• Aucun résultat trouvé

On projective linear groups over finite fields as Galois groups over the rational numbers

N/A
N/A
Protected

Academic year: 2021

Partager "On projective linear groups over finite fields as Galois groups over the rational numbers"

Copied!
8
0
0

Texte intégral

(1)

as Galois groups over the rational numbers

GaborWiese

Abstra t

Ideas from Khare's and Wintenberger's arti le on the proof of Serre's

onje ture for odd ondu tors are used to establish that for a xed

prime l in nitely many of the groupsPSL

2 (F

l r

)(for r running) o ur

asGaloisgroupsovertherationalssu hthatthe orrespondingnumber

eldsareunrami edoutsideaset onsistingof l,thein nitepla eand

onlyoneotherprime.

1 Introdu tion

Theaim ofthisarti leisto provethefollowingtheorem.

Theorem 1.1. Let l be aprime and s apositive number. Then there

exists aset T of rational primesof positive density su h that for ea h

q2T there existsamodularGalois representation

:G

Q

!GL

2 (F

l )

whi h isunrami edoutsidef1;l;qgandwhose proje tive imageisiso-

morphi toPSL

2 (F

l r

)for somer>s.

Corollary 1.2. Let lbeaprime. Then for in nitely many positive in-

tegersrthegroupsPSL

2 (F

l r

)o urasaGaloisgroupovertherationals.

UsingSL

2 (F

2 r

)



=PSL

2 (F

2 r

)oneobtainsthefollowingreformulation

forl=2.

Corollary 1.3. The group SL

2 (F

2 r

) o urs asaGalois group over the

rationalsfor in nitely many positive integersr.

(2)

This ontrastswithworkbyDieulefait, ReverterandVila([D1 ℄,[D2℄,

[RV℄ and [DV℄) whoprovedthat the groupsPSL

2 (F

l r

)and PGL

2 (F

l r

)

o uras Galois groups over Q for xed (small) r and in nitely many

primesl.

Dieulefait([D3℄)hasre entlyobtainedadi erent,rather elementary

proofofCorollary1.2undertheassumptionl5withadi erentrami -

ationbehaviour,namelyf1;2;3;lg.Hisproofhasthevirtueofworking

withafamilyofmodularforms thatdoesnotdependonl.

Intheauthor's PhDthesis [W ℄some omputationaleviden e onthe

statementof Corollary1.3wasexhibited. Morepre isely,it wasshown

that all groups SL

2 (F

2 r

) o ur as Galois groups over Q for 1  r 

77, extending results by Mestre (see [S℄, p. 53), by omputing He ke

eigenformsofweight2forprimelevelover nite eldsof hara teristi 2.

However,at that time all attempts to provethe orollary failed, sin e

theauthor ouldnotruleouttheoreti allythatallGaloisrepresentations

atta hedtomodularformswithimage ontainedinSL

2 (F

2 r

)forrbigger

thansome xedbound andnotin anySL

2 (F

2 a

)forajr,a6=r,havea

dihedralimage.

Thepresent paper hasundergone somedevelopments sin ethe rst

writing. However,the oreoftheproofhasremainedthesame. Ituses

apro edureborrowedfrom thegroundbreakingpaper[KW℄ byKhare

and Wintenberger. The representations that we will onstru t in the

proofarealmost-intheterminologyof[KW℄-good-dihedral.Theway

wemaketheserepresentationbylevelraisingisadoptedfrom apartof

theproofof [KW℄,Theorem3.4. Althoughthepaper[KW℄isnot ited

intheproof,thispaperowesitsmereexisten etoit.

Meanwhile, the results of the present arti le have been generalised

to the groups PSp

2n (F

l

r) for arbitrary n by Khare, Larsen and Savin

(see [KLS℄). Theirpaper[KLS℄ also inspireda slight strengthening of

themain resultof thepresentarti le omparedtoanearlyversion.

A knowledgements. Theauthor would liketothankBas Edixhoven

forveryuseful dis ussionsandAlexanderS hmidtforan elegantargu-

mentused intheproofofLemma3.1.

