• Aucun résultat trouvé

Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans.

N/A
N/A
Protected

Academic year: 2021

Partager "Isoprostanes and neuroprostanes: Total synthesis, biological activity and biomarkers of oxidative stress in humans."

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00913158

https://hal.archives-ouvertes.fr/hal-00913158

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Isoprostanes and neuroprostanes: Total synthesis,

biological activity and biomarkers of oxidative stress in

humans.

Jean-Marie Galano, Emilie Mas, Anne Barden, Trevor A Mori, Cinzia

Signorini, Claudio de Felice, Aaron Barrett, Catherine Opere, Edith Pinot,

Edzard Schwedhelm, et al.

To cite this version:

Jean-Marie Galano, Emilie Mas, Anne Barden, Trevor A Mori, Cinzia Signorini, et al..

Iso-prostanes and neuroIso-prostanes: Total synthesis, biological activity and biomarkers of oxidative

stress in humans..

Prostaglandins and Other Lipid Mediators, Elsevier, 2013, 107, pp.95-102.

(2)

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(3)

Author's personal copy

Prostaglandins&otherLipidMediators107 (2013) 95–102

ContentslistsavailableatScienceDirect

Prostaglandins

and

Other

Lipid

Mediators

Review

Isoprostanes

and

neuroprostanes:

Total

synthesis,

biological

activity

and

biomarkers

of

oxidative

stress

in

humans

Jean-Marie

Galano

a

,

Emilie

Mas

b

,

Anne

Barden

b

,

Trevor

A.

Mori

b

,

Cinzia

Signorini

c

,

Claudio

De

Felice

d

,

Aaron

Barrett

e

,

Catherine

Opere

e

,

Edith

Pinot

a

,

Edzard

Schwedhelm

f

,

Ralf

Benndorf

h

,

Jérôme

Roy

g

,

Jean-Yves

Le

Guennec

g

,

Camille

Oger

a

,

Thierry

Durand

a,∗

aInstitutdesBiomoléculesMaxMousseron(IBMM),UMR5247CNRSUniversityMontpellierIandIIENSCM,FacultyofPharmacy,Montpellier,France bSchoolofMedicineandPharmacology,UniversityofWesternAustraliaandtheCardiovascularResearchCentre,Perth,Australia

cDepartmentofMolecularandDevelopmentalMedicine,UniversityofSiena,Siena,Italy

dNeonatalIntensiveCareUnit,UniversityHospital,AziendaOspedalieraUniversitariaSenese(AOUS),Siena,Italy

eDepartmentofPharmacySciences,SchoolofPharmacyandHealthProfessions,CreightonUniversityMedicalCenter,2500CaliforniaPlaza,Omaha,NE,68178,UnitedStates fInstituteofClinicalPharmacologyandToxicology,UniversityMedicalCenterHamburg-Eppendorf,Hamburg,Germany

gInsermU1046Physiologie&MédecineExpérimentaleduCœuretdesMuscles,UniversityMontpellierIandII,Montpellier,France hInstituteofAnatomyandCellBiology,UniversityofWürzburg,Würzburg,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2012 Receivedinrevisedform23April2013 Accepted23April2013

Available online 2 May 2013

Keywords: PUFAs Metabolites Isoprostanes Neuroprostanes Biomarkers Bioactivelipids

a

b

s

t

r

a

c

t

Isoprostanes(IsoPs)andneuroprostanes(NeuroPs)areformedinvivobyafreeradicalnon-enzymatic mechanisminvolvingperoxidationofarachidonicacid(AA,C20:4n-6)anddocosahexaenoicacid(DHA, C22:6n-3)respectively.Thisreviewsummarisesourresearchinthetotalsynthesisoftheselipid metabo-lites,aswellastheirbiologicalactivitiesandtheirutilityasbiomarkersofoxidativestressinhumans. © 2013 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 96

2. Biosynthesis... 96

3. Chemicalsynthesis... 97

4. Biomarkersoflipidperoxidation... 97

4.1. Effectsoftypeofanaesthesiaandoxygenconcentrationduringsurgery... 98

4.2. Braininjury... 98

4.3. Pre-eclampsia... 99

4.4. Fishoilsupplementation... 99

4.5. Rettsyndrome... 99

5. Bioactivelipids... 99

5.1. Mammalianvasculartissues... 99

5.2. Mammalianretina... 100

5.3. Anti-arrhythmicactivities... 100

6. Outlooksandconclusions... 100

References... 101

∗ Correspondingauthor.Tel.:+33411759558;fax:+33411759553. E-mailaddress:Thierry.Durand@univ-montp1.fr(T.Durand).

1098-8823/$–seefrontmatter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.prostaglandins.2013.04.003

(4)

96 J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102

1. Introduction

Freeradicalshavebeenimplicatedinawidevarietyofhuman

disorders[1] and areknowntooxidizebiomolecules,including

DNA,proteinsandlipids.Polyunsaturatedfattyacids(PUFAs)are

unstablelipids,duetothepresenceofmultipledoublebondsthat

are subject to react withfree radicals to form numerous

oxy-genatedmetabolites[2].Therehasbeenconsiderableresearchin

isoprostanes(IsoPs)[2]sincetheirdiscoverybyMorrowetal.in

1990[3].TheF2-IsoPsareformedinvivopredominantlybyfree

radicalnon-enzymaticoxidationof arachidonicacid(AA, C20:4

n-6),althoughthereissomeevidencetosuggestF2-IsoPscanbe

derived,inpart,viaacyclooxygenase-inducedpathway[4].There

arenumerousreportsdemonstrating IsoPsarethemostreliable

biomarkersofoxidativestressinvitroandinanimalmodels[5],as

wellasinhumans[6].Additionally,severalIsoPshavealsobeen

showntobebiologicallyactive[2].

SubsequenttothereportingofF2-IsoPs,othershavedescribed

oxidation products of the n-3 fatty acids alpha-linolenic acid

(ALA, C18:3 n-3), eicosapentaenoic acid (EPA, C20:5 n-3) and

docosahexaenoicacid(DHA,C22:6n-3),yieldsthephytoprostanes

[7], F3-IsoPs [8] and F4-IsoPs or neuroprostanes (NeuroPs) [9],

respectively.Morerecently,dihomo-isoprostanes(Dihomo-IsoPs)

derivedfromadrenicacid(AdA,C22:4n-6)havebeenreported[10].

DHAislocatedmainlyinbraingreymatterandAdAinbrainwhite

matter.Otheroxidativemetabolitesoftheseandotherfattyacids,

includingA-,D-,E-andJ-IsoPs,havebeendescribedintheliterature

[2].Morerecently,theisofurans(IsoFs),formedfromfree

radical-inducedperoxidationofAAbutunderconditionsofhighoxygen

tension,havebeendescribed[11,12].

ThisreviewdescribesstrategiesforthetotalsynthesisofE-,

D-andF-IsoPs,NeuroPsandDihomo-IsoPs.ItwillfocusonthoseIsoPs

andNeuroPsthathavebeenfoundinvivo,includingtheir

phys-iologicalactivityandutilityasbiomarkersofoxidative stressin

humans.

