12d2j)(1ǫ2d2j)1/2, γN+j = 1/(djǫ)(1ǫ2d2j)1/2, xr,N+j = (r1) ln1−iǫd1+iǫdj(1−ǫ2d2j)−1/2

j(1−ǫ2d2j)−1/2. The parameters aj and bj, for 1N are chosen in the form

aj = ˜ajǫM1, bj = ˜bjǫM1, 1j N, M = 2N. (14) We have the result given in [11] :

Theorem 2.1 With the parameters λj defined by (13), aj and bj chosen as in (14), for 1j N, the functionv defined by

v(x, t) = exp(2itiϕ) lim

ǫ0

W3(0)

W1(0), (15)

(6)

is a quasi-rational solution of the NLS equation (1) ivt+vxx+ 2|v|2v = 0, depending on 3N parameters dj, ˜aj, ˜bj, 1j N.

3 Expression of solutions of NLS equation in terms of a ratio of two determinants

We construct here solutions of the NLS equation which does not involve Wronskian determinant and a passage to the limit, but which is expressed as a quotient of two determinants.

For this we need the following notations :

Aν =κνx/2 +νtix3,ν/2ieν/2, Bν =κνx/2 +νtix1,ν/2ieν/2, for 1ν 2N, with κν, δν, xr,ν defined in (5), (6) and (7).

The parameters eν are defined by (8). For simplicity of the reduction, we choose aj and bj in the form

aj = ˜a1j2N−1ǫ2N−1, bj = ˜b1j2N−1ǫ2N−1, 1j N. (16) Below we use the following notations :

f4j+1,k =γk4j1sinAk, f4j+2,k =γk4jcosAk, f4j+3,k =−γk4j+1sinAk, f4j+4,k =−γk4j+2cosAk, for 1k N, and

f4j+1,k =γk2N4j2cosAk, f4j+2,k =−γk2N4j3sinAk, f4j+3,k =−γk2N−4j−4cosAk, f4j+4,k =γk2N−4j−5sinAk, for N + 1k 2N.

We define the functions gj,k for 1 j 2N, 1 k 2N in the same way, we replace only the term Ak byBk.

g4j+1,k =γk4j1sinBk, g4j+2,k =γk4jcosBk, g4j+3,k =−γk4j+1sinBk, g4j+4,k =−γk4j+2cosBk,

(7)

for 1k N, and

g4j+1,k =γk2N−4j−2cosBk, g4j+2,k =−γk2N−4j−3sinBk, g4j+3,k =−γk2N−4j−4cosBk, g4j+4,k =γk2N−4j−5sinBk, for N + 1k 2N.

Then it is clear that

q(x, t) := W3(0) W1(0) can be written as

q(x, t) = 3

1 = det(fj,k)j, k∈[1,2N]

det(gj,k)j, k∈[1,2N]. (17) We recall that λj = 12jǫ2. All the functionsfj,k and gj,k depend onǫ. We use the expansions

fj,k(x, t, ǫ) =

N−1

X

l=0

1

(2l)!fj,1[l]k2lǫ2l+O(ǫ2N), fj,1[l] = 2lfj,1

∂ǫ2l (x, t,0), fj,1[0] = fj,1(x, t,0), 1j 2N, 1kN, 1l N 1, fj,N+k(x, t, ǫ) =

N1

X

l=0

1

(2l)!fj,N+1[l]k2lǫ2l+O(ǫ2N), fj,N+1[l] = 2lfj,N+1

∂ǫ2l (x, t,0), fj,N+1[0] = fj,N+1(x, t,0), 1j 2N, 1k N, 1lN 1.

We have the same expansions for the functions gj,k. gj,k(x, t, ǫ) =

N−1

X

l=0

1

(2l)!gj,1[l]k2lǫ2l+O(ǫ2N), gj,1[l] = 2lgj,1

∂ǫ2l (x, t,0), gj,1[0] = gj,1(x, t,0), 1j 2N, 1k N, 1l N 1,

gj,N+k(x, t, ǫ) =

N1

X

l=0

1

(2l)!gj,N+1[l]k2lǫ2l+O(ǫ2N), gj,N+1[l] = 2lgj,N+1

∂ǫ2l (x, t,0), gj,N+1[0] =gj,N+1(x, t,0), 1j 2N, 1kN, N + 1k 2N..