Notation. We shall use the following notation. By S

k (

1

(N)) we

mean the omplex ve tor spa e of holomorphi usp forms on

1 (N)

of weight k. The notation S

k

(N;) is used for the ve tor spa e of

holomorphi usp forms of level N, weight k for the Diri hlet har-

a ter. If  is trivial, wewrite S

k

(N) for short. We x an algebrai

losure Q of Q and for every prime p an algebrai losure Q of Q

p

(3)

and we hoose on e and for all an embedding Q ,! Q

p

and a ring

surje tion Z

p

! F

p

, subje t to whi h the following onstru tions are

made. ByG

Q

wedenotetheabsoluteGaloisgroupoftherationalnum-

bers. For a rational prime q, we let D

q and I

q

be the orresponding

de ompositionand inertiagroupoftheprimeq,respe tively. Givenan

eigenformf 2S

k (

1

(N))one anatta hto itbywork ofShimuraand

DeligneaGaloisrepresentation

f;p :G

Q

!GL

2 (Q

p

)withwell-known

properties. Choosingalatti e, redu ingand semi-simplifying,onealso

obtainsarepresentation

f;p :G

Q

!GL

2 (F

p

). Wedenote the ompo-

sitionG

Q

!GL

2 (F

p

)PGL

2 (F

p )by

proj

f;p

. AllGaloisrepresentations

inthis paperare ontinuous. By

p r

wealwaysmean aprimitivep r

-th

rootofunity.

2 On Galois representations

The basi idea of the proof is to obtain the groups PSL

2 (F

l r

) as the

imageofsome proj

g;l

. Inordertodeterminethepossibleimagesof proj

g;l ,

wequotethefollowingwell-knowngrouptheoreti resultduetoDi kson

(see[Hu℄,II.8.27).

Proposition2.1(Di kson). Letlbeaprime andH a nitesubgroup

ofPGL

2 (F

l

). Then a onjugateof H isisomorphi tooneofthefollow-

inggroups:

 nitesubgroups ofthe uppertriangular matri es,

 PSL

2 (F

l r

)orPGL

2 (F

l r

)for r2N,

 dihedral groups D

r

for r2N notdivisible by l,

 A

4 ,A

5 orS

4 .

WenextquotearesultbyRibet showingthattheimagesof proj

g;l for

anon-CMeigenformg are\almostalways"PSL

2 (F

l

r)orPGL

2 (F

l r)for

somer2N.

Proposition 2.2 (Ribet). Let f = P

n1 a

n q

n

2 S

2

(N;) be anor-

malisedeigenform oflevel N andsome hara ter whi h isnot aCM-

form.

Then for almost all primesp, i.e. allbut nitely many, the image of

therepresentation

 proj

f;p :G

Q

!PGL

2 (F

p )

atta hed to f is equal to either PGL

2 (F

p

r) or to PSL

2 (F

p

r) for some

(4)

Proof. Redu ingmodulo p,Theorem 3.1of [R1℄ gives,foralmostallp,

that the image of

f;p

ontainsSL

2 (F

p

). This already provesthat the

proje tive image is of the form PGL

2 (F

p r

) or PSL

2 (F

p r

) by Proposi-

tion2.1.

InviewofRibet'sresult,therearetwotaskstobesolvedforproving

Theorem 1.1. The rst task is to avoidthe \ex eptional primes", i.e.

thoseforwhi htheimage isnotasin theproposition. These ond one

istoobtainatthesametimethatthe eldF

p r

is \big".

WewillnowusethisresultbyRibet inorder toestablishthesimple

fa t that for a given prime l there exists a modular form of level a

poweroflhavingonly nitelymany\ex eptionalprimes". Thefollowing

lemma anbeeasilyveri edusinge.g.WilliamStein'smodularsymbols

pa kagewhi hispartofMagma([Magma℄).

Lemma 2.3. In any of the following spa es there exists a newform

withoutCM: S

2 (2

7

),S

2 (3

4

), S

2 (5

3

), S

2 (7

3

),S

2 (13

2

).

Proposition 2.4. Letlbeaprime. Put

N :=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

: 2

7

; if l=2;

3 4

; if l=3;

5 3

; if l=5;

7 3

; if l=7;

13 2

; if l=13;

l; otherwise.

Then there exists an eigenform f 2 S

2

(N) su h that for almost all

primesp,i.e. forallbut nitely many,the imageofthe atta hedGalois

representation 

f;p

is of the form PGL

2 (F

p r

) or PSL

2 (F

p r

) for some

r2N.

