• Aucun résultat trouvé

Electrical and physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon pn junctions

N/A
N/A
Protected

Academic year: 2021

Partager "Electrical and physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon pn junctions"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: cea-01477558

https://hal-cea.archives-ouvertes.fr/cea-01477558

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Electrical and physical topography in energy-filtered

photoelectron emission microscopy of two-dimensional

silicon pn junctions

Maylis Lavayssière, Matthias Escher, Olivier Renault, Denis Mariolle,

Nicholas Barrett

To cite this version:

Maylis Lavayssière, Matthias Escher, Olivier Renault, Denis Mariolle, Nicholas Barrett. Electrical and

physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon

pn junctions. Journal of Electron Spectroscopy and Related Phenomena, Elsevier, 2013, 186, pp.30

-38. �10.1016/j.elspec.2013.01.014�. �cea-01477558�

(2)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Electron

Spectroscopy

and

Related

Phenomena

jou rn a l h o m e pa ge :w w w . e l s e v i e r . c o m / l o c a t e / e l s p e c

Electrical

and

physical

topography

in

energy-filtered

photoelectron

emission

microscopy

of

two-dimensional

silicon

pn

junctions

Maylis

Lavayssière

a

,

Matthias

Escher

b

,

Olivier

Renault

a

,

Denis

Mariolle

a

,

Nicholas

Barrett

c,∗

aCEA,LETI,MINATECCampus,17ruedesMartyrs,38054GrenobleCedex9,France bFocusGmbH,65510Hünstetten,Germany

cCEA,IRAMIS/SPCSI/LENSIS,F-91191Gif-sur-Yvette,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17May2012

Receivedinrevisedform7January2013 Accepted17January2013

Available online 12 February 2013 Keywords:

Pnjunction

Photoelectronemissionmicroscopy Surfaceimaging

Simulations

a

b

s

t

r

a

c

t

Photoelectronemissionmicroscopy(PEEM)isapowerfulnon-destructivetoolforspatiallyresolved,

spectroscopicanalysisofsurfaceswithsub-micronchemicalheterogeneities.However,inthecaseof

micronscalepatternedsemiconductors,bandline-upsatpnjunctionshaveabuilt-inlateralelectricfield

whichcansignificantlyalterthePEEMimageofthestructurewithrespecttoitsphysicaldimensions.

Furthermore,realsurfacesmayalsohavephysicaltopographywhichcanreinforceorcounteractthe

electricallyinduceddistortionatapnjunction.WehavemeasuredtheexperimentalPEEMimage

dis-tortionatsuchajunctionandcarriedoutnumericalsimulationsofthePEEMimages.Thesimulations

includeenergyfilteringandtheuseofacontrastapertureinthebackfocalplaneinordertodescribe

thechangesinthePEEMimageofthejunctionwithrespecttoitsrealphysicaldimensions.Threshold

imagingdoesnotgiveareliablemeasurementofmicronsizedpandntypepatterns.Athighertake-off

energies,forexampleusingSi2pelectrons,thepatternwidthisclosertotherealphysicalsize.Physical

topographymustalsobequantitativelyaccountedfor.TheresultscanbegeneralizedtoPEEMimaging

ofanystructurewithabuilt-inlateralelectricfield.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Photoemission electron microscopy (PEEM) is a powerful

surfacesensitivetechniquesuitableforfullfieldimagingof

doping-inducedcontrastinsemiconductors.Intheenergyfilteredmodeit

combineshighspatialandenergyresolutionallowinga

compre-hensive,non-destructivespectroscopicanalysistobecarriedout

[1].Correlationofthespatialdistributionofcorelevelsandvalence

bandedgesallowsonetomapchemicalandvalencebandstates.

InPEEMa highextractor voltage,typically 12–20kV, isapplied

betweenthesampleandtheentrancelens oftheobjective.The

practicallateralresolutionisdeterminedbythecounting

statis-ticsand thesphericalandchromaticaberrationsoftheelectron

optics[2]whiletheultimateresolutionlimitisgivenbythe

diffrac-tiondiskofthelowenergyelectrons.Inthevicinityofaplanar

pnjunction(thejunctionbeingina planeperpendiculartothe

opticalaxis),alateralelectricfieldiscreated,whichaltersthe

sur-faceelectrical topographyandhencethePEEMimage.Thelocal

fieldatapnjunctioninsiliconcaneasilybeofthesameorderof

magnitudeastheextractorfield.Electronsemittedfromthe

sur-faceinthephysicalvicinityofthejunctionaredeviatedlaterally,

∗ Correspondingauthor.Tel.:+33169083272;fax:+33169088446 E-mailaddress:nick.barrett@cea.fr(N.Barrett).

perturbingthePEEMimage.Notonlywillthepositionofthe

junc-tion as measured in PEEM be different from the real physical

position,butalsotheapparentjunctionwidthmaybemodified.

Anunderstandingoftheeffectofthebuilt-involtagecould

there-forebeusedtomeasurethelocallateralelectricfieldatthejunction

fromthePEEMimage.Thephysicalwidthofahighqualityjunction

ismuchsmallerthanstandardthresholdPEEMresolution(typically

50nm).However,thespacechargeofthedepletionwidthcanvary

fromseveralnmuptoseveralmicronsdependingonthedoping

levels.Therefore,theseregionsshouldprovideacharacteristic

sig-nalintheimagesasshowninsomepioneeringPEEMworkonpn

junctions[3].Thedistortionsinelectronemissionmicroscopydue

tothedopingdependentspacechargeregionhavebeendiscussed

byFranketal.[4].Potentialmappinginsemiconductor

electron-icsbyelectronemissionmicroscopyhasbeenreviewedbyNepijko

etal.[5].Thebasicelectronopticsystemconsideredisacathode

immersionlensandacontrastapertureorknifeedgeinthefocal

plane.Thedeviationoftheelectronsemittedfromthesurfacewas

calculatedanalytically,modelednumericallyandfoundtoagree

withimaginginbrightanddarkfieldmodes.Thebuilt-inelectric

fieldacrossthepnjunctiondeviatestheelectronsfromthep-type

regiontothen-typeregion.Theeffectisshownschematicallyin

Fig.1. Typical values used forthe simulationsare an extractor

fieldof 6.6kVmm−1 and abuilt-inplanarjunctionvoltageof∼

0.9V,givinganeffectivefieldvectorinfluencingthephotoelectron

0368-2048/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(3)