2. Biosynthesis

The biosynthesis of F-IsoPs (at the time referred as PG-like

compounds) was first described in the mid 70s wile research

wasbeingcarriedoutintotheelucidationofthebiosynthesisof

prostaglandins[13,14].Subsequenttothis,Roberts,Morrowand

co-workersin 1990[3],proposedapathwaytoaccount forthe

non-enzymaticperoxidationofarachidonicacidboundto

phos-pholipids,leadingtonovelPG-likecompoundswhichtheynamed

Isoprostanes(IsoPs)[5,15].TheF-IsoPsarereleasedasfreeacids

bytheplatelet-activatingfactoracetylhydrolaseandpossiblyother

phospholipases[16,17],circulatepredominantlyin highdensity

lipoproteins[18] in plasma, and areexcreted inurine where a

significantproportionofF2-IsoPsareconjugatedasglucuronides

[19].

ThepathwayforIsoPsynthesisisinitiatedbyhydrogen

abstrac-tionatoneofthebis-allylicpositionsofthecorrespondingPUFA

(Scheme1). The transientpentadienyl radical is oxygenated at

its terminal position togive pentadienyl peroxyl radicals. This

oxygenatedradical can have severalfates leading toa number

of metabolites,one of them involvesirreversibleO-C/C-C

bicy-clization(double5-exo-trigcyclization)toavailabledoublebonds,

followed by addition of oxygenand H-transfer yielding G-type

IsoPs.Reduction ofthehydroperoxidegroupisfollowed bythe

(5)

Author's personal copy

J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102 97

H H O O 5steps 18%yield 1 50g 11g TBSO TBSO OH OH O TBSO OH OH 4steps 60%yield 6steps 64%yield 2 3 O 96% TBSO TBSO OH OAc 4 2steps 81%yield TBSO TBSO O OH 5 OAc CAL-B THF 97% O TBSO OH OAc 6 O OAc CAL-B THF 20g 15g 15g Scheme2.Newstrategytowardsthesynthesisofisoprostanes,neuroprostanes.

non-enzymaticreductionorrearrangementoftheendoperoxide

moiety(tothecontraryofcellspecificPG-synthases).F-typeIsoPs

aregeneratedundernormalconditionwhile,E-andD-typearise

from the known Kornblum–DeLaMare rearrangement [20] in

aqueousbasicmedia.Dehydrationofmembrane-bound E2-and

D2-IsoPs, is facile under physiologicalconditions and produces

cyclopentenone-A2-and-J2-IsoPsrespectively,invitroandinvivo.

Of particular importance is the cis orientation of the side

chainsin IsoPs tothe contraryof thetrans orientation in PGs.

This difference reflects the biosynthesis of IsoPs that follows

conventionalchemistryrules(lowertransitionstateenergy

dur-ingthedouble5-exo-trigcyclization)comparedtoenzymatically

driventhree-dimensional orientation for PG synthesis.

Further-more, two different stereochemistriesare present in IsoPs, the

all-syn(representedassubscript“c”;see5-F2c-IsoP)and

syn-anti-synstereochemistry(representedassubscript“t”;see15-F2t-IsoP)

againdependingofthetwolowertransitionstatespossible

dur-ingcyclization(chair-and boat-liketransitionstates areshown

inScheme1).Theoretically,therearefourF2-IsoPsregioisomers

eachwith8racemicdiastereoisomers,generating64possible

com-pounds.Waughetal.[21]andlaterLietal.[22]showedfrominvitro

andinvivostudiesthatthe5-and15-seriesIsoPsareformedin

sig-nificantlygreateramountsthanthe8-and12-seriesIsoPs.Currrent

evidencesuggeststhatthe5-and15-seriesIsoPsaremost

abun-dantinvivo,duetothefactthatthe8-and12-seriesIsoPsaremore

readilymetabolised[23].

OxidationofDHAbysimilarmechanismstothatofarachidonic

acid(Scheme1)yields8possibleregioisomerstermed4-,7-,10-,

11-,13-,14-,17-and20-seriesNeuroPs,andtheoretically,atotal

of128compounds.Yinetal.[24]providedexperimentalevidence

thatthe4-and20-seriesNeuroPsarethetwomostabundant

Neu-roPregioisomers generatedfromtheautoxidation ofDHA both

invitroandinvivo.VanRollinsetal.[10]describedAdAoxidation

yieldsfourseriesofregioisomericisoprostanoidstermed7-,10-,

14-,and17-dihomo-IsoPswiththe7-and17-seriesbeingthemost

abundant.

3. Chemicalsynthesis

Inordertofullyassessthephysiologicalimportanceofeachof

theenantiomericallypureIsoPs,NeuroPsand dihomo-IsoPs,we

havedevelopeddifferentchemicalstrategies[2].Since1990,three

strategieshavebeendevelopedbyDurand’sgroup,basedon

radi-calcarbocylization[25],furanringtransformation[26],andthelast

utilizingabicyclo[3.3.0]octeneintermediate[27].Inthisreview,we

willfocusonourmostrecentstrategyandonthetotalsynthesesof

IsoPs,NeuroPsanddihomo-IsoPs.

This strategy uses a bicyclo[3.3.0]octene scaffold (1) and

focusesonE-,D-,F-IsoPswithsyn-anti-synstereochemistry[27].

Bicyclo[3.3.0]octeneintermediate1isreadilyobtainedfrom

1,3-cyclooctadiene in 5steps(18%yield).The twoenantiomers are

obtained using enzymatic resolution. Bicyclo[3.3.0]octene 1 is

transformed into1,5-diols2 and 3in severalsteps.In orderto

accessE-andD-IsoPs,thisstrategyprovidesanorthogonal

pro-tectionofthe1,3-cis-diolfunctionality(seecompound3),allowing

atalaterstageofthesynthesisaselectivedeprotectionofoneofthe

twoprotectedhydroxyls,whencompound2allowedthe

synthe-sisofF-IsoPs.Withthesyn-anti-synstereochemistryintroduced,

thesubsequentstepsofthesynthesisinvolveintroductionofthe

sidechainsanddesymmetrisationofthetwohydroxylgroups.This

strategyallowsdiol2tobeeitherselectivelyoxidizedintolactol

5orselectivelyandenzymaticallyprotectedintomonoacetate4

[28].Inthesamewaydiol3isselectivelyprotectedinhighyield

intomonoacetate6(Scheme2).

The synthesis of E-, D-,F-IsoPs, NeuroPs or dihomo-IsoPs is

achievedusingthethreesyntheticallyadvancedintermediates(4,

5and6)(Scheme2).LateralchainsareintroducedusingWittig,

Horner–Wadsworth–Emmonsorcrossmetathesismethodologies.

Dependingonthenatureofthecouplingreagent(phosphonium

salt,␣-ketophosphonate),oneintermediateispreferredandallows

aflexibilityinthesynthesis.

WehavesynthesizedanumberofE-andD-[29],andF-series

IsoPs,aswellasNeuroPs[30]anddihomo-IsoPs[31]usingthisnew

methodology(Scheme3).