(8)

Combining the columns of the determinants appearing in q(x, t) successively to eliminate in each columnk (or N+k) of them the powers of ǫlower than 2(k1), and factorizing and simplifying each common terms, q(x, t) can be replaced by Q(x, t)

Q(x, t) :=

f1,1[0] . . . f1,1[N 1] f1,N+1[0] . . . f1,N+1[N 1]

f2,1[0] . . . f2,1[N 1] f2,N+1[0] . . . f2,N+1[N 1]

... ... ... ... ... ...

f2N,1[0] . . . f2N,1[N 1] f2N,N+1[0] . . . f2N,N+1[N 1]

g1,1[0] . . . g1,1[N 1] g1,N+1[0] . . . g1,N+1[N 1]

g2,1[0] . . . g2,1[N 1] g2,N+1[0] . . . g2,N+1[N 1]

... ... ... ... ... ...

g2N,1[0] . . . g2N,1[N 1] g2N,N+1[0] . . . g2N,N+1[N 1]

(18)

Then we get the following result :

Proposition 3.1 The function v defined by

v(x, t) = exp(2itiϕ)×Q(x, t) (19) is a quasi-rational solution of the NLS equation (1)

ivt+vxx+ 2|v|2v = 0, where Q(x, t) is defined in (18).

4 Quasi-rational solutions of order N

Wa have already constructed in [12] solutions for the casesN = 1 untilN = 9 , and this method gives the same results. We don’t reproduce it here. We only give solutions of (NLS) equation in the case N = 10.

Because of the length of the expressions of polynomials N and D in the solutions v of the NLS equation defined by

v(x, t) = N(x, t)

D(x, t)exp(2itiϕ), we only give in the appendix.

(9)

If we choosea1 = 0, b1 = 0, we obtain the classical Akhmediev’s breather :

Figure 1: Solution of NLS, N=10, a1 = 0, b1 = 0.

5 Conclusion

The method described in the present paper provides a powerful tool to get explicitly solutions of the NLS equation.

As my knowledge, it is the first time that the Peregrine breather of order seven is presented.

It confirms the conjecture about the shape of the breather in the (x, t) co- ordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal toN(N + 1). This new formulation gives an infinite set of non singular solution of NLS equation. It opens a large way to future researches in this domain.

(10)

References

[1] N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Rogue waves and ra- tional solutions of nonlinear Schr¨odinger equation, Physical Review E, V. 80, N. 026601, (2009).

[2] N. Akhmediev, V. Eleonskii, N. Kulagin, Exact first order solutions of the nonlinear Schr¨odinger equation, Th. Math. Phys., V. 72, N. 2, 183-196, (1987).

[3] N. Akhmediev, V. Eleonsky, N. Kulagin, Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions, Sov. Phys.

J.E.T.P., V. 62, 894-899, (1985).

[4] N. Akhmediev, A. Ankiewicz, P.A. Clarkson, Rogue waves, rational solutions, the patterns of their zeros and integral relations, J. Phys. A : Math. Theor., V. 43, 122002, 1-9, (2010).

[5] E.D. Belokolos, A.i. Bobenko, A.R. its, V.Z. Enolskij and V.B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer series in nonlinear dynamics, Springer Verlag, 1-360, (1994).

[6] P. Dubard, P. Gaillard, C. Klein, V.B. Matveev, On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Special Topics, V. 185, 247-258, (2010).

[7] P. Dubard, V.B. Matveev, Multi-rogue waves solutions of the focusing NLS equation and the KP-i equation, Nat. Hazards Earth Syst. Sci., V.

11, 667-672, (2011).

[8] V. Eleonskii, I. Krichever, N. Kulagin, Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect. Math. Phys., V. 287, 606-610, (1986).

[9] P. Gaillard, Quasi-rational solutions of the NLS equation and rogue waves, halshs-00536287, 2011

[10] P. Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order Peregrine breathers and multi-rogue waves

solutions of the NLS equation, halshs-00589556, 2011

(11)

[12] P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A : Meth. Theor., V. 44, 1-15, 2011 [13] A.R. Its, A.V. Rybin, M.A. Salle, Exact integration of nonlinear

Schr¨odinger equation, Teore. i Mat. Fiz., V. 74., N. 1, 29-45, (1988).

[14] A.R. Its, V.P. Kotlyarov, Explicit expressions for the solutions of non- linear Schr¨odinger equation, Dockl. Akad. Nauk. SSSR, S. A, V. 965., N. 11, (1976).