Fig.1. Schematicoftheperturbationoftheextractorfieldbysamplesurface elec-tricaltopographyinacathodeimmersionlens.

trajectoriesstartingatthesurface.Awayfromthesamplethe

effec-tivefieldvectorislessaffected.

Inrealpatternedsampleselectricaltopography cancombine

withphysicaltopographyduetothepatterningprocess.The

focus-ing/defocusingeffectof3Dstructureshasalreadybeeninvestigated

inemissionmicroscopy[6]andinmirrorelectronmicroscopy[7,8].

Dipsor wellswilltendtofocus thephoto-emitted(orreflected

electronsinthecaseoflowenergyelectronmicroscopy)whereas

aprotuberancewilldefocusthem.Thus,closetoapnjunctionthe

fieldlineswillbedistortedduetoa combinationofthebuilt-in

fieldfromthebandline-upandtheperturbationoftheextractor

fieldduetophysicaltopography.Finally,thebandline-upatthe

surfacecanbeinfluencedbyboththesurfacecompositionandthe

photoemissionprocess.Nativeoxidecanberemovedandthe

sur-facepassivated,however,residualoxideanddefectsmaystillbe

present,givingrisetobandbendingandpinningoftheFermilevel.

Thegenerationofelectronholepairsduringthephotoemission

pro-cesscanalsoshiftthebandline-upviathesurfacephotovoltage[9].

Thusalthoughweareinterestedintheeffectofthebuilt-involtage

ofthejunction,thePEEMimagemayalsobemodifiedbysurface

effects.Inthispaperweinvestigatethecombinedeffectof

electri-calandphysicaltopographyatpnjunctionsonPEEMimaging.First,

theenergyfilteredthresholdandSi2pPEEMmeasurementsare

pre-sented.Then,thenumericalmodelincludinganimmersionlensand

contrastapertureforthesimulationsisdescribedandtested.Finally

thesimulationsofthecombinedphysicalandelectricaltopography

arecomparedwithexperimentanddiscussed.

2. Experiment

2.1. Samplepreparation

Thesampleconsistedofhighlyn-dopedpatterns(hereafterN+)

ona p-dopedSi(100)substrate(resistivity5-10.m),hereafter

denotedP.Patterningwasdonebydeep-UVphotolithographywith

HF-lastwet cleaningat 950◦C toremove nativeoxide.Cavities

wereetchedusinggaseousHCl(180Torr,750◦C).Cavity

dimen-sions wereadjusted toaccount for theisotropic etchingbelow

thethermal oxide. Epitaxialgrowth of boronand phosphorous

dopedsiliconinthecavitieswasperformedat950◦C,20Torrusing

SiH2Cl2,B2H6andPH3gasprecursors.Epitaxialgrowthwas

pre-ferredtoionimplantationinordertoavoidcollateraldamagedue

totheionenergyandtominimizedopingprofilescreatingsharp

planarjunctions.PEEMimagingwasdoneona“0”-shaped,Ptype

patterninasurroundingN+field.PriortoPEEManalysis,the

sur-faceswere passivated using a three stepsprocess to minimize

surfacebandbending.Afterdegreasingintrichloroethylene,

rins-inginacetoneandde-ionizedwater,afirstetchingwasdoneusing

abufferedoxideetchant(BOE:49%,HF:40%,NH4Fina7:1ratio).

ThesamplewasthenchemicallyoxidizedusingaPiranhasolution

(1/3H2O2,2/3H2SO4,concentrations30%and96%respectively)for

20min.Thesamplewasre-etchedinBOEfor30min,driedunder

N2andimmediatelyintroducedintothePEEMvacuumsystem.

The N+ doping level was measured with dual-beam

time-of flight mass spectrometry using 1keV Cs+ sputtering to be

1.8×1019atomscm−3,theassuppliedsubstratedopinglevelwas

1.4×1015atomscm−3,creatingabuilt-involtageof0.884Vatthe

planar pn junction.The space charge regionon the N+ side is

estimatedat10nmandonthePdopedsubstrateat540nm.The

localizedepitaxialgrowthproducedaphysicaltopographyatthe

junctionbecauseitwasnotpossibletostoptheepitaxialgrowth

rateat exactlythesame heightasthetop ofthetrench. Fig.2

showsanAFMprofileoftheN+/Pstructureand theheight

pro-file.TheepitaxialN+growninthetrenchesis20nmhigherthan

thesurroundingsubstrate.

BasedontheAFMmeasurementsandthemeasureddoping

lev-elswecanrepresenttheP/N+/PandN+/P/N+structuresasshownin

Fig.3(a).Thespace–chargeregionextendsmainlyintothePdoped

sideofthejunctionwhereasintheheavilyNdopedsideitisalmost

negligible.Fig.3(b)isaschematicoftheexpectedeffectsofthe

realelectrical andphysicaltopographies ontheelectron

trajec-tories.Boththebuilt-infieldduetothespace-chargeregionand

thestepatthejunctionshouldmodifythePEEMimage,asshown

schematicallybythedark(purple)andlight(yellow)fieldlines,

respectively.