4. Biomarkersoflipidperoxidation

Quantificationofproductsofoxidativedamageinbiological

sys-temsisimportantinordertounderstandtheroleoffreeradicals

in diseasestates [32]. Lipids that undergo peroxidation,

repre-sentmajortargetsoffreeradicalattack.F2-IsoPsareconsidered

torepresentthemostreliablemarkerofinvivolipidperoxidation

and oxidative stress [5,33]. F2-IsoPs are stable oxidation

(6)

98 J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102 5 d4-4(RS)-F4t-NeuroP 4 6 15-D2t-IsoP 15-epi-15-E2t-IsoP 15-F2t-IsoP CO2H OH HO O CO2H OH O HO CO2H OH HO HO HO HO CO2H OH 5-F3t-IsoP HO HO CO2H HO HO CO2H OH D DD D 4-F4t-NeuroP OH HO HO CO2H OH 17-F 2t-dihomo-IsoP HO HO OH 7-F2t-dihomo-IsoP CO2H

Scheme3.Totalsynthesisofisoprostanes,dihomo-isoprostanesandneuroprostanes.

thatF2-IsoPsmay,inpart,beformedviaacyclooxygenase

(COX)-dependentpathway,thisappearstobedependentuponanumber

offactors[35].InhumansMcAdametal.[36]showedthaturinary

F2-IsoPswereformedindependentofCOX-1andCOX-2.Similarly,

Bachietal.[37]showedthatinhumans,butnotinrats,urinary

F2-IsoPswereformedindependentofCOX-1.Incontrast,invitro

studiesshowedF2-IsoPswereincreasedinJ774macrophageswith

COX-2induction [38].However, F2-IsoPs werenot inhibitedby

COX-1orCOX-2inhibitionin humanisolatedpulmonary artery

smoothmusclecells[39].

ThemeasurementofF2-IsoPswithgaschromatography-mass

spectrometry(GCMS)usingelectroncapturenegativeionizationis

consideredthe“goldstandard”.Itisimportanttonotethatalthough

F2-IsoPscanbemeasuredbyenzyme-linkedimmunoassay[40,41]

wehaveshownpooragreementbetweenmassspectrometryand

enzyme-linkedimmunoassay[42].

The informationgainedfrom measurementof differentlipid

peroxidationmarkersdependsontheclinicalsituationand

there-forethechoiceofmarkersshouldbecarefullyconsidered.Inthe

followingdiscussionwepresentexamplesfromourresearchwhere

themeasurementsofIsoPs,IsoFsandNeuroPshavebeenusedin

clinicaltrialstoelucidate therole ofoxidative stressinclinical

situations.

4.1. Effectsoftypeofanaesthesiaandoxygenconcentration

duringsurgery

Ischemia/reperfusion injury (IRI) is one of the main

patho-physiologicalphenomena observed in orthopaedicsurgery. The

applicationandrelease ofatourniquetisoftenusedin elective

totalkneereplacementsurgerytoreducebloodlossand obtain

a clearer surgical field. IRI, in which oxidative injury plays a

fundamental role, resultsin a localand systemic inflammatory

response.Surgeryutilisestwoanesthetictechniques:spinal

anes-thesia(SA)orgeneralanesthesia(GA),wherethelevelsofinspired

oxygencandiffer. Thereisalsoevidence thatspinal anesthesia

(SA)reducestheriskofpostoperativemortalityandmorbidity[43]

withareductionofpostoperativevascularevents.Inarandomized

blindedstudyweexaminedtheeffectsofSAandGAonmarkersof

oxidativestress(plasmaF2-IsoPsandIsoFs)inpatientsundergoing

knee replacement surgery. F2-IsoPs were significantly lower in

theGApatientscompared withSApatients. Incontrast,theGA

patientshadsignificantlyelevatedplasmaIsoFs.IncreasedIsoFs

during GA compared withSA likely reflect increased oxidative

stressdue toelevatedoxygenconcentrations duringGA.Under

conditions of higher oxygen intake such as GA the balance of

arachidonicacidmetabolismbyfreeradicals isshiftedfromF2

-IsoPstoIsoFsformation[44].Inasubsequentstudy,weexamined

theeffectofalteringinspiredoxygenconcentrationsinpatients

undergoingischemia/reperfusionduringupperarmsurgery[45].

WeshowedplasmaIsoFswerepositivelyassociatedwithoxygen

tension(PvO2)andthisrelationshipwassignificantlyattenuated

bybloodhemoglobinconcentration.Thisisnoteworthygiventhat

hemoglobinpersedidnotsignificantlyaffectplasmaIsoFs.Plasma

F2-IsoPduring reperfusion was also not different between the

groupsandtherewasnosignificantrelationshipbetweenF2-IsoP

andPvO2orhemoglobinconcentration.

4.2. Braininjury

The high oxygen requirements of the brain for metabolism

(7)

Author's personal copy

J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102 99

DHA,makethebrainvulnerabletooxidativeinsult.F4-NeuroPsare

consideredmarkersofbrainrelatedoxidativestress[46].

Aneurys-malsubarachnoidhemorrhage(aSAH)andtraumaticbraininjury

(TBI)areassociatedwithdevastatingcentralnervoussystem(CNS)

injury.Acutebraininjury,isthoughttoassociatewith

overpro-ductionofreactiveoxygenspecies(ROS).Intwocase-controlled

studies[47]wehaveshownasignificantincreaseincerebrospinal

fluid(CSF)IsoFs in aSAH andTBI patientscompared withtheir

respectiveage-andgender-matchedcontrols.aSAHpatientsalso

hadsignificantlyincreasedlevelsofCSFF4-NeuroPsandF2-IsoPs.

PatientswithTBIhadsignificantlyincreasedCSFF4-NeuroPsbut

F2-IsoPswerenotdifferentfromtheircontrols.Thesedata

con-firmthatCNSinjuryasaresultofaSAHorTBIresultsinincreased

oxidativestress.SinceDHAisthemajorpolyunsaturatedfattyacid

inthebrain,F4-NeuroPlevelsinCSFmaybeamorespecific

indica-torofpossibleneurologicaldysfunctionthanF2-IsoPs.Hsiehetal.

[48] showedthat increasedF4-NeuroPsin CSF of patientswith

aSAHcorrelatedwithpoorneurologicaloutcome andsuggested

that F4-NeuroPs might bemore usefulthan F2-IsoPs in CSF to

predictoutcomeand interprettherole ofhemorrhage inaSAH.

AlthoughFariasetal.[49]showedincreasedF2-isoPsduringrat

brainischemia,theE2/D2-IsoPswereincreasedtoagreaterextent,

suggestingthelattermaybettermarkersofoxidativestressinbrain

ischemia.

4.3. Pre-eclampsia

Pre-eclampsiaisalife-threateningdisorderofpregnancythat

adverselyaffectsthemotherandthebaby.Oxidativestressmay

contribute to the pathogenesis of this syndrome. Previously,

we have shown that plasma F2-IsoP are raised in proteinuric

pre-eclampsia [50]. In a recent case-controlled study [51] we

examined IsoFs, F4-NeuroPs and F2-IsoPs in maternal plasma

andcordbloodofwomenwithpre-eclampsiaandnormal

preg-nancies. Women with pre-eclampsia had significantly elevated

maternal IsoFs and F4-NeuroPs, but not F2-IsoPs. Cord blood

F4-NeuroPswereelevatedamongneonatesofwomenwith

pre-eclampsia. Interestingly, cord blood IsoFs were approximately

5-fold higher than those found in maternal plasma and could

reflect the oxidative challenge presented at birth, when there

istransition froma relativelylow intrauterineoxygen

environ-menttoasignificantlyhigherextrauterineoxygenenvironment.