[15] V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer Verlag, Berlin, (1991).

[16] D. Peregrine, Water waves, nonlinear Schr¨odinger equations and their solutions, J. Austral. Math. Soc. Ser. B, V. 25, 16-43, (1983).

[17] V. E. Zakharov, Stability of periodic waves of finite amplitude on a surface of a deep fluid, J. Appl. Tech. Phys, V. 9, 86-94, (1968)

[18] V. E. Zakharov, A.B. Shabat Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media, Sov. Phys. JETP, V. 34, 62-69, (1972)

Appendix

In the following, we choose all the parameters a and b equal to 0.

The solution of NLS equation takes the form v(x, t) = N(x, t)

D(x, t)exp(2itiϕ).

The polynomials N and D are defined by

N(x, t) =108420328134123403897198738214693026385651427406838874942554577384174484827680224051200000t86x2

−2193282686500631525315272661590511295758112030951273637905997322912560068209926808398725120000000000000000t32x2

−187934072913248324467472609403525609855405622141026966348743047366467178004741497741639680000000000000000t28x6

−120601467392759729566333536622791770045432283392458329281712979523453964739333521093427200000000000000000t28x4

+36229881635758328246481237959602655317263772520259159153204530475312521805135127511040000000000000000000t28x2

−23370676175197207897649263183176728975352732649082158520993305618021843379969379532800000000000000000t20x12 +300628987289608740650577115438409389840692968676891521647123295445163696742400000000000000000000t12x4

852067837841255571144819286990257737310408407712429979455853215182091782400000000000000000000t8x8

−295226695467753933135446883208525206686724402812042565893749608058077600000000000000000000t4x12

(12)

−196523778403551888225256884949499660520908832177198985644893232372557279163187200000000000000000000t16x2

+2780231210773027024902558090055661927982678934854695218309565808831830940549120000000000000000000t12x6 +754344318252798212871490733227504646133984600810889530616936954306239390720000000000000000000t8x10

−51103406546734482975149227898225853581664109402960296873533550068304000000000000000000000t4x14

−6114994081764849248009276784605338726849447681097213493222969037992456195033740083200000000000000000t20x14

917759139473570324863272179421161729900481277856377287603676442598231691829237073838080000000000000000t24x10

4397131840106789447083224271174250532134327344198340729945993866330351130983796834304000000000000000000t24x8

−9185803578141158037315581488241114196374540215952754872544995359022105250987034175078400000000000000000t24x6

−4301789434183743713548734382583843825127093814328241869783063288847168303470022230016000000000000000000t24x4

−8884481568287402571707240198897250546362732652147443485342226782066656841715826032640000000000000000000t24x2

−39363582504091066810986270176672685956292803075631305677076118175237943698772050575360000000000000000t20x10

+111525949104739048438297499652425587260610210539238922726084456425276514129663754240000000000000000000t20x8

−103227789428969294130615671380273977851131268919725756906444669326888491689768386560000000000000000000t20x6

−47383365986306413018831701187870973524761457449941892461826506212474795776093978624000000000000000000t20x4 +151146210119876232932321460123846320770976917665124857878705053834162396062296309760000000000000000000t20x2

18129963971228156614496904314237210274461149495158420653850643368303291657596436480000000000000000t16x18

26634271509634039200503356808783114826850395255158302715308771100412046878588272640000000000000000t16x16

−33785584356288965666128731057797524825442412216021251461563138501968390033453875200000000000000000t16x14

+167364001982218020750645809866065295636528418087907341232204356731514824633928908800000000000000000t16x12 +489990411986001626079479192378440929003728079177957398829364648777740609562607616000000000000000000t16x10

−783793043230521246391918541977086193681285586071319251941814673457740240457302016000000000000000000t16x8

+597078484488817473748075266121850173023935016836860286930258580441005738598334464000000000000000000t16x6 +1718535442899440404521991078549398243069623945329181330195679279393238388008550400000000000000000000t16x4

−9324708928558368004549050611416566045512264461305841510979199155696332733153280000000000000000t12x22

−8665287206569268200835246534579927747416655162677955975229097194439266313175040000000000000000t12x20

62146473870367199772945166005970483770062219560694565941053239120521645260800000000000000000000t12x18 +82671877287432513688193632557863972869399323633995054949365083879032780698419200000000000000000t12x16 +1098881247008086255203030364145980214418956211251241073016365700602326568402944000000000000000000t12x14