2.2. PEEMresults

TheopticalmicrographinFig.4(a)showsthestructureusedfor

evaluationoftheelectricaltopography.TheN+structureis7.65␮m

wide,enclosedbythepurplearrows.Inthispaperwefocusonthe

P/N+/Pstructure.Thedimensionchosenisfarfromthecenterof

theimagebecausetheN+structuresatthecenteralsoundergoa

chargingeffectduetophotoemissionwhichmightinfluencethe

results.[10]Thewidthofthestructureswaschosentobemuch

largerthantheexpecteddepletionwidthtoensurethataccurate

flat-bandvoltages farfromthejunctionswereavailablebothin

thePEEMmeasurementand forthenumericalsimulations.The

experimentsweredoneusingaspectroscopicXPEEMinstrument

(NanoESCA,OmicronNanotechnology)temporarilyinstalledatthe

TEMPObeamlineoftheSOLEILsynchrotron(h=128.9eV).The

doublehemisphericalanalyzerusedasenergyfilterprovideshigh

transmissionandthereforeallowsspectroscopicimagingwithhigh

energyresolutionwithoutdegradingtheexperimentallateral

res-olution[11].Theextractorvoltagewassetat12kVandthecontrast

aperturewascloseddownto70␮m,givingalateralresolution

bet-terthan70nm.Theoverallenergyresolutionincludingtheband

widthofthephotonbeamwas0.1eVforthethresholddata,as

mea-suredattheFermilevelofasilversinglecrystalsample.Thelatter

wasalsousedtocalibratethephotonenergy.

Thresholdimageserieswereacquiredasafunctionofthe

photo-electronenergyreferencedtotheFermilevel,E−EF.Thetake-off

orkineticenergyisthedifferencebetweenthisvalueandthework

function.Atypicalimageis showninFig.4(b). Animageseries

acquiredoverthethresholdspectrumgivesadirectmeasurement

ofthesampleworkfunctioninthefieldofview(FoV).Darkandflat

fieldimagingeliminatecameranoiseanddetectorinhomogeneity,

respectively. The non-isochromaticity [12] of thePEEM images

wascorrectedbyaparabolicfunctionextractedfromauniformly

dopedsamplearea[13].Thepixelbypixelphotoemissionthreshold

spectrawerefittedusingacustomizedMATLABroutinebya

com-plementaryerrorfunction,providinga2Dworkfunctionmapof

theFoVwithastandarddeviationof±0.02eV.Theresultingwork

(4)

Fig.2.(a)AtomicforcemicroscopyimageoftheN+/Pstructureand(b)heightprofilefollowingtheblacklinein(a).TheN+regionis20nmhigherthanthePsubstrate.

Fig.3. (a)SchematicofrealphysicalandelectricaltopographiesoftheN+/P/N+(top)andP/N+/P(bottom)structuresstudiedhereand(b)schematicofthedeviationofthe

electronpathspredictedbythephysicalandelectronictopographiesoftheP/N+/Pstructure.(Forinterpretationofreferencestocolorinthetext,thereaderisreferredtothe

webversionofthisarticle.)

N+ (P)regionis 4.44(4.38)eV.Onewould expecttheN+ region

tohavea lower workfunction,however, surfacebandbending

andphotovoltagecaneasilychangethis [14].Thereis also

con-trastbetweenopenandclosedN+ regionsdue tobiasingofthe

pnjunctionunderphotoemissionthathasalreadybeendiscussed

[10]. TheSi 2p imageseries wasalso acquiredusing thesame

photonenergy.Atypicalimage(E0−EF=30.50eV,corresponding

toakineticenergyof26.0eV)isshowninFig.4(c).

Fig.4.(a)OpticalmicrographofN+/Psiliconsampleshowingthemicronscaledopedpatternusedinthiswork,(b)typicalenergyfilteredthresholdPEEMimageforatake-off

energyof0.1eV,(c)energyfilteredimageattheSi2pcorelevel(h=128.9eV,E−EF=26.0eV)and(d)workfunctionmapobtainedfromapixelbypixelcomplementary

(5)

7.0 6.0 5.0 position (μm) (c) 26.0 eV

Intensity (arb. units)

7.0 6.0 5.0 (b) 0.5 eV 6.0 5.0 4.0 (a) 0.1 eV 14.0 13.0 12.0 position (μm) 15.0 14.0 13.0 13.0 12.0 11.0 P/N+ N+/P

Fig.5. Intensityprofiles(bluecircles)oftheleftandrighthandjunctionsofP/N+/P

structureattake-offenergiesof(a)0.1eV,(b)0.5eVand(c)26.0eV.Errorfunction fitstotheprofileareshownasredlines.Thetake-offenergyismeasuredwithrespect tothevacuumlevelE0oftheN+region.(Forinterpretationofreferencestocolorin

thisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

TomeasurethewidthoftheP/N+/Pstructurecomplementary

errorfunctionshavebeenusedtofittheintensityprofilesofthe

leftandrighthandjunctions.TheresultsareshowninFig.5.The

widths,asdeducedfromthefitsinFig.5are(a)7.95,(b)7.82and(c)

7.65␮mfortake-offenergiesof0.1,0.5and26.0eV,respectively.

Thus,thewidthof thestructureasdeterminedfromthe

inten-sityprofileattheSi2pcorelevelgivesanidenticalvaluetothat

oftheopticalmicrograph,whereasthemeasurementsat

thresh-oldgivesignificantlylargervalues,inagreementwiththebehavior

shownintheschematicofFig.3(b).Thebuilt-infieldsweeps

elec-tronstowardsthen-typeregions,reducingtheintensityfromthe

p-typeregionnearthejunction.Awidthmeasurementbasedonthe

intensityprofilewillthereforegivealargervaluethantheactual

physicalwidth.However,thisbehaviorneedstobequantified,both

intermsofelectricalandphysicaltopographyandistheaimofthe

simulationspresentedinthenextsection.