WealsofoundmaternalF4-NeuroPs werenot significantly

cor-related with cord blood F4-NeuroPs in either pre-eclamptic or

normalpregnancies,suggestingtheoriginofcordF4-NeuroPsmay

beindependentof maternalplasma.In normal pregnancybirth

weightwasnegativelyrelatedtomaternalF2-IsoPs,IsoFsandF4

-NeuroPs.

4.4. Fishoilsupplementation

Intwoplacebo-controlledinterventionsin(1)overweight,

dys-lipidaemic men; and (2) treated-hypertensive Type 2 diabetic

patients,randomizedtodailyEPA,orDHAorplacebo,weshowed

post-interventionplasmaandurinaryF2-IsoPsweresignificantly

reducedbyEPAand byDHA[52,53].NeitherF3-IsoPs–norF4

-NeuroPswereobservedinplasmainbothstudies.Thesefindings

support our previous reports that have shown n-3 fatty acids

reduce oxidative stress, in part, via attenuation of

inflamma-tion.

4.5. Rettsyndrome

Rettsyndrome(RTT)isapervasiveabnormalityofdevelopment

affectingalmostexclusivelyfemales,whichisincludedamongthe

autismspectrumdisorders.RTTiscausedinupto95%ofcasesby

mutationsintheX-linkedmethyl-CpGbindingprotein2(MeCP2)

gene[54].Althoughover200differentMeCp2mutationshavebeen

reportedtocauseRTT, ninemostfrequentones(hotspot

muta-tions)areknowntocomprisemorethanthreequartersofallthe

reported pathogenicmutations[55].The diseaseshows a wide

phenotypicalheterogeneity,withatleast4distinctmajorclinical

presentations,i.e.,typical,preservedspeech,earlyseizurevariant,

andcongenitalvariant[56].ClinicalevidenceindicatesthatF2-IsoPs

andF4-NeuroPsareinvolvedintheintimatepathogenetic

mecha-nismsofRTT.PlasmalevelsoffreeF2-IsoPsaresignificantlyhigher

intheearlystagesofRTT,ascomparedwiththelatenatural

pro-gressionoftypicalRTT[57].

F2-dihomo-IsoPsaresignificantly increasedin RTT[58],Due

tothe relative abundanceinmyelin ofthe precursorfattyacid

[10,59]theincreasedformationofF2-dihomo-IsoPs,particularlyin

theearlystagesofthedisease,stronglysuggeststhecoexistence

of anearlydamage tothebrain whitematter.Untilrecently it

wasthoughtthatthepredominantcentralnervoussystem

dam-ageinRTToccurredingraymatter.However,ourdata[58]have

contributedtogeneratethehypothesisthatearlybrainwhite

mat-terdamagemayrepresentanearlyeventinRTTassuggestedby

previousbrainMRIevidence[60].ThusF2-dihomo-IsoPscanbe

consideredearlymarkersoflipidperoxidationinRTT.

F4-NeuroPsalsoappeartobeanimportantbiomarkerofRTT

[61].PlasmaF4-NeuroPscorrelatewithdiseaseseverityinRTT[61]

and aresignificantlyrelated toneurologicalsymptomsseverity,

mutationtypeandclinicalpresentation[61].Therefore,F4-NeuroPs

mayplayamajorrolealongthebiochemicalpathwayfromMeCp2

genemutationtothediseaseclinicalpresentation,thustestifying

thataDHAoxidationprocessisoccurring.

5. Bioactivelipids

Isoprostanesarenotonlybiomarkersoflipidperoxidationbut

alsomediatorsofoxidantinjury.Theyarevasoconstrictorsinmany

speciesandvariousvascularbeds(reviewedinRef.[62]),

modu-lateplateletactivity(reviewedinRef.[63])andmonocyteadhesion

[64,65],andinduceproliferationofendothelialandsmooth

mus-clecells [66,67].Isoprostanesmediatetheirbiological effectsby

activationand/orinhibitionofseveralprostanoidreceptors,among

themthethromboxanereceptor(TP),prostaglandinF2␣receptor

(FP),prostaglandinE2subtype3receptor(EP3),prostaglandinD2

subtype2receptor(DP2)andbyactivationoftheperoxisome

pro-liferatorsactivatedreceptorgamma(PPAR␥)[68–72].

5.1. Mammalianvasculartissues

Thevasomotoractionof15-F2t-IsoPhasbeeninvestigatedin

isolatedhumansaphenousandumbilicalveins,inbronchial,radial

andinternalmammaryarteries,andinpulmonaryvasculatureas

wellasplacentalandmaternalvessels[69,73–78].Incontrastto

15-F2t-IsoP,5-F2-IsoP-seriesdonotcontributetothe

vasoconstric-tionmediatedbyisoprostanes[79].Besidesvasoconstrictionand

plateletactivation,isoprostanesalsoenhancethevascular

reper-fusiondamageaftermyocardialinfarction[80];pioneeringcardiac

smoothmuscleapoptosisandscarformation.Inthisscenario,

for-mationofcollateralsandnewvasculatureoutgrowthisessentialfor

cardiacfunctionrecovery.Thecomplexinterplayofpro-angiogenic

growthfactors,IsoPsandtheroleoftheTPhasbeeninvestigated

thoroughlyindifferentprimaryhumanendothelialcells[81].Low

concentrationsof15-F2t-IsoPpromotedendothelialcellmigration.

In contrast,higher concentrationsof severalE-,A- and F-series

IsoPsinhibitedtheVEGF-inducedmigrationandtubeformationof

endothelialcells.TheseeffectswereabolishedeitherbyTP

(8)

100 J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102

Fig. 1.Influence of 8-iso-PGF2␣ (15-F2t-IsoP) on VEGF-induced sprouting of

endothelialcells.ThethromboxaneA2receptoragonistsU-46619and8-iso-PGF2␣

(15-F2t-IsoP)both3×10−6MinhibittheVEGF(20ng/mL)-inducedsproutingof

HUVECs(U-46619122±7%,8-iso-PGF2␣115±7%,§p<0.001vs.VEGF242±14%).

ThiseffectisblockedthroughthethromboxaneA2receptorantagonistSQ-29548

(3×10−6M;U-46619+SQ-29548 217±12%, 8-iso-PGF2␣+SQ-29548 211±10%, #p<0.001vs.U-46619/8-iso-PGF

2␣).

theTP.Takentogether,thesefindingshighlighttheroleof15-F2t

-IsoPbutalsoofotherIsoPsinvascularhomeostasisandthereby

provideanewrationaleforTPblockade(Fig.1).

5.2. Mammalianretina

TheretinaisenrichedwithLCPUFAsandisconstantlyexposed

to light, rendering it highly vulnerable to oxidant stress [82].

Becauseoxidantstressplaysakeyroleinthepathogenesisof

ocu-larneuropathiessuchasglaucoma[83]andtriggersspontaneous

generationofLCPUFAmetabolitesinretina[84],itissignificantto

delineateeffectofthesenovelcompoundsonretinalpharmacology.

