• Aucun résultat trouvé

Td corrigé Exercice II le cercle des planètes disparues 5 points - Exercices ... pdf

N/A
N/A
Protected

Academic year: 2022

Partager "Td corrigé Exercice II le cercle des planètes disparues 5 points - Exercices ... pdf"

Copied!
1
0
0

Texte intégral

(1)

DS : La mécanique de Newton à Einstein…

1. L’arme fatale… (3 points ). Définir la quantité de mouvement. Etudier un mode de propulsion par réaction.

Une balle de pistolet, de masse 2,0 g, quitte le canon avec une vitesse horizontale de 300 m/s. le système {balle + pistolet} est considéré comme isolé.

1.1. Le pistolet a une masse de 1,0 kg. Calculer la quantité de mouvement du pistolet. En déduire la vitesse de recul de l’arme.

1.2. Calculer la vitesse de recul pour un fusil de 4 kg tirant la même munition.

1.3 Pourquoi les tireurs au fusil épaulent-ils leur arme en la maintenant fortement appuyé sur eux ? Estimer la vitesse de recul pour un tireur pesant 80 kg utilisant le fusil précédent.

2. La découverte de l’électron (5 points). Etudier un mouvement dans un champ électrique uniforme.

«Au début, très peu de gens croyaient à l’existence de ces corps plus petits que les atomes. Un physicien distingué m’a même dit, après avoir écouté ma conférence à la Royal Institution, qu’il pensait que je m’étais payé leur tête.» (J.J. Thomson)

A partir de 1895, le physicien britannique Joseph John Thomson entame une série d’expériences afin de mettre en évidence l’électron et en particulier de mesurer la valeur du quotient entre sa charge et sa masse. Le dispositif utilise deux armatures métalliques A et B, planes, parallèles à un axe horizontal (Ox), distantes de d = 4,00 cm, de longueur l = 10,0 cm, placées dans le vide. Un faisceau d’électrons pénètre en O entre ces armatures. Chaque électron a une masse m, une charge électrique

e

et une vitesse initiale v0

parallèle à (Ox) v0 2,50107m/s. A la sortie

des armature, les électrons laissent une trace sur une plaque sensible.

Lorsque la tension UAB appliquée entre les plaques est nulle, cette trace est au point P. Elle est en C lorsque UAB = 400 V, les points P et C étant distants de 14 mm.

On rappelle que la tension UAB positive crée un champ électrique E dirigé de A vers B et qu’une particule de charge q placée dans ce champ subit la force électrique F qE .

2.1. Le point C est-il plus proche de A ou de B ? Justifier la réponse.

2.2. En négligeant le poids de l’électron, montrer que les coordonnées de son vecteur accélération

sont

 

 

md a eU AB

0

.

2.3. En déduire les coordonnées du vecteur vitesse de cet électron puis les équations horaires de sa position x(t) et y(t).

2.4. A partir de ces équations horaires, exprimer la date tC à laquelle l’électron arrive en x = l, et

(2)

montrer que l’ordonnée du point C s’écrit alors 2 ²² mdv0

yCeUAB . 2.5. En déduire l’expression du rapport

m

e en fonction de yC, l, v0, UAB et d. Calculer sa valeur.

(La valeur actuellement admise est e/m = (1,75881962 ± 0,00000053) 1011 C.kg-1)

(3)

3. Hauteur maximale d’un lancer (4 points). Analyser les transferts énergétiquesau cours de mouvements.

Une balle, de masse m = 45 g, est lancée verticalement vers le haut depuis une hauteur h = 90 cm, avec une vitesse initiale v0 = 12 m/s.

3.1. En considérant que l’énergie potentielle de pesanteur Epp(z = 0) = 0 J pour l’altitude z = 0 m, calculer l’énergie mécanique initiale de la balle.

3.2. En supposant les frottements négligeables, quelle sera son énergie mécanique au sommet de sa trajectoire ? En déduire l’altitude maximale zmax atteinte.

3.3. Calculer le travail effectué par le poids de la balle lors du déplacement de celle-ci de h à zmax. Donnée : intensité du champ de pesanteur : g = 9,8 m/s²

4. Un voyage relativiste (3 points). Exploiter la relation entre durée propre et durée mesurée.

L’étoile la plus proche de la Terre, après le Soleil, est Proxima du Centaure, qui se trouve à 4,2 années de lumière de la Terre. Lorsque notre technologie sera capable de construire un vaisseau spatial voyageant à une vitesse v = 0,80c pour effectuer le trajet vers cette étoile:

4.1. Quelle sera la durée du voyage aller pour un observateur resté sur Terre ? 4.2. Quelle sera la durée du voyage pour les passagers ?