3. Simulations

3.1. Model

ThePEEMcontrastobservedatthejunctionhasbeen

numer-ically simulated using the standard industry code SIMION [15]

which traces the motion of charged particles in an electric

field using a fourth-order Runge–Kutta integrator. We have

Fig.6.ElectronopticsmodelusedtosimulatetherealPEEMoptics:(a)PEEMoptical elements,(b)SIMIONoverviewofelectronpathsand(c)zoomonthePEEMfirst elementsincludedinthesimulations.Theredarrowsshowthepositionoftheplanes usedtoimagethesimulatedelectrondensities.(Forinterpretationofreferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

approximatedthePEEMbyasample(thecathode),asingle

elec-trostaticlens,acontrastapertureinthefocalplaneandthescreen,

asshowninFig.6.Energyfilteringisobtainedbydefiningthe

take-offenergyofthephotoelectrons.Althoughtheelectronopticsare

simplified compared totheNanoESCA instrument (notablytwo

projectivelenses,atransferlensandanalyzerentranceandexitslits

shouldbeadded),theydoreproducetheessentialcharacteristicsof

anenergyfilteredPEEMwithacontrastapertureinthefocalplane.

Causticeffects,observedinlowenergyelectronmicroscopy,arenot

included,i.e.weassumeonlydeviationsintheplaneperpendicular

totheopticalaxis[8].Thisisreasonablesincetheenergyfiltering

preventssimultaneousimagingofphotoelectronsinabandwidth

greaterthantheenergyresolutionofthePEEM.

Theelectronsaresimulatedbyanarrayofpointsources

dis-tributed across the sample surface; each point source has 11

differentstartinganglesfrom−10◦to+10◦in2◦steps.Thebuilt-in

potentialduetothepnjunctionissimulatedbyanarrayof

lin-earvoltagedropsacrossthedepletionwidth.ThecentralPorN+

regionwas7.65␮mwide,correspondingtotheoptically

deter-minedwidth.Theelectronintensitydistributioncanbeextracted

atanyplaneperpendiculartotheelectronopticalaxis,inparticular

justabovethesamplesurfaceandatthescreenpositionasindicated

bythethick(red)arrowsinFig.6(b).Thisallowsdeterminationof

theinfluenceofthecontrastapertureontheintensitydistribution

inthePEEMimage.Totestofthevalidityofourelectronoptics

wehavecalculatedthemagnificationofthePEEMsimulationas

afunctionoftake-offenergy,i.e.electronkineticenergy,defined

astheelectronenergyabovethreshold,measuredexperimentally.

TheresultsareplottedinFig.7andcompared,usingalinear

scal-ingfactor,tothecalculatedmagnificationofthePEEMoptics(solid

line).

Theseinitialsimulationsonlytakeaccountoftheeffectofthe

built-involtageacrossthejunctionandtheelectronopticsofthe

PEEMcolumn.Theydonotsimulate,forexample,the

photoelec-tronyield.Anempiricalcorrectionforthiseffectwillbeintroduced

below.Furthermore,theworkfunctionvariesslightlybetweenN+

andPregions,thesimulationofaPEEMimagetakenatafixedE−EF

valuethereforerequirestheuseofdifferentphotoelectrontake-off

(6)

2.7 2.6 2.5 2.4 100/Mag 200 100 0 KE (eV)

Fig.7.Simulatedmagnification(circles)obtainedusingthesimplifiedimaging col-umncompared,usingalinearscalingfactor,withthecalculatedmagnification(solid line)ofthefullPEEMelectronopticsasafunctionofkineticenergy.

3.2. Results

Asafirststepwecalculatethedeviationoftheelectronsdue

tothelateralelectricfieldandthephysicaltopography,without

takingintoaccounttake-offenergydifferencesorelectronyield.

InFig.8weshowthesimulatedelectronintensityoftheN+/P/N+

andP/N+/Pstructuresinaplanejustabovethesampleandas

mea-suredonthescreen,i.e.inthepositionsdefinedbytheredarrows

inFig.6(b).Afivepointnearestneighborsmoothingisdonetothe

simulatedrawdata.Asintuitivelyexpected,electronsaredeviated

fromthep-typeregionnearthejunctiontoreinforcetheintensity

onthen-typesideinbothcases.Thisgivesrisetoadarkstripeonthe

p-typesidewithanadjacentbrightstripeinthePEEMimageofthe

junctionwithoutthecontrastaperture,aspreviouslyobservedand

predictednumerically[16].Theintroductionofarealisticcontrast

aperturecenteredinthefocalplanewithrespecttotheelectron

opticalaxisactsasanangularselectorandcutsoffstrongly

devi-atedelectrons.We haveuseda70␮mcontrastaperture which

givesahighspatialresolutionasrequiredintheexperiment.The

intensitydistributionobservedonthescreenmodifies

consider-ablywithrespecttothatintheabsenceofacontrastaperture,as

canbeseenfromthedarker(blueandred)curvesinFig.8.The

majoreffectofthecontrastapertureistosuppressthebrightstripe

duetohighlydeviatedelectrons;however,italsodisplacesthedark

stripefurtherintothePdopedregion.Infact,withorwithoutthe

contrastapertureitisdifficulttoaccuratelymeasurethejunction

position.