Sofar,thepharmacologicalroleforthe15-F2-IsoPson

neurotrans-missionin mammalian oculartissues is welldocumented [84].

However,theeffectofthe5-F2-IsoP-seriesonoculartissueshas

notbeen described. In a recent study,we elucidatedthe

phar-macologicalactionsofthe5-F2-IsoPepimerpair,5-epi-5-F2t-IsoP

(C5-OHin ␣-position) and 5-F2t-IsoP(C5-OHin ␤-position) on

excitatoryglutamaterelease(using[3H]D-aspartateasamarker)

inbovineretina,invitro[85].Whereas5-epi-5-F2t-IsoPeliciteda

concentration-dependentinhibitoryaction,the5-(S)-OH-epimer,

5-F2t-IsoPdisplayedamorepotent,biphasicinhibitoryactionon

theneurotransmitterrelease[85],suggestingthatspatialsidechain

orientationattheC5-positionisaccountsforthebiphasicresponse.

Consistentwiththelaterobservation,abiphasicprofileof

activ-itybeenreportedfor15-F2t-IsoPontheregulationofsympathetic

andexcitatoryneurotransmissioninthemammaliananterioruvea

andretina,respectively[84].Contraryto5-F2t-IsoP,the15-F2t-IsoP

lacksthehydroxylsidechainatC5position.Itistherefore

appar-entthat additionalfactorscontributetothebiphasicpattern of

IsoP-responseonneurotransmitterrelease.

Becausetheeffectoftheir15-F2-IsoP-counterpartsarelargely

dependentonactivationofprostanoidreceptors,Jamiletal.[85]

examinedtheroleofprostanoidreceptorsintheinhibitoryaction

ofthe5-epi-5-F2t-IsoP.Theinhibitoryactionofthis5-F2-IsoPwas

reversedbytheprostanoidEP1-(SC-51322;SC-19220)and

EP4-(AH23848)receptorantagonistsbutnottheEP1–3/DP-(AH6809)

andDP/TPreceptorantagonist(BAY-u3405).Duetotheprominent

role thatglutamateplays inthephysiology oftheretinaasthe

majorexcitatoryneurotransmitterandinneuronalexcitotoxicity,

the ability of5-F2-IsoPs to attenuateexcitatory

neurotransmit-terreleasecouldhavesignificantpathophysiologicalimplications

in mammalianretina.Itis conceivablethat theseendogenously

derived AA-metabolites could modulate progression of ocular

neuropathiesandprovideanewtargetfordiagnosticand/or

ther-apeuticstrategiesinthemanagementofocularneuropathies[85].

Takentogether,thesedatasupportamodulatoryrolefor5-F2-IsoP

epimerpair,5-epi-5-F2t-IsoPand5-F2t-IsoPonexcitatory

neuro-transmitterreleaseinbovineretina,invitro.Whereastheallylic

hydroxylgroupatpositionC5contributestotheapparentbiphasic

patternofresponseexhibitedby5-F2t-IsoP,theprostanoidEP1and

EP4accountforitsinhibitoryeffectonexcitatoryneurotransmitter

release.

5.3. Anti-arrhythmicactivities

Thereisconsiderableevidencethatadietenrichedn-3PUFAs

confers cardioprotective effectsdue primarilyto thetwo main

PUFAsEPAandDHA[86].Alargeprospectivestudyshowedthatthe

mostmarkedeffectofDHAandEPAsupplementationisareduction

ofsuddencardiacdeathinthemonthsfollowingacardiac

infarc-tion[87].Thisbenefithasbeenexplained,inpart,byareduction

in arrhythmias andsystolic cardiacfailure.The anti-arrhythmic

effectsofn-3PUFAshavebeenconfirmedinanimalmodelsof

car-diacinfarctionbyligatureoftheleftcoronaryartery[88].These

andotherstudiesinsinglecardiaccellshaveshownthatEPAand

DHA canmodulate theactivityof ionchannels, the

transmem-braneproteinsresponsiblefortheelectricalactivityoftheheart

[89].However,ithasbeensuggestedthatoxygenatedmetabolites

ofEPAandDHAmayalsoplayaroleintheseactions[88].Inthis

regardithasbeenshownthatsomeoftheeffectofDHAonrat

car-diacionchannelsisduetoanoxidativemetaboliteofDHA[90].

LeGuennecetal.[91]testeddifferentF2-IsoPs,F3-IsoPsandF4

-NeuroPsonarrhythmiasinducedbyisoprenalineandstimulation

frequencyofisolatedventricularmicecardiaccells.Amongthem,

someF4-NeuroPshaveanti-arrhythmiceffects(IC50≈100nM).

6. Outlooksandconclusions

OurunderstandingoftheroleofPUFAperoxidationinthe

patho-genesisofvariousdiseasescontinuestoexpand.Thediscoveryand

studyofIsoPshaveprovidedamajorstepforwardinthefieldoffree

radicalresearch.AnumberofIsoPsandNeuroPshavebeen

syn-thesisedallowingresearcherstoexaminetheirbiologicalactivities

andevaluatetheirpotentialroleasmarkersofoxidativedamagein

anumberofclinicalandexperimentalstudies.IsoPs,IsoFsand

Neu-roPsmeasuredbymassspectrometrycanbeusefulinelucidating

theroleofoxidativestressintheclinicalsetting.Furtherstudies

arerequiredtodeterminehowthesemarkersofoxidativestress

(9)

Author's personal copy

J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102 101

References

[1]HalliwellBG.Freeradicalinbiologyandmedicine.3rded.NewYork:Oxford UniversityPress;1999.

[2]Jahn U, Galano JM, Durand T. Beyond prostaglandins – chemistry and biologyofcyclicoxygenatedmetabolitesformedbyfree-radicalpathways from polyunsaturated fattyacids.AngewChem IntEdEngl2008;47(32): 5894–955.

[3]MorrowJD,HillKE,BurkRF,NammourTM,BadrKF,RobertsIILJ.Aseriesof prostaglandinF2-likecompoundsareproducedinvivoinhumansbya non-cyclooxygenase,freeradical-catalyzedmechanism.ProcNatlAcadSciUSA 1990;87(23):9383–7.

[4]TsikasD,SuchyMT,NiemannJ,etal.Glutathionepromotesprostaglandin H synthase (cyclooxygenase)-dependent formation of malondialde-hyde and 15(S)-8-iso-prostaglandin F2alpha. FEBS Lett 2012;586(20): 3723–30.

[5]KadiiskaMB,GladenBC,BairdDD,etal.BiomarkersofoxidativestressstudyII: areoxidationproductsoflipids,proteins,andDNAmarkersofCCl4poisoning? FreeRadicBiolMed2005;38(6):698–710.

[6]MilneGL,YinH,HardyKD,DaviesSS,RobertsIILJ.Isoprostanegenerationand function.ChemRev2011;111(10):5973–96.

[7]Barden AE,CroftKD,DurandT,GuyA,MuellerMJ,MoriTA.Flaxseedoil supplementationincreasesplasmaF1-phytoprostanesinhealthymen.JNutr 2009;139(10):1890–5.