Donnée : relation entre durée mesurée et durée propre tmtpavec

² 1 ²

1

c

v

5. Le cercle des planètes disparues (5 points). Connaître les trois de Kepler. Exploiter la troisième.

La planète Pluton, découverte par l’américain Clyde Tombaugh en 1930 était considérée comme la neuvième planète de notre système solaire.

Le 5 janvier 2005, une équipe d’astronomes a découvert sur des photographies prises le 21 octobre 2003 un nouveau corps gravitant autour du Soleil.

Provisoirement nommé 2003 UB313, cet astre porte maintenant le nom d’Éris du nom de la déesse grecque de la discorde.

La découverte d’Éris et d’autres astres similaires (2003 EL. 61, 2005 FY9...) a été le début de nombreuses discussions et controverses acharnées entre scientifiques sur la définition même du mot « planète ».

Au cours d’une assemblée générale, le 24 août 2006 à Prague 2500 astronomes de l’Union Astronomique Internationale (UAI) ont décidé à main levée de déclasser Pluton comme planète pour lui donner le rang de « planète naine » en compagnie d’Éris et de Cérès (gros astéroïde situé entre Mars et Jupiter).

5.1. Orbite d’Éris

Éris parcourt une orbite elliptique autour du Soleil avec une période de révolution TE valant environ 557 années terrestres.

Données : période de révolution terrestre : TT =1,00 an ; période de révolution de Pluton : TP = 248 ans 5.1.1. Énoncer précisément la troisième loi de Kepler, relative à la période de révolution d’une planète autour du Soleil, dans le cas d’une orbite elliptique.

5.1.2. L’orbite d’Éris se situe-t-elle au-delà ou en-deçà de celle de Pluton ? Justifier sans calcul.

(4)

5.2. Découverte de Dysnomia

Les astronomes ont découvert ensuite qu’Éris possède un satellite naturel qui a été baptisé Dysnomia (fille d’Éris et déesse de l’anarchie...).

Six nuits d’observation depuis la Terre ont permis de reconstituer l’orbite de Dysnomia.

On obtient la photographie ci-contre.

Données :

ME et MD sont les masses respectives d’Eris et de Dysnomia.

Masse de Pluton: MP = 1,311022 kg.

Rayon de l’orbite circulaire de Dysnomia : RD = 3,60107 m.

Période de révolution de Dysnomia : TD = 15,0 jours  1,30106 s.

Constante de gravitation universelle: G = 6,6710-11 m3.kg-1.s-2. 5.2.1. Mouvement de Dysnomia

Le mouvement de Dysnomia autour d’Eris est supposé circulaire et uniforme.

5.2.1.1. Définir le référentiel permettant d’étudier le mouvement de Dysnomia autour d’Éris. Par la suite, ce référentiel sera considéré comme galiléen.

5.2.1.2. Établir l’expression du vecteur accélération a

du centre d’inertie de Dysnomia en fonction des paramètres de l’énoncé et d’un vecteur unitaire uED

représenté sur le schéma ci-contre.

5.2.1.3. Préciser la direction et le sens de ce vecteur accélération.

5.2.1.4. Montrer que la période de révolution TD de Dysnomia a pour expression : TD =

3 D E

2 R

 G.M . Retrouve-t-on la troisième loi de Kepler ? Justifier.

5.2.2. Masse d’Éris

5.2.2.1. Déduire de l’expression de TD (question 5.2.1.4.) celle de la masse MEd’Éris. Calculer sa valeur.

5.2.2.2. Calculer le rapport des masses d’Éris et de Pluton E

P

M

M . Expliquer alors pourquoi la découverte d’Éris a remis en cause le statut de planète pour Pluton.

NASA, ESA and M. Brown (California Institute of Technology) http://web.gps.caltech.edu/~mbrown/planetlila/moon/index.html

E

D

uED

(5)

1.1. Le pistolet et la balle, juste avant le tir, forment un système de quantité de mouvement initiale nulle.

L’ensemble étant isolé, la quantité de mouvement du système est constante et reste donc nulle après le tir.