Thecut-off effectof thecontrastaperturehasbeenchecked

experimentally.WeshowinFig.9thresholdimagesofthesame

structurewitha70␮mcontrastapertureincenteredandoff

cen-terpositionswithrespecttotheelectronopticalaxisofthePEEM

column.Theintensesignalduetothehighlydeviated electrons

iscutbythecenteredcontrastaperturewhereasintheoffcenter

positionsthereisalmostaperfectsymmetry,withthebrightlines

observedintheNdopedregions.Theseimageswereobtainedon

aP+/Npatternedsample,butascanbededucedfromthe

simu-lationsinFig.8thisdoesnotqualitativelychangethecut-offof

thehighlydeviatedelectronsbythecontrastaperture.The

simula-tionsthereforereproducequalitativelytheexperimentaldeviation

ofthephotoemittedelectronsby thebuilt-in junctionfield. For

thecomparisonofthesimulationswithexperiment,wefocuson

theP/N+/Pstructure.Inordertoevaluatetheeffectofthe

phys-icaltopography we have repeatedthesimulations of Fig.8 for

theP/N+/Pstructure withandwithouttheexperimentally

mea-sured step of 20 nm. The results are shown in Fig. 10(a) for

theelectrondensityjustabovethesampleandin Fig.10(b)for

electron intensity on the screen with the contrast aperture in

place.

FromFig.10(a)thephysicalandelectricaltopographieswork

inoppositedirections.Thebrightstripeduetothebuilt-in

elec-tricfieldisinsidetheN+area,whereasforonlyaphysicalheight

differenceof20nmatthejunctionabrightstripeiscreatedon

thePsideofthejunction.Onthescreen(Fig.10(b))thecontrast

aperturehascutoffthehighlydeviatedelectronsattheoriginof

thesestripesandweseethatthemodificationofthePEEMimage

isdue,inthiscase,principallytothebuilt-inelectricfield,although

thevariation intheintensityprofileacrossthejunctionis

par-tiallycompensatedbythephysicaltopography.Inthefollowing

wewillthereforeconsideronlytheeffectofthebuilt-inelectric

fieldalthoughitshouldbeborne inmindthatlargerheight

dif-ferencesatajunctionwouldsignificantlyaffectthemeasurement

ofthestructurewidth.AscanbeseenfromFig.8inthepresence

ofacontrastaperture,thebrightdeviatedintensityissuppressed

andthereisadipintheintensityonthescreeninside(outside)

thecentralP(N+)structure.Thephysicaljunctionpositionisclose

totheouter(inner)edgeofthisdiprespectively.Thus,depending

onthecriterionusedexperimentallytopositionthejunction,the

measuredwidthwillbedifferent.Forexample,iftheoutsideedge

Fig.8.Simulatedphotoelectrondensityemittedfromthesamplesurface(lightblueandredlines)andonthePEEMscreenafterpassingthroughthecontrastaperture(dark lines)forthe(a)N+/P/N+and(b)P/N+/Pstructures.ThepatterndimensionsonthescreenaregivenwithrespecttothesamplesurfaceusingthePEEMobjectivemagnification.

Thecontrastaperturesuppressesthebrightstripeduetohighlydeviatedelectronsanddisplacesthelowone.(Forinterpretationofreferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

(7)

Fig.9. BrightanddarkfieldPEEMimagesofaP+/Nsampleobtainedbyvaryingthepositionofthecontrastaperture.Whenthecontrastapertureisoff-centerwithrespect

totheopticalaxis,thebrightstripeduetothedeviatedelectronsbecomesclearlyvisible.

ofthedipisusedthenthestructurewidthwillappearlargerthan

therealphysicalwidth.Thesimulationsusedtocomparewiththe

experimentalresultstakeintoaccounttheintensitydifferencesby

empiricallyincludingagradientofthenumberofphotoelectrons

acrossthedepletionregionforeachtake-offenergy.Theintensity

fromthePregionisalwaysgreaterthanthatfromtheN+region

intheimagesusedforcomparisonwiththesimulations.Wehave

thereforearbitrarilysetthehigher,Pintensityattwicethe

num-berofparticles(108every10nm)intherangeof−10◦/+10asthe

lowerN+intensityemission(54particlesevery10nmintherange

of−10◦/+10◦).Notethatweassumethatthelateralelectricfield

duetothebuilt-injunctionvoltageisdeterminedbytherelative

dopinglevelswhereasthetake-offenergyismeasuredwithrespect

totheexperimentallydeterminedthresholdenergy.

Thesimulatedprofiles,takinginto accountthebuilt-infield,

physicaltopographyandthedifferentlevelsofintensityintheP

Electron density (arb. units)

-8

-6

-4

-2

0

2

4

6

8

Position (

μm)

(b)

screen

Electron density (arb. units)

-8

-6

-4

-2

0

2

4

6

8

(a)

sample

Fig.10.Simulatedphotoelectronintensityemittedfrom(a)thesamplesurface and(b)onthePEEMscreenafterpassingthroughthecontrastapertureforthe P/N+/Pstructurewithphysical(blue),electrical(orange)andphysicaland

elec-tricaltopographies(red)topography.Atake-offenergyof0.1eVwasused.The contrastaperturesuppressesthebrightstripesduetohighlydeviatedelectrons. Thesimulatedprofilenearthesamplesurface(a)showsthatphysicalandelectrical topographiesworkinoppositedirectionswhereasthescreenprofileshowsthatin thiscase,theelectricaltopographydominatesthedistortionofthePEEMimage.(For interpretationofreferencestocolorinthisfigurelegend,thereaderisreferredto thewebversionofthisarticle.)