Proof. If l 2 f2;3;5;7;13g, we appeal to Lemma 2.3 to get an eigen-

form f without CM.If lis notin that list,then there is aneigenform

in S

2

(l)and it iswell-knownthat it doesnothaveCM,sin e thelevel

issquare-free. Hen e,Proposition2.2givesthe laim.

Wewill be ableto nd aneigenformwith image asin the pre eding

propositionwhi his\bigenough"byapplyingthefollowinglevelraising

resultbyDiamondandTaylor. Itisaspe ial aseofTheoremAof[DT ℄.

Theorem 2.5 (Diamond, Taylor). Let N 2 N and let p> 3 be a

prime notdividing N. Let f 2S

2

(N;) be anewformsu h that is

(5)

irredu ible. Let,furthermore, q-N beaprimesu hthatq 1 modp

andtr(

f;p (Frob

q ))=0.

Then thereexistsanewformg2S

2 (Nq

2

;)~ su hthat 

g;p



=

f;p .

Corollary2.6. AssumethesettingofTheorem2.5. Then thefollowing

statementshold.

(a) The modpredu tionsof and~areequal.

(b) The restri tion of 

g;p to I

q

, the inertia group at q, is of the form





0 q



witha hara terI

q

!Z[

p r℄



,!Z

p [

p r℄



of order p r

for

somer>0.

( ) For all primes l6= p;q, the restri tion of 

g;l to D

q

, the de ompo-

sition group at q, is irredu ible and the restri tion of 

g;l to I

q is

of the form





0 q



withthe hara terI

q

!Z[

p r℄



F

l (

p r

)



of

the sameorder p r

asin (b).

Proof. (a)Thisfollowsfrom

g;p



=

f;p .

(b) As q 2

pre isely divides the ondu tor of 

g;p

, the rami ation

at q is tame and the restri tion to I

q

is of the form



1



0 2



for non-

trivial hara ters

i : I

q

! Z



p

. Their order must be a power of p,

sin e their redu tions mod p vanish by assumption. Due to q  1

modp,lo al lass eldtheorytellsusthat

i

annotextendtoG

Qq ,as

their orders would divide q 1. Hen e, the image of 

g;p j

D

q : D

q

!

GL

2 (Q

p

)!PGL

2 (Q

p

)isa nitedihedralgroup. Consequently,

g;p j

D

q

isan unrami edtwistofthe indu edrepresentationInd GK

D

q

( ) withK

the unrami ed extension of degree 2 of Q

q

and : G

K

! Z[

p r℄

a

totallyrami ed hara ter oforder p r

for somer >0. Conjugation by



g;p (Frob

q

)ex hanges

1 and

2

. Itiswell-knownthatthis onjugation

alsoraises to theq-th power. Thus, we nd

2

= q

1

andwithout loss

ofgenerality =

1 .

( )With thenotationsand thenormalisation usedin [CDT ℄,p.536,

thelo al Langlands orresponden ereads(forl6=q)

(

g;l jW

q )

ss



= Q

l

Q WD (

g;q );

if g orresponds to the automorphi representation 

g

= 

g;p . In

parti ular,knowingby(b)that 

g;p j

I

q is





0 q



, itfollowsthat 

g;l j

I

q

is alsoof that form. As is ofp-powerorder, it annot vanish under

redu tion mod l if l 6= p. Hen e, 

g;l j

I

q

is of the laimed form. The

(6)

3 Proof and remarks

Inthisse tionweproveTheorem1.1and ommentonpossiblegeneral-

isations.

Lemma 3.1. Let l be a prime and s 2 N. Then there is a set of

primespof positive densitysu hthat pis1mod 4andsu hthat if the

group GL

2 (F

l t

) possesses an element of order p for some t 2 N, then

2jtandt>s.

Proof. Wetakethesetofprimespsu hthatpissplitinQ(i)andinertin

Q(

p

l ). ByChebotarev'sdensitytheoremthissethasapositivedensity.

The rst onditionimposed onpmeansthat 4divides theorderof F



p

andthese ondonethattheorderofthe2-SylowsubgroupofF



p

divides

theorderoflinF



p

. Iftheorderofg2GL

2 (F

l t

)isp,thenF



l 2t

ontains

anelementoforderp(aneigenvalueofg). Thus,l 2t

1isdivisiblebyp,

when etheorderoflinF



p

divides2tand onsequently2dividest. The

onditiont>s anbemetbyex luding nitelymanyp.