+184691081100024516740315185068817264260460157739132410501622406485221685854208000000000000000000t12x12 +2137196143579482407242265549528523254004028286528679320416803171358687892865024000000000000000000t12x10

+2946597520617784388015877020775723602110814283823741045407712210969311525273600000000000000000000t12x8 +2259837647040335454308687460813621525897864802506442724959888434344736369682258329600000000000000t28x26

−112918283055941312482785547405445152074132526050819839352065242268805024080436305825472970752000000000000t54

−990802091326532843209673333199379372770196843041681135466560154537053222656250000000000x2t4 +1014652092788219215914830725399098695208631989778110464369675331987011718750000000000000t4x4

59440572991199728397281034934644684250394458828256464724819968000000000000x54

43910618213996718794538483684689056983044201060899822853681403727758890625000000000000000t4x6

12631503122127142408264557384981755645773743591395372862211893203948730887265844073594880000000000000000t26x8

−51863184240174303232448663012224111091508265839650551749039434121075909180465223953285120000000000000000t26x6

(13)

−32327215410508563121334211341098858912313937163506235418564126988409811458810325866905600000000000000000t26x4

−16269024350028878289240393428615746233525730489411779479002653751514878108065901156761600000000000000000t26x2

−433093604738050678457854947357582812675630253619271042363589664424381644800000000000000t8x36

−4760425323086146425346396524981431380615137435406244762710282732384026624000000000000000t8x34

−25089768865530758583254574481876508322642720568981982196013234534383353856000000000000000t8x32

+18967793689845995685758485284362705288359278339595319073855568682076340224000000000000000t8x30 +565522592426985258576021088546673175048147190672494093461522764560114647040000000000000000t8x28

−7111489240082057125328799239906765086886755131080664325520853979417804800000000000000t6x38

−77394936509788877042459354950225582707403028663225416424138289033353625600000000000000t6x36

−442969052031273235044537982837848760652579617868062191591965774925791232000000000000000t6x34

−276502408566642691029950267982075643774777432366605397986111619074097152000000000000000t6x32

+8136599623756848640252117757096396771263154606863637443941722150519439360000000000000000t6x30

−78193562786408842874163264588797154772579812867255709258272505803571200000000000000t4x40

−935822832540692067587312136623583802835257564844703244541754083377152000000000000000t4x38

−6754019496078206510735164952659721790324013974527557680796738894430208000000000000000t4x36

21523406749151594670501524906232477370845511698150501034935397625364480000000000000000t4x34 +20977421275562824714122479190044691015139203459759522455512148072202240000000000000000t4x32

+611799384426050232109667271676842872872276632898737882176054466969600000000000000t2x42

−20570021804953445600054962323265244595243046963541124389279052595200000000000000t2x40

−28548706409381004599803429235270455616962742282706612921658666647552000000000000000t2x38

−228617009390823652274144146940872141889313156801515809516813446807552000000000000000t2x36

−835422594826142122568150793749664477524563749723468144863308519833600000000000000000t2x34

+761864163841339580397832637064339466708516098431316689088518553600000000000000x44 +11524266384562854953688245138957696486604623813895350553252200448000000000000000x42 +78004273901002401785057242715465735883923275385486499158396239872000000000000000x40 +323411996509964317723928600867570674272819192060561117435345764352000000000000000x38 +1236389324045150829212837836173756828326045724451550852455763804160000000000000000x36 +2034390114843720116817883681248995738544986572880688049695780417862500000000000000000x16

+122919006379543507444568860014553893081564709133756925766571623710720000000000000t6x48 +2775600203983755660165212727045084903985987751779640206792296306510000000000000000000x18 +5893352912053380922835611450081613360467052081866951190687960291918334960937500000000x4t2

+14907484376208074276143459302550234330146973959703507229910623110496871785097303351204249600000000000000t34x10 +30963472370504430597769003805205231450584069001910866399369654299874786025450799471001600000000000000000t34x8 +458717296671433579376286965147804891700724578261929443761046072185699010128630596140793856000000000000000t34x6 +13072143341901334158706434436132877795628726647970444071732234171000530857512777143025664000000000000000t32x12