Intensity (arb. units)

-4.4

-4.0

Position (

μm)

4.4

4.0

(b)

0.1 eV

0.5 eV

26.0 eV

Intensity (arb. units)

-4

-2

0

2

4

Position (

μm)

(a)

0.1 eV

0.5 eV

26.0 eV

Fig.11.(a)Simulatedintensityprofilesattake-offenergiesof(fromtoptobottom) 0.1,0.5and26.0eVoftheP/N+/Pstructure.Theverticaldottedlinesrepresentthe

realjunctionpositionasdeterminedfromopticalmicroscopy.Simulationsinclude variationinthetake-offenergyacrossthejunction,20nmphysicaltopographyand varyingelectronyielddefinedbythemeasuredthresholdshiftand(b)close-upsof thesimulatedintensityprofilesacrosstheleft(P/N+)andright(N+/P)handjunctions

in(a).

andN+regions viaa gradientofemittedparticlesareshownin

Fig.11(a)for0.1,0.5and26.0eV.Theverticaldottedlinesindicate

thejunctionpositionasmeasuredbyopticalmicroscopy.Thelower

panelshowsclose-upsofthesimulatedintensityprofileacrossthe

leftandrighthandjunctions.Asthetake-offenergyincreases,the

effectivewidthoftheN+centralstructureasmeasuredfromthe

intensityprofiledecreases,in agreementwiththeexperimental

data.Thesemoresophisticatedsimulationsatthresholdconfirm

thepositionoftheintensitydipwithrespecttothephysical

junc-tionpositionseeninFig.8.Theapparentwidthofthestructure,as

determinedfromafittothefastestchangingpartoftheintensity

profile,shrinksby0.35␮mbetweenatake-offenergyof0.1eVand

26.0eV.Thechangeintheapparentwidthisofthesameorderas

thedepletionregiononthePsideandtwoordersofmagnitude

greaterthanthedepletionregionontheN+ sideofthejunction.

FortheSi2pprofile(take-offenergy26eV)theedgesofthe

inten-sityprofileofthecentralN+regioncoincidewiththerealjunction

(8)

12

10

8

6

4

Position (

μm)

Intensity (arb. units)

(a)

(b)

(c)

7.65

μm

7.82

μm

7.95

μm

Fig.12.Fullexperimentalintensityprofilesattake-offenergiesof(a)0.1,(b)0.5 and(c)26.0eVoftheP/N+/PstructureusedtoobtaintheprofilesinFig.5.Thewidth

oftheN+regionasfoundfromtheerrorfunctionfitsinFig.5isindicatedineach

case.

4. Discussion

Fig.12showsthewholeexperimentalintensityprofilesusedto

forthefitsinFig.5.Theexperimentalprofileacrossthejunction

ismuchbroaderthaninthesimulation.Thismaybeduetothe

factthattheexperimentalenergyresolution,0.1eV,isthesameas

thelowesttake-offenergyconsidered.Lowtake-offenergy

elec-tronsareexpectedtobethemostsensitivetolateralfieldsacross

thejunction[6].Thefinitebandpassmeansthat inthe

experi-mentelectronswithtake-offenergiesvaryingoverapproximately

0.1eVarerecordedinthesameimage.Therewillthereforebea

spreadinthedeviationoftheelectronsbythebuilt-infield,

broad-eningtheintensityprofilemeasuredacrossthejunction.Theeffect

oftheexperimentalresolutioncanbeseeninFig.13.Weshow

twoimagesfromthethresholdseries,Fig.13(a)isrecordedatthe

valueoftheN+workfunction(4.44eV)whereasFig.13(b)isthe

imageobtainedat4.24eV.Thedopedregionsaredarkbutthere

arestillbrightstripesfromnearthejunctions.E0−EF=4.24eVis

morethantwicetheenergyresolutionbelowtheworkfunctionso

thattheimageshouldbeuniformlydark.However,photoelectrons

deviatedbythebuilt-infieldatthejunctionwillhaveaneffective

take-offenergylowerthanelectronsemittedfarfromthejunction.

TheywillthereforebeimagedatlowerE−EF,whichiswhatwe

observe.Theworkfunctionmapalsoshowselectronemissionat

lowerE−EF.Notethatthiscannotbeduetofield-enhanced

emis-sionduetothe20nmstepbetweenthePandtheN+regionssinceit

isnotpresentatthejunctionbetweentheinnerN+regionandtheP

region.Verylowenergyelectronsarethereforedoublyunsuitable

fordirectmeasurementsofdopedpatterndimensions.Ontheone

handtheyarethemoststronglyaffectedbythebuilt-infield,and

ontheotherhand,iftheenergyresolutionissimilartothetake-off

energy,therewillbeanadditionalspreadoftheelectronpaths.

Thewidthofthecentralstructureapproachestherealphysical

valueof7.65␮mfor26.0eV.However,unfortunately,thesignal

tonoiseratiooftheintensityprofileat26.0eVisalsomuchlower.

ThisistobeexpectedforPEEMimagingofacorelevelwithrespect

tothresholdelectrons.A moreaccuratemeasurementtherefore

requiresnotonlyhightake-offenergybutalsomuchlonger

count-ingtimeinordertoobtainareliablevalue.Itshouldbeemphasized

thatthedifferencesobservedinthemeasurementofthejunction

positionareabsolutevalues.Theydonotdependonthewidthof

thestructureitselfbutonthevalueofthebuilt-infieldacrossthe

junction,inotherwords,ontherelativedopinglevelsoneitherside

ofthejunction.Atthreshold,thedifferenceis0.3–0.4␮m.Thus,if

muchsmallerstructuresaretobeimaged,thedifferencecanbeas

bigorevenbiggerthanthedimensionsofinterest.