Proof ofTheorem 1.1. Letus xtheprimelandthenumbersfromthe

statementof Theorem1.1. Wewill nowexhibit amodularformg su h

that  proj

g;l

hasimage equaltoPSL

2 (F

l t

)witht>s. Westart withthe

eigenform f 2 S

2 (l



) provided by Proposition 2.4. Next, we let p be

anyofthein nitelymanyprimes fromLemma 3.1su h thattheimage

of proj

f;p

isPSL

2 (F

p r

)orPGL

2 (F

p r

) withsomer. We wanttoobtaing

bylevelraising. Thenext lemma will yield aset of primes of positive

densityatwhi hthelevel anberaisedin awaysuitabletous.

Lemma 3.2. Under the above notations and assumptions, the set of

primesqsu hthat

(i) q 1 modp,

(ii) q splits inQ( i;

p

l) and

(iii)  proj

f;p (Frob

q

) lies in the same onjuga y lass as  proj

f;p

( ), where

isany omplex onjugation,

hasapositive density.

Proof. Theproof is adapted from [KW℄, Lemma 8.2. LetK =Q bethe

number eldsu hthatG

K

=ker(

proj

f;p

). De neLasQ( 

p

;i;

p

l ). Condi-

tions(i)and(ii)mustbeimposedonthe eldLandCondition(iii)onK.

WeknowthatGal(K =Q)iseitherPSL

2 (F

p

r)orPGL

2 (F

p

r). Inthefor-

mer asethelemmafollowsdire tlyfromChebotarev'sdensitytheorem,

astheinterse tionL\KisQ, sin ePSL (F r)isasimplegroup. Inthe

(7)

latter asetheinterse tionL\K=M isanextensionofQ ofdegree2.

Asp1 mod4byassumption,  proj

f;p

( )isin Gal(L=M)



= PSL

2 (F

p r

),

sin edet(

f;p

( )) = 1is asquare mod p. Consequently, any q satis-

fying Condition(iii) issplit in M=Q. Againasp1 mod4, omplex

onjugation xes thequadrati sub eld of Q( 

p

), when e any prime q

satisfyingConditions(i) and (ii)is also split in M=Q. Hen e, we may

againappealto Chebotarev'sdensitytheorem,provingthelemma.

To ontinue the proof ofTheorem 1.1 weletT bethe set of primes

provided by Lemma 3.2. Let q 2 T. Condition (iii) assures that



f;p (Frob

q

)hastra e0,sin eitisas alarmultipleofthematrixrepre-

senting omplex onjugation,i.e.

1 0

0 1



. Hen e,weareinthesituation

to apply Theorem 2.5 and Corollary 2.6. We, thus, get an eigenform

g 2 S

2 (l



q 2

;) with  a Diri hlet hara ter of order apowerof p(its

redu tionmodpis trivial)su h that 

g;l j

Dq

isirredu ibleand 

g;l j

Iq is

ofthe form





0 q



with anon-trivial hara terof order p r

. Hen e,

in parti ular, the image  proj

g;l (G

Q

) ontains an element of order p, as





0 q



annotbes alarduetop-q 1.

Wenext showthat  proj

g;l (G

Q

) is not adihedral group. It annot be

y li either be ause of irredu ibility. If it were dihedral, then  proj

g;l

wouldbearepresentationindu edfroma hara terofaquadrati exten-

sionR =Q. IfRwererami edatq,then proj

g;p (I

q

)wouldhaveevenorder,

butithasorderapowerofp. So,Rwould beeitherQ(

p

l )orQ(

p

l ).

AsbyCondition(ii)qwouldsplitinR ,thisimpliesthat proj

g;p j

D

q would

be redu ible, but it is irredu ible. Consequently,  proj

g;l (G

Q

) is either

PSL

2 (F

l t

) or PGL

2 (F

l t

) for some t. By what we have seen above,

PGL

2 (F

l

t)then ontainsanelementoforderp. Hen e,sodoesGL

2 (F

l t)

andtheassumptionsonpimplyt>sand2jt.