22826397799031180425147152860228232060180394941753846873959997195696483396936758628188160000000000000000t32x10 +141428345165973503548682923050696494890059710371715558163957840502389779874973091780100096000000000000000t32x8 +195230750849704460753573840787018378082034824182588737304030818000404705906397785821806592000000000000000t32x6 +2096582902412672393207236327005322703970085200303903813614811496022964107054611628556288000000000000000t30x14

(14)

−3252134386820657783414470941173632271029849145833115495334484371218497631001528376492032000000000000000t30x12

−24811728237643010487104005333663336407017000388969613669898598550871278629378083322121420800000000000000t30x10

+62143401453071113735317250341569271824486874466852240275214641733103184814008919734091776000000000000000t30x8

−154169087150342768360841013707277292904375186721337339462537186228084105247164042450042880000000000000000t30x6

+166059955269913069844322098918212010235030281122891640575138325828140907790469851984691200000000000000t28x16 +95297712720804163258643519393083216277586179301882369957241951384516942115721871097856000000000000000t28x14

6981728893406050061490143433222035799652413978196550386797162490290769753184232982708224000000000000000t28x12

−1522380241860960513580958887936459169795690508177091759317322224319981848696048354066432000000000000000t28x10

−71616187618745975849912896508658323925948216195001813947857577312783424479272572173680640000000000000000t28x8

+11328845582630794566839945675313662638193348666128802599715665803053019078198736139059200000000000000t26x18

−34573660081702690084011742005477112829377624012296623936258869651784301495434639258419200000000000000t26x16

−656256021576289997648536072922611091133451006871976010036900944510871532755550170251264000000000000000t26x14

+1019924395733676511465894818071532816102452474915906971082235537201022389279607725490176000000000000000t26x12

−2883774294034735391304672478428918517312407026328155537443613753842604668278210916515840000000000000000t26x10 +440919965694806099552052840137133070967344881315367984426401071491364521369784234803200000000000000t24x20

5021341500922400866691810328065611473582532828421586160948215677210743820310294822912000000000000000t24x18

36010893391337549808881447762507337512417921007092899543758435799322146690357518139392000000000000000t24x16 +146954783663381571961863842917856858825508433681735936663377687374852473533214815682560000000000000000t24x14 +46423777132324385111661841746266204186144549582178507427414923401550729918676362854400000000000000000t24x12

+9273735157521479878309213062495241738234511783063083223647435790193406408630940467200000000000000t22x22

−324240929808089648591105566409000292425407176740895156084003025000106769561160148582400000000000000t22x20

−1690875307625327058624956897667244687472243484223820377982021188694145205458350112768000000000000000t22x18

+6133334241937915399507222916982626335447832492238690538282603660052936551290365804544000000000000000t22x16 +17034756769310709178201432126558935384223562748485359015230755899000982927700582727680000000000000000t22x14

−625795076027200421680344411590549785117932356549745278772332326735772587878304972800000000000000t20x24

19912579224988299860236610318208760550468336760645466500311996754080111828599308288000000000000000t20x22

131223943082439343731303217488416338176314567035930316575715402140631270500304997580800000000000000t20x20

−230678070835078932104605985916387841328800530319505522260395899091087098308196302848000000000000000t20x18

+1462420703990942143063684772762403358785955351297141717552036107826164585052514549760000000000000000t20x16 +728331421933585281101676523670539687178656553406316855884978964104423932323430400000000000000t18x26

−641859605944554584303603249505692036935466453814772736308960499565382383119106048000000000000000t18x24

−6974748778032526258010707952295547971963627426514084263422957030135170551062200320000000000000000t18x22

−32701373885202819280814333213350068025860657838712234125908622121069789233450844160000000000000000t18x20

+27762580155307324166484402844911724060740868390717342527434679126145649221954437120000000000000000t18x18 +1729097032356300550888484218468822412100001845953066370630058900042075917936230400000000000000t16x28

11918074965696606110409618251332785070114224051980870603218113901713397218331852800000000000000t16x26

227376952918702664302928309904401459593230215301108350408781938984274089151037440000000000000000t16x24

1285939124009564134391291067677167139919711594028292866069949243433978303023677440000000000000000t16x22 +112392156946519147054305488510578975586852139573546567520785862947599593714483200000000000000000t16x20

(15)

+27265375124435532833474957543443685131336430638363802006310646186404289393459200000000000000t14x30

−376288540737613275738489712012311924456582909715547761182950387613009476321280000000000000000t14x28