Asanillustrationofthis, wehaveimagedadifferentsample

withamuchnarrowerstructureconsistingoftwo100nmwideN+

stripes100nmapartonaPtypesubstrate(Fig.14(a)).Fig.14(b–f)

shows threshold imagesof the structure. Contrast inversion is

observedbetweentheoutlyingp-typesubstrateandthecentral

regioncontainingthen-typestripes.Moreimportantly,however,

apartfromtheimageacquiredforE−EF=4.95eV,thePtypeband

separatingthetwoN+stripesisinvisibleinthePEEMimage.This

isconfirmedbythelocalthresholdspectrainFig.14(g)extracted

fromtheregionsofinterestacrossthestructure.Whereasthe

pho-toemissionthresholdtypicalofthePtypesubstrateisclearlyvisible

farfromthestructure,atthecenteradoublethresholdisobserved

correspondingtoelectronsemittedfrombothPandN+patterns.

It isthereforeimpossibletoresolve thecentralPbandbecause

ofthebuilt-infield.Thisisindependentofthelateralresolution

ofthePEEMwhichisbetterthan70nm.Inthiscase,theN+and

Pdopinglevelsare1020and1015atomcm−3,respectively,

corre-spondingtoabuilt-involtageof0.914Vandaspacechargeregion

1.10␮mwide.Infact,thecentralPstructureisfullydepletedand

thestructureactsasa300nmN+stripeforimaging.Mostpatterns

willfallbetweenthetwoextremesillustratedhere.Whenusing

thresholdelectronsgreatcaremustbetakeninordertodeduce

Fig.13. ThresholdPEEMimagesrecordedat(a)E− EF=4.44eV(theworkfunctionvalue)and(b)E0−EF=4.24eVshowingthattheintensityatE−EFbelowtheworkfunction

(9)

Fig.14. (a)Structurecomposedof100nmN+andPstripes,(b–f)samplesofthethresholdimageseriesshowingthatthestructurereactsasa300nmN+stripeinimaging

modeand(g)thresholdspectraextractedfromimageseries.Thedoublethresholdforthelocalspectraofthestripestructureshowsthecontributionofelectronsfromboth PandN+regions.

dimensionsinthepresenceofstructureswithanbuilt-inlateral

field.Thiswillbethecaseforalmostallpatternedsemiconducting

samples.Moregenerally,anypotentialasymmetrywillgiveriseto

alateralfield.Forexample,atferroelectricdomainwallstherecan

beastronglateralfieldinducedbysurfacechargeofoppositesign,

proportionaltothepolarizationdifferencebetweentwodomains.

Fromthesimulationsitisapparentthattake-offenergiesofmore

thanafeweV(here26.0eV)aresufficienttominimizetheeffect

ofbuilt-infields.Onemethodcouldbetosystematicallyimagethe

samestructureasafunctionoftake-offenergytodeterminethe

valueatwhichtheapparentsizenolongerchanges.Deviationof

theelectronpathsbyanbuilt-inlateralfieldcouldalsobeusedto

measurethefieldstrength.Thiswouldrequireacompleteelectron

opticsimulationofthePEEMinstrument.Inthepresentsimulations

wehaveusedrealisticsample-to-objectivedistance,objectivelens,

contrastapertureandPEEMmagnification.Theseappearsufficient

toreproducetheessentialbehaviorofthelowenergyelectrons.A

morequantitativeapproachwouldrequiresimulationofthefull

PEEMoptics,includingtheeffectoftheanalyzerentranceslitand

passenergy,inotherwords,thephasespacelossbetweenthePEEM

columnandtheenergyanalyzer.Themethodcouldthenbeapplied

tomeasuresurfacedopinglevelsandhencethedepletionwidthof

apnjunction,asdiscussedrecentlyusingthesecondaryelectron

signalfromascanningelectronmicroscope[17].

5. Conclusions

Wehavecarriedoutaquantitativestudyoftheeffectof

elec-tricaland physical topography on thewidth of N+ and P type

regionsinaP/N+/PstructureasmeasuredbyPEEM.Atthreshold

theexperimentallydeterminedwidthsaresignificantlylargerthan

therealphysicalwidth.Asthetake-offenergyincreases,the

mea-suredwidthdecreases.At26.0eVanintensityprofileofthePEEM

imagegivesanaccuratemeasurementofthestructure.Wehave

simulatedthePEEMcathodelens,andincludedtheexperimentally

determinedbuilt-involtagesandphysicaltopographyofthe

sam-ple.Dependingonthesignofthelatter,thetwocontributionscan

actinthesameorinoppositedirectionsonthePEEMmeasured

dimensions.TheN+ regionis20nmhigherthanthePsubstrate

givingatopographywhichactsintheoppositesensetothe

built-infieldatthejunctionbutdoesnotqualitativelychangethetrendin

structurewidthasmeasuredbyPEEM.Knowledgeofthephysical

topographyandoneofthedopinglevelscouldbeusedtodetermine

thesurfacedopinglevelontheothersideofthejunction.These

conclusionscouldbeextended tothemore generalcaseof any

electricalasymmetryimagedbyPEEM,forexample,aSchottky

bar-rierorferroelectricdomainwall.Moredetailedsimulationscould

includeboththeintensityandtheshapeofthethresholdspectra,for

exampleusingHenkesmodelforthesecondaryelectrontail[18].At

lowtake-offenergies,highspectroscopicresolutionismandatory.

ForafullyquantitativemodelofPEEMimagingofstructureswith

lateralelectricfields,electronopticssimulationsshouldincludethe

fullPEEMcolumnandtheenergyfilter.

Acknowledgments

WethankFOCUSGmbHforcompanydataonthePEEMoptics.

M.L.benefitedfromaCEAPh.D.grant.Theworkwassupportedby

theFrenchNationalResearchAgency(ANR)throughtheRecherche

TechnologiquedeBase(RTB)program,andwaspartlyperformed

intheMinatecNanocharacterizationCentre.WethankSOLEILfor

provisionofSRfacilitiesandtheTEMPOstafffortheirhelp.