[8]BardenA,MasE,HenryP,etal.Theeffectsofoxidationproductsof arachi-donicacidandn3fattyacidsonvascularandplateletfunction.FreeRadicRes 2011;45(4):469–76.

[9]Nourooz-ZadehJ,LiuEH,AnggardE,HalliwellB.F4-isoprostanes:anovelclass ofprostanoidsformedduringperoxidationofdocosahexaenoicacid(DHA). BiochemBiophysResCommun1998;242(2):338–44.

[10]VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 2008;49(5):995–1005.

[11]FesselJP,JacksonRobertsL.Isofurans:novelproductsoflipidperoxidationthat definetheoccurrenceofoxidantinjuryinsettingsofelevatedoxygentension. AntioxidRedoxSignal2005;7(1–2):202–9.

[12]FesselJP,PorterNA,MooreKP,ShellerJR,RobertsIILJ.Discoveryoflipid per-oxidationproductsformedinvivowithasubstitutedtetrahydrofuranring (isofurans)thatarefavoredbyincreasedoxygentension.ProcNatlAcadSci USA2002;99(26):16713–8.

[13]Porter NA, Funk MO. Letter: peroxy radical cyclization as a model for prostaglandinbiosynthesis.JOrgChem1975;40(24):3614–5.

[14]PryorWA,StanleyJP.Letter:asuggestedmechanismfortheproductionof malonaldehydeduringtheautoxidationofpolyunsaturatedfattyacids. Nonen-zymaticproductionofprostaglandinendoperoxidesduringautoxidation.JOrg Chem1975;40(24):3615–7.

[15]MorrowJD,AwadJA,BossHJ,BlairIA,RobertsIILJ. Non-cyclooxygenase-derivedprostanoids(F2-isoprostanes)areformedinsituonphospholipids.Proc NatlAcadSciUSA1992;89(22):10721–5.

[16]KonoN,InoueT,YoshidaY,etal.Protectionagainstoxidativestress-induced hepatic injuryby intracellular type II platelet-activating factor acetylhy-drolase by metabolism of oxidized phospholipids in vivo. J Biol Chem 2008;283(3):1628–36.

[17]Stafforini DM, Sheller JR, Blackwell TS, et al. Release of free F2-isoprostanesfromesterifiedphospholipidsiscatalyzedbyintracellularand plasmaplatelet-activatingfactoracetylhydrolases.JBiolChem2006;281(8): 4616–23.

[18]ProudfootJM,Barden AE,Loke WM,CroftKD,Puddey IB, MoriTA. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. J Lipid Res 2009;50(4):716–22.

[19]YanZ,MasE,MoriTA,CroftKD,BardenAE.Asignificantproportionof F2-isoprostanesinhumanurineareexcretedasglucuronideconjugates.Anal Biochem2010;403(1–2):126–8.

[20]KornblumN,DeLaMareHE.Thebasecatalyzeddecompositionofadialkyl per-oxide.JAmChemSoc1951;73:880–1.

[21]WaughRJ,MorrowJD,RobertsIILJ,MurphyRC.Identificationandrelative quan-titationofF2-isoprostaneregioisomersformedinvivointherat.FreeRadicBiol Med1997;23(6):943–54.

[22]Li H, Lawson JA, Reilly M, et al. Quantitative high performance liq-uid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine.Proc Natl Acad Sci U S A 1999;96(23):13381–6.

[23]YinH,MorrowJD,PorterNA.Identificationofanovelclassofendoperoxides fromarachidonateautoxidation.JBiolChem2004;279(5):3766–76. [24]YinH,MusiekES,GaoL,PorterNA,MorrowJD.Regiochemistryof

neuro-prostanesgeneratedfromtheperoxidationofdocosahexaenoicacidinvitro andinvivo.JBiolChem2005;280(28):26600–11.

[25]RolandA,DurandT,RondotB, VidalJ-P, RossiJ-C.Apractical asymmet-ric synthesis of ent-12-epi-PGF-2.alpha. methyl ester. Bull Soc Chim Fr 1996;133:1149–54.

[26]PinotE,GuyA,FournialA,BalasL,RossiJC,DurandT.Totalsynthesisofthefour enantiomericallypurediasteroisomersofthephytoprostanesE1TypeIIandof the15-E2t-isoprostanes.JOrgChem2008;73(8):3063–9.

[27]Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano JM. Stereocon-trolledaccesstoisoprostanesviaabicyclo[3.3.0]octeneframework.OrgLett 2008;10(21):5087–90.

[28]Oger C, Marton Z, Brinkmann Y, et al. Lipase-catalyzed regioselec-tive monoacetylation of unsymmetrical 1,5-primary diols. J Org Chem 2010;75(6):1892–7.

[29]BrinkmannY,OgerC,GuyA,DurandT,GalanoJM.Totalsynthesisof 15-D(2t)-and15-epi-15-E(2t)-isoprostanes.JOrgChem2010;75(7):2411–4.

[30]OgerC,Bultel-PonceV,GuyA,etal.ThehandyuseofBrown’sP2-Nicatalyst foraskippeddiynedeuteration:applicationtothesynthesisofa[D4]-labeled F4t-neuroprostane.Chemistry2010;16(47):13976–80.

[31]OgerC,Bultel-PoncéV,GuyA,DurandT,GalanoJM.Totalsynthesisof iso-prostanesderivedfromadrenicacidandEPA.EurJOrgChem2012;13:2621–34. [32]DaviesSS,RobertsIILJ.F2-isoprostanesasanindicatorandriskfactorfor

coronaryheartdisease.FreeRadicBiolMed2011;50(5):559–66.

[33]BasuS.F2-isoprostanesinhumanhealthanddiseases:frommolecular mech-anismstoclinicalimplications.AntioxidRedoxSignal2008;10(8):1405–34. [34]MorrowJD,AwadJA,KatoT,etal.Formationofnovel

non-cyclooxygenase-derived prostanoids (F2-isoprostanes) incarbon tetrachloride hepatotox-icity. An animal model of lipid peroxidation. J Clin Invest 1992;90(6): 2502–7.

[35]Pratico D, Lawson JA, FitzGerald GA. Cyclooxygenase-dependent forma-tion of the isoprostane, 8-epi prostaglandin F2 alpha. J Biol Chem 1995;270(17):9800–8.

[36]McAdamBF,Mardini IA,HabibA,etal. Effectofregulatedexpressionof humancyclooxygenaseisoformsoneicosanoidandisoeicosanoidproduction ininflammation.JClinInvest2000;105(10):1473–82.

[37]BachiA,BrambillaR,FanelliR,BianchiR,ZuccatoE,ChiabrandoC.Reduction ofurinary8-epi-prostaglandinF2alphaduringcyclo-oxygenaseinhibitionin ratsbutnotinman.BrJPharmacol1997;121(8):1770–4.

[38]SautebinL,IanaroA,RombolaL,IalentiA,SalaA,DiRosaM. Cyclooxygenase-2-dependentgenerationof8-epiprostaglandinF2alphaby lipopolysaccharide-activatedJ774macrophages.InflammRes1999;48(9):503–8.