−4802075437817182548804380496069433344463872099705467732934347742730026133487616000000000000000t14x26

−18260504940244076697978768073929834625339325768152304651968756475896403570196480000000000000000t14x24 +24441433308163975059033675242818776349257779887971481821421024928481929236316160000000000000000t14x22

9982240857704782011366807339756529149725890217992047403742199926413590528000000000000000t12x32

10706073048850989033092093110590299717340737217205994042806384476527177760768000000000000000t12x30

−84840833714965540909367646775168553005865431145832489956352997866311931396096000000000000000t12x28

−58356768239931902134819473828769507206629220198079158215341890667475487424512000000000000000t12x26

+1849206481203963514362069608361607954111789918866708464043643655412903711866880000000000000000t12x24

−12599121436067030614934104186898625580494415406228710493583824431330885632000000000000000t10x34

−228823654860113562464313828720295193681960880697747377688629502450958598144000000000000000t10x32

−1286481146568871617037952038727387135797527309580089931992452967889595950694400000000000000t10x30

+2187605742147812761367671148111277712885062389248188101399227926849345552384000000000000000t10x28 +41096498717602206262626912263307082034410607440445354937457164576886546759680000000000000000t10x26 +76109142580914483330364648270255559764975133290493671210463307647191791760050996903936000000000000t30x24 +8143966740578141515599199581634109085150275403829654778682650583442304432029012414494985420800000000000000t44 +5864594922277223324007583743081742825713915775773597282725065762924891244667512390360550604800000000000000t42

−423866713419152897939282689707301395569708207388125815112876323890915025896188245769296281600000000000000t40

+1094328860505668102728516443501046145177681330226741191051052933816274601212644475187232768000000000000000t38

−30859369317437166065507413211023010999299295865237762391990723739459515662797203990118400000000000000000t36

+133674354409806236300640504393927680556414289999213996113014934779876868096000000000000t14x42 +2737057439692956849049014858685335746452317184791686864474589371910095214843750000x4

−16277526784205732795402606884456705709060341352941037225764224624481201171875000000x6

+126715622208007261530046984198395173446866536332948465947897656106948852539062500x2 +106555289922429201767814517010271850919435996065558286233860829575769498098597888000000000000t20x34

+667803205144480023549060749168175318797717812942207259463240195811323536400000000000000000000t8x6

−36802360923206870516802566232381274202790508442069313212779363258088025000000000000000000t4x10

−59858990979508571934268225274377706211989984624985266713467427153933616025600000000000000000000t10x6

−13676752056709676403210136619499373541359054996093659036466200995206560000000000000000000000t6x10

−1418204998370604277072125766956928510902295557206187843225881597785200000000000000000000t2x14

+18008712162316851858164630015536990382115556991430064122262537927301629683302400000000000000000000t14x4 +103370649841444059694749552625904784913052271004954392036520871868217316413440000000000000000000t10x8

+6144233337526021665174627847281349369522650058661223591226050801675671040000000000000000000t6x12 +1544418345064120326754649331587451654680225959778241790435567614496764974456114560106496000000000000t32x22

+420342198696174965839327254461031170642291989817014517485412856024120000000000000000000t2x16

68021439285359681327779982682252555007488034686035797992142441250092298223869126246400000000000000000t22x12

304935149773513042060928192137622500630994402911085512065857124087546804043499175936000000000000000000t22x10

−1032302437953836743777612151371028682802774358033542619801292065722107770847039691161600000000000000000t22x8

Références

Documents relatifs

Rational solutions to the NLS equation were written in 2010 as a quotient of two wronskians [10]; in [11] another representation of the solutions to the NLS equation in terms of a

Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order

Eighth order Peregrine breather solution of the NLS equation and their deformations with fourteen parameters.... Eighth order Peregrine breather solution of the NLS

The present paper presents Peregrine breathers as particular case of multi-parametric families of quasi rational solutions to NLS of order N depending on 2N − 2 real parameters

In this paper, we use the representation of the solutions of the focusing nonlinear Schr¨ odinger equation we have constructed recently, in terms of wronskians; when we perform

Gaillard, Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers, halsh-00573955, 2011 [11] P. Gaillard, Higher order

Gaillard, Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation, halshs-00589556, 2011..

In this approach, we get an alternative way to get quasi-rational solutions of the focusing NLS equation depending on a certain number of parameters, in particular, higher