Weknow,moreover,thatthedeterminantof

g;l (Frob

w

)foranyprime

w-lqisw k 1

(w)forsome xedk (theSerre weightof

g;l

). As(w)

isofp-powerorder,F

l t

ontainsasquarerootofit. Thesquarerootsof

elementsofF



l

areall ontainedinF

l

2 andthusalsoin F

l

t,astiseven.

Hen e, proj

g;l (Frob

w

)2 PSL

2 (F

l t

). As every onjuga y lass ontainsa

Frobenius element,theproofofTheorem1.1is nished.

Remark 3.3. One andevelopthebasi ideaused herefurther, inpar-

ti ular, in order to try to establish an analogue of Theorem 1.1 su h

thattherepresentationsramifyatagiven nitesetofprimesS andare

(8)

Remark 3.4. Itisdesirabletoremovetherami ationatl. Forthat,one

would needthat  proj

g;l

isunrami edat l. This,however,seemsdiÆ ult

toestablish.

Bibliography

[Magma℄ W.Bosma,J.J.Cannon,C.Playoust.TheMagmaAlgebraSystemI:

The UserLanguage. J.Symboli Comput.24(1997),235{265.

[CDT℄ B. Conrad, F. Diamond, R. Taylor. Modularity of ertain potentially

Barsotti-Tate Galois representations. J. Am. Math. So . 12(2) (1999),

521{567-

[DT℄ F.Diamond,R.Taylor.Non-optimallevelsofmodlmodularrepresenta-

tions. Invent.math.115(1994),435{462.

[D1℄ L.V.Dieulefait. Newforms,innertwists,andtheinverse Galoisproblem

forproje tivelineargroups.JournaldeTheoriedesNombresdeBordeaux

13(2001),395{411.

[D2℄ L.V.Dieulefait.GaloisrealizationsoffamiliesofProje tiveLinearGroups

via uspforms.

[D3℄ L. V. Dieulefait. A ontrol theorem for the images of Galois a tions on

ertainin nitefamiliesofmodularforms.Thisvolume,pp.??.

[DV℄ L. V.Dieulefait, N.Vila.Proje tive lineargroupsas Galoisgroupsover

Q viamodularrepresentations.J.Symboli Computation30(2000),799{

810.

[Hu℄ B.Huppert.Endli heGruppen I.Grundlehrendermathematis henWis-

sens haften134.Springer-Verlag,1983.

[KLS℄ C. Khare, M. Larsen, G. Savin. Fun toriality and the inverse Galois

problem. Preprint,2006.arXiv:math.NT/0610860

[KW℄ C.Khare,J.-P.Wintenberger.Serre's modularity onje ture: the aseof

odd ondu tor(I).Preprint,2006.

[RV℄ A. Reverter, N. Vila. Some proje tive linear groups over nite elds as

Galois groupsover Q. ContemporaryMath.186(1995),51{63.

[R1℄ K.A.Ribet.Onl -adi representationsatta hedtomodularformsII.Glas-

gowMath.J.27(1985),185{194.

[R2℄ K.A.Ribet.ImagesofsemistableGaloisrepresentations. Pa i Journal

ofMathemati s181No.3(1997),277{297.

[S℄ J.-P. Serre. Topi s in Galois theory. Resear h Notes in Mathemati s 1.

JonesandBartlettPublishers,Boston,MA,1992.

[W℄ G.Wiese.ModularFormsofWeightOneOverFinite Fields.PhDthesis,

UniversiteitLeiden,2005.

Références

Documents relatifs

Then we consider an example of a pair of permutation groups of degree 8 and order 16 whose cycle types and induced Haar measure on S 8 -conjugacy classes are equal.. We show how

An important step in the proof follows from another main result (Theorem 7.6), where we show that a large family of finite dimensional pointed Hopf algebras is generated by

– The goal of this paper is to give an explicit formula for the -adic cohomology of period domains over finite fields for arbitrary reductive groups.. The result is a generalisation

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

out to us... Galois theory and in Section 6 we give a criterion for realizing a linear algebraic group as a Galois group. General facts about groups and homogeneous

Our method for computing the Galois groups of the basic hypergeometric equations is based on a q-analogue of Schlesinger’s density theorem stated and established in [15].. Note

We say that a type ω ∈ T n is semisimple regular if it is the type of a semisimple regular adjoint orbit of G F (or the type of an irreducible Deligne-Lusztig character, see §6.6)..