References

[1]R.J. Phaneuf, H.-C. Kan, M. Marsi, L. Gregoratti, S. Günther, M. Kiski-nova, J. Appl. Phys. 88 (2) (2000) 863, http://dx.doi.org/10.1063/1. 373748,http://link.aip.org/link/JAPIAU/v88/i2/p863/s1&Agg=doi

[2]A.Bailly,O. Renault,N.Barrett, T.Desrues, D. Mariolle,L.F.Zagonel, M. Escher, J. Phys. Conden. Matter: Inst. Phys. J. 21 (31) (2009) 314002, http://www.ncbi.nlm.nih.gov/pubmed/21828563

[3]M.Giesen,J.Phaneuf,E.D.Williams,T.L.Einstein,Surf.Sci.396(100)(1998) 411–421.

[4]L. Frank, I. Müllerová, D.A. Valdaitsev, A. Gloskovskii, S.A. Nepijko, H.-J. Elmers, G. Schönhense, J. Appl. Phys. 100 (9) (2006) 093712, http://link.aip.org/link/JAPIAU/v100/i9/p093712/s1&Agg=doi

[5]S.A.Nepijko,N.N.Sedov,G.Schönhense,M.Escher,J.Microsc.206(Pt2)(2002) 132–138,http://www.ncbi.nlm.nih.gov/pubmed/12000552

[6]S.Nepijko,N.N. Sedov,O. Schmidt, G. Schönhense,X.Bao, W.Huang, J. Microsc.202(Pt3)(2001)480–487,http://www.ncbi.nlm.nih.gov/pubmed/ 11422670

[7]H.-C. Kan, R.J. Phaneuf, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 19 (4) (2001) 1158, http://link.aip.org/link/JVTBD9/ v19/i4/p1158/s1&Agg=doi

[8]S.M.Kennedy,C.X.Zheng,W.X.Tang,D.M.Paganin,D.E.Jesson,Ultramicroscopy 111(5)(2011)356–363,http://www.ncbi.nlm.nih.gov/pubmed/21334287 [9]M.H.Hecht,Phys.Rev.B41(11)(1990)7918–7922.

[10]M. Lavayssière, O. Renault, D. Mariolle, M. Veillerot, J.P. Barnes, J.M. Hartmann, J. Leroy,N. Barrett, Appl.Phys. Lett. 99(20)(2011) 202107, http://link.aip.org/link/APPLAB/v99/i20/p202107/s1&Agg=doi

[11]M.Escher,N.Weber,M.Merkel,C.Ziethen,P.Bernhard,G.Schönhense,S. Schmidt,F.Forster,F.Reinert,B.Krömker,D.Funnemann,J.Phys.:Conden. Matter17(16)(2005)S1329–S1338,doi:10.1088/0953-8984/17/16/004. [12] M.Escher,K.Winkler,O.Renault,N.Barrett,J.ElectronSpectrosc.Relat.

(10)

[13]F.delaPena,N.Barrett,L.F.Zagonel,M.Walls,O.Renault,Surf.Sci.604(19-20) (2010)1628–1636,doi:10.1016/j.susc.2010.06.006.

[14]N. Barrett, L.F. Zagonel, O. Renault, a. Bailly, J. Phys. Conden. Matter: Inst.Phys.J.21(31)(2009)314015,http://www.ncbi.nlm.nih.gov/pubmed/ 21828576

[15]S.I.S.Inc.SIMION3d.http://simion.com/

[16]S.A.Nepijko,A.Gloskovskii,N.N.Sedov,G.Schönhense,J.Microsc.211(2003 April)89–94.

[17]J.T.Heath,C.-S.Jiang,M.M.Al-Jassim,J.Appl.Phys.111(4)(2012)046103, http://link.aip.org/link/JAPIAU/v111/i4/p046103/s1&Agg=doi

[18]B.L. Henke, J.A. Smith, D.T. Attwood, J. Appl. Phys. (1977) 1852, http://link.aip.org/link/JAPIAU/v48/i5/p1852/s1&Agg=doi.

Figure

Fig. 1. Schematic of the perturbation of the extractor field by sample surface elec- elec-trical topography in a cathode immersion lens.
Fig. 2. (a) Atomic force microscopy image of the N + /P structure and (b) height profile following the black line in (a)
Fig. 6. Electron optics model used to simulate the real PEEM optics: (a) PEEM optical elements, (b) SIMION overview of electron paths and (c) zoom on the PEEM first elements included in the simulations
Fig. 7. Simulated magnification (circles) obtained using the simplified imaging col- col-umn compared, using a linear scaling factor, with the calculated magnification (solid line) of the full PEEM electron optics as a function of kinetic energy.
+4

Références

Documents relatifs

Cette forme d’élargissement du cercle des hommes soumis à l’obligation de proces- sion n’a peut-être pas été systématique et a en tout cas été transitoire, comme le montre

Yves-Marie Cabidoche, Philippe Cattan, Cathy Clermont-Dauphin, Julie Sansoulet.. To cite

We have found that the DS region, located within the envelope of Sgr B2, shows a mix of thermal free-free and non-thermal synchrotron continuum emission at radio wavelengths.. This

Using the electron-beam-induced current (EBIC) technique it is possible to determine in an experimental way the site of the space charge region and of the electrical p-n

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

So far, it has not been possible to describe hybrid approaches that combine techniques from geometric and iconic registration in a common framework, because there was no framework

Surface MAFS has now become a well-established technique for the rather precise determination of adsorbate-substrate nearest neighbour bondlengths using procedures

The image contrast is dominated by photoelectric absorption and scattering is negligible ; thus the resolution is only limited by the wavelength and the energy dose in the