[39]JourdanKB,EvansTW,GoldstrawP,MitchellJA.IsoprostanesandPGE2 pro-ductioninhumanisolatedpulmonaryarterysmoothmusclecells:concomitant anddifferentialrelease.FASEBJ1999;13(9):1025–30.

[40]BayirH,KaganVE,TyurinaYY,etal.Assessmentofantioxidantreservesand oxidativestressincerebrospinalfluidafterseveretraumaticbraininjuryin infantsandchildren.PediatrRes2002;51(5):571–8.

[41]WagnerAK,BayirH,RenD,PuccioA,ZafonteRD,KochanekPM.Relationships betweencerebrospinalfluidmarkersofexcitotoxicity,ischemia,and oxida-tivedamageaftersevereTBI:theimpactofgender,age,andhypothermia.J Neurotrauma2004;21(2):125–36.

[42]Proudfoot J, Barden A, Mori TA, et al. Measurement of urinary F(2)-isoprostanesasmarkersofinvivolipidperoxidation–acomparisonofenzyme immunoassaywithgaschromatography/massspectrometry.AnalBiochem 1999;272(2):209–15.

[43]RodgersA,WalkerN,SchugS,etal.Reductionofpostoperativemortalityand morbiditywithepiduralorspinalanaesthesia:resultsfromoverviewof ran-domisedtrials.BMJ2000;321(7275):1493.

[44]MasE,Barden AE,CorcoranTB,PhillipsM,RobertsIILJ, MoriTA. Effects ofspinalorgeneralanesthesia onF(2)-isoprostanesand isofuransduring ischemia/reperfusionof theleginpatientsundergoingkneereplacement surgery.FreeRadicBiolMed2011;50(9):1171–6.

[45]CorcoranTB,BardenAE,MasE,etal.Hemoglobinattenuatestheeffectsof inspiredoxygenonplasmaisofuransinhumansduringupper-limbsurgery. FreeRadicBiolMed2011;51(6):1235–9.

[46]Roberts II LJ, Fessel JP, Davies SS. Thebiochemistry ofthe isoprostane, neuroprostane,andisofuranpathways oflipidperoxidation.Brain Pathol 2005;15(2):143–8.

[47]Corcoran TB,MasE, Barden AE,etal. Areisofurans andneuroprostanes increasedaftersubarachnoidhemorrhageandtraumaticbraininjury?Antioxid RedoxSignal2011;15(10):2663–7.

[48]HsiehYP,LinCL,ShiueAL,etal.CorrelationofF4-neuroprostaneslevelsin cerebrospinalfluidwithoutcomeofaneurysmalsubarachnoidhemorrhagein humans.FreeRadicBiolMed2009;47(6):814–24.

[49]FariasSE,BasselinM,ChangL, HeidenreichKA,RapoportSI,MurphyRC. Formationofeicosanoids,E2/D2isoprostanes, anddocosanoidsfollowing decapitation-induced ischemia, measured in high-energy-microwaved rat brain.JLipidRes2008;49(9):1990–2000.

[50]BardenA,BeilinLJ,RitchieJ,CroftKD,WaltersBN,MichaelCA.Plasmaand urinary8-iso-prostaneasanindicatoroflipidperoxidationinpre-eclampsia andnormalpregnancy.ClinSci(Lond)1996;91(6):711–8.

[51]BardenAE,CorcoranTB,MasE,etal.Istherearoleforisofuransand neu-roprostanesinpre-eclampsiaandnormalpregnancy?AntioxidRedoxSignal 2012;16(2):165–9.

[52]MasE,WoodmanRJ,BurkeV,etal.Theomega-3fattyacidsEPAandDHA decreaseplasmaF(2)-isoprostanes:resultsfromtwoplacebo-controlled inter-ventions.FreeRadicRes2010;44(9):983–90.

[53]MoriTA, WoodmanRJ,BurkeV,PuddeyIB, CroftKD,BeilinLJ. Effectof eicosapentaenoic acidand docosahexaenoic acidon oxidativestress and inflammatorymarkersintreated-hypertensivetype2diabeticsubjects.Free RadicBiolMed2003;35(7):772–81.

[54]AmirRE,VandenVeyverIB,WanM,TranCQ,FranckeU,ZoghbiHY.Rett syndromeiscausedbymutationsinX-linkedMECP2,encoding methyl-CpG-bindingprotein2.NatGenet1999;23(2):185–8.

[55]ChristodoulouJ,GrimmA,MaherT,BennettsB.RettBASE:theIRSAMECP2 variation database-a new mutation database in evolution. Hum Mutat 2003;21(5):466–72.

(10)

102 J.-M.Galanoetal./Prostaglandins&otherLipidMediators107 (2013) 95–102

[56]NeulJL,KaufmannWE,GlazeDG,etal.Rettsyndrome:reviseddiagnostic criteriaandnomenclature.AnnNeurol2010;68(6):944–50.

[57]LeonciniS,DeFeliceC,SignoriniC,etal.OxidativestressinRettsyndrome: naturalhistory,genotype,andvariants.RedoxRep2011;16(4):145–53. [58]SastryPS.Lipidsofnervoustissue:compositionandmetabolism.ProgLipidRes

1985;24:69–176.

[59]DeFeliceC,SignoriniC,DurandT,etal.F2-dihomo-isoprostanesas poten-tialearlybiomarkersoflipidoxidativedamageinRettsyndrome.JLipidRes 2011;52(12):2287–97.

[60]MahmoodA,BibatG,ZhanAL,etal.WhitematterimpairmentinRett syn-drome:diffusiontensorimagingstudywithclinicalcorrelations.AJNRAmJ Neuroradiol2010;31(2):295–9.

[61]SignoriniC,DeFeliceC,LeonciniS,etal.F(4)-neuroprostanesmediate neuro-logicalseverityinRettsyndrome.ClinChimActa2011;412(15–16):1399–406. [62]CracowskiJL,DurandT.Cardiovascularpharmacologyandphysiologyofthe

isoprostanes.FundamClinPharmacol2006;20(5):417–27.

[63]TingHJ,KhasawnehFT.Plateletfunctionandisoprostanebiology.Should iso-prostanesbethenewestmemberoftheorphan-ligandfamily?JBiomedSci 2010;17(1):p24.

[64]KumarA,KingdonE,NormanJ.Theisoprostane8-iso-PGF2alphasuppresses monocyteadhesiontohumanmicrovascularendothelialcellsviatwo inde-pendentmechanisms.FASEBJ2005;19(3):443–5.

[65]LeitingerN,HuberJ,RizzaC,etal.Theisoprostane8-iso-PGF(2alpha)stimulates endothelialcellstobindmonocytes:differencesfromthromboxane-mediated endothelialactivation.FASEBJ2001;15(7):1254–6.

[66]MigginSM,KinsellaBT.ThromboxaneA(2)receptormediatedactivationofthe mitogenactivatedproteinkinasecascadesinhumanuterinesmoothmuscle cells.BiochimBiophysActa2001;1539(1–2):147–62.

[67]YuraT,FukunagaM,KhanR,NassarGN,BadrKF,MonteroA. Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expressiononendothelialcells.KidneyInt1999;56(2):471–8.

[68]CossetteC,WalshSE,KimS,etal.Agonistandantagonisteffectsof 15R-prostaglandin(PG)D2and11-methylene-PGD2onhumaneosinophilsand basophils.JPharmacolExpTher2007;320(1):173–9.

[69]CracowskiJL,Stanke-LabesqueF,DevillierP,etal.Humaninternalmammary arterycontractionbyisoprostaglandinf(2alpha)type-III[8-iso-prostaglandin F(2alpha)].EurJPharmacol2000;397(1):161–8.

[70]JanssenLJ,TazzeoT.InvolvementofTPandEP3receptorsinvasoconstrictor responsestoisoprostanesinpulmonaryvasculature.JPharmacolExpTher 2002;301(3):1060–6.

[71]KunapuliP,LawsonJA,RokachJ,FitzGeraldGA.Functionalcharacterization oftheocularprostaglandinf2alpha(PGF2alpha)receptor.Activationbythe isoprostane,12-iso-PGF2alpha.JBiolChem1997;272(43):27147–54. [72]MusiekES,GaoL,MilneGL,etal.Cyclopentenoneisoprostanesinhibitthe

inflammatoryresponseinmacrophages.JBiolChem2005;280(42):35562–70. [73]DarayFM,ColomboJR,KibrikJR,etal.Involvementofendothelial throm-boxaneA2inthevasoconstrictorresponseinducedby15-E2t-isoprostane inisolatedhumanumbilicalvein.NaunynSchmiedebergsArch Pharmacol 2006;373(5):367–75.

[74]FrielAM,HynesPG,SextonDJ,SmithTJ,MorrisonJJ.ExpressionlevelsofmRNA forRhoA/Rhokinaseanditsroleinisoprostane-inducedvasoconstrictionof humanplacentalandmaternalvessels.ReprodSci2008;15(2):179–88. [75]JanssenLJ,PremjiM,NethertonS,CoruzziJ,Lu-ChaoH,CoxPG.Vasoconstrictor

actionsofisoprostanesviatyrosinekinaseandRhokinaseinhumanandcanine pulmonaryvascularsmoothmuscles.BrJPharmacol2001;132(1):127–34.

[76]MueedI,TazzeoT,LiuC,etal.Isoprostanesconstricthumanradialarteryby stimulationofthromboxanereceptors,Ca2+release,andRhoAactivation.J ThoracCardiovascSurg2008;135(1):131–8.

[77]SimonetS,BonhommeE,FabianiJN,VerbeurenT.Temperature-dependent basaltoneinisolatedhumansaphenousveins:implicationofTP-receptors. FundamClinPharmacol2000;14(5):461–7.

[78]TazzeoT,MillerJ,JanssenLJ.Vasoconstrictorresponses,andunderlying mecha-nisms,toisoprostanesinhumanandporcinebronchialarterialsmoothmuscle. BrJPharmacol2003;140(4):759–63.

[79]MarliereS,CracowskiJL,DurandT,etal.The5-seriesF(2)-isoprostanespossess novasomotoreffectsintheratthoracicaorta,thehumaninternal mam-maryarteryandthehumansaphenousvein.BrJPharmacol2002;135(5): 1276–80.

[80]GreavesK, Dixon SR, Coker IO, et al. Influenceof isoprostane F2alpha-III on reflow after myocardial infarction. Eur Heart J 2004;25(10): 847–53.

[81]Benndorf RA, Schwedhelm E, Gnann A, et al. Isoprostanes inhibit vas-cular endothelial growth factor-induced endothelial cell migration, tube formation,and cardiacvesselsprouting invitro, aswellasangiogenesis invivoviaactivationofthethromboxane A(2)receptor: apotentiallink betweenoxidativestressandimpairedangiogenesis.CircRes2008;103(9): 1037–46.

[82]TanitoM,BrushRS,ElliottMH,WickerLD,HenryKR,AndersonRE.Highlevels ofretinalmembranedocosahexaenoicacidincreasesusceptibilityto stress-induceddegeneration.JLipidRes2009;50(5):807–19.

[83]IzzottiA,BagnisA,SaccaSC.Theroleofoxidativestressinglaucoma.MutatRes 2006;612(2):105–14.

[84]OpereCA,FordK,ZhaoM,OhiaSE.Regulationofneurotransmitterrelease from ocular tissues by isoprostanes. Methods Find Exp Clin Pharmacol 2008;30(9):697–701.

[85]JamilJ,WrightA,HarrisonN,etal.Regulationof[(3)H]d-aspartatereleaseby the5-F(2t)-isoprostaneandits5-epimerinisolatedbovineretina.Neurochem Res2012;37(3):574–82.

[86]MozaffarianD,WuJHY.Omega-3fattyacidsandcardiovasculardisease:effects onriskfactors,molecularpathways,andclinicalevents.JAmCollCardiol 2011;58(20):2047–67.

[87]Dietarysupplementationwithn-3polyunsaturatedfattyacidsandvitamin, E,aftermyocardialinfarction:resultsoftheGISSI-Prevenzione,trial.Gruppo ItalianoperloStudio dellaSopravvivenzanell’Infarto,miocardico.Lancet 1999;354(9177):447–55.

[88]Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascu-lar effects of marine omega-3 fatty acids. Lancet 2010;376(9740): 540–50.

[89]Judé S,RogerS,Martel E, etal. Dietary long-chainomega-3 fattyacids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers. Prog Biophys Mol Biol 2006;90(1–3): 299–325.

[90]JudeS,BedutS,RogerS,etal.Peroxidationofdocosahexaenoicacidis respon-sibleforitseffectsonITOandISSinratventricularmyocytes.BrJPharmacol 2003;139(4):816–22.

[91]LeGuennec JY,GalanoJM,OgerC, ThireauJ, RoyJ, Bultel-PoncéV,Guy A,DurandT,Methodsandpharmaceuticalcompositionforthetreatment andprevention of cardiacarrhythmias Europeanpatent5-EP12306519.3, December2012.

Figure

Fig. 1. Influence of 8-iso-PGF 2␣ (15-F 2t -IsoP) on VEGF-induced sprouting of endothelial cells

Références

Documents relatifs

Specifically, the aims of this study were to investigate (i) whether nestlings with either low levels of oxidative damage or high levels of antioxidant protection are less

Mallotojaponins B and C: Total Synthesis, Antiparasitic Evaluation and Preliminary SAR Studies.. Tatyana Grayfer, Philippe Grellier, Elisabeth Mouray, Robert Dodd, Joëlle Dubois,

In the present study, we have tested the effect of two edible oils, containing predominantly ω -3 fatty acids for fish oil and ω -6 fatty acids for saf flower oil, combined with heme

In contrast to CD36, compared to the basal state, SR-A expression sig- ni ficantly increased after 36 h of oxLDL treatment (P &lt; 0.05) ( Fig. Cell viability, ROS production,

epilepsy treated with different AEDs, classic (rst-generation) and new generation (second- and third-generation), compared with the control group.. 2 Urinary excretion (ng 24 h 1 )

To induce basidiomata production, we with- drew water for 15-20 days (water stress). Six phases of fungal development on the cookies were studied: 1) white phase, corresponding to

In order to fully understand the consequence of the MCD on the mechanism of AOS, it is crucial to per- form a comparison with AO-HDS experiments as well as helicity-dependent

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.