Donc : 0ppistoletpballe

Le vecteur quantité de mouvement du pistolet est opposé à celui de la balle, les normes de ces deux vecteurs sont donc égales d’où :

ppistolet = mballevballe = 2,01033000,60kg.m/s

La vitesse du pistolet, qui est la vitesse de recul de l’arme, est donc 01,,600 0,60

pistolet pistolet

pistolet

m v p

m/s.

1.2. Les conditions étant les mêmes, la quantité de mouvement de la balle a la même valeur, donc celle du fusil également. Mais celui-ci étant 4 fois plus lourd, la vitesse de recul est 4 fois plus faible soit 0,15 m/s.

1.3. En maintenant fermement le fusil, le tireur devient solidaire de celui-ci, augmentant considérablement la masse du système. La vitesse de recul diminue donc encore.

2.1. La force électrique que subit l’électron est F eE. Elle est opposée à E et donc orientée de B vers A. Elle dévie donc l’électron vers le point C, plus proche de A que de B.

2.2. On applique la deuxième de loi de Newton au système constitué par l’électron dans le référentiel terrestre supposé galiléen : Fextérieuresma.

Le poids de l’électron étant négligé, les forces extérieures se résument à la force électrique :

a m E e

soit E

m a e

A l’intérieur du dispositif, qui est un condensateur plan, le champ électrique a pour norme

d

EUAB et étant orienté de A vers B, ses coordonnées sont donc

 

 

d U AB 0

.

D’où les coordonnées de l’accélération

 

 

md a eU AB

0

.

2.3. Par intégration des coordonnées de l’accélération, on obtient les coordonnées de la vitesse

(6)

puisque

dt v ad donc

 

 

 autre constante constante

md t

v eU AB

.

Mais à t = 0, la vitesse

 

 

 

 

 

constante autre 0 constante

)0( 0 v 0

v

tv

d’où

 

 

md t eU v v AB

0

Les équations horaires de x et de y s’obtiennent à nouveau par intégration des coordonnées de la

vitesse car

 

 

 

 

dt dy dt dx

v

donc

 

 

constante autre

2 ² 1

constante )( 0

md t y(t) eU

tv tx

AB

=

 

 

 2 ² 1 )( 0

md t y(t) eU

tv tx

AB

car à t = 0 l’électron est au point O.

(7)

2.4. L’électron arrive en x = l à la date tC telle que v0tC donc

0 C v t . L’ordonnée correspondante yC est

² 2

² ) 2

(

0 2

C 0 mdv

eU v

md t eU

y AB  AB



.

2.5. On en déduit que

²

²

2 0

AB

C

U dv y m

e  .

1011

75 ,

1

m

e C/kg.

Bien joué J.J !

3.1. 45 10 12² 45 10 9,8 0,90 3,6

2

² 1 2

1 3 3

initiale initiale

initiale

m E E mv mgz

E c pp J

3.2. Les frottements étant négligeables, l’énergie mécanique se conserve, et donc au sommet de sa trajectoire Emsommet = Em initiale.

Au sommet de la trajectoire, la vitesse de la balle est nulle d’où Emsommetmgzmax

Donc 8,2

8 , 9 10 45

6 , 3

3 sommet

max m

mg

z E m

3.3. Whàzmax(P)mghzmax451039,8(0,908,2)3,2J

4.1. 4,2 années de lumière est la distance parcourue par la lumière à la vitesse c égale à c4,2.

Pour parcourir cette même distance à la vitesse 0,80c pour un observateur resté sur Terre, la durée du voyage mesurée serait de tm 04,,825,3ans

4.2. A la vitesse 0,80c les passagers subissent la dilatation du temps, et leur temps propre tp

vérifie tmtpd’où p tm t

² 1 ²

1

c

v

= 1 0,8² 1,7

1

² 1

1

c

v

On en déduit 3,1

7 , 1

3 , 5

pm

t t années.

(8)

LE CERCLE DES PLANÈTES DISPARUES (5 points) Liban 2009 1. Orbite d’Éris

1.1. Le carré de la période de révolution T d’une planète autour du Soleil est proportionnel au cube du demi-grand axe a de l’orbite elliptique : T32

a Cte .

1.2. Appliquons la troisième loi de Kepler à Pluton et Éris évoluant autour du Soleil :

2 2

E P

3 3

E P

T T

a Cte a ,

soit

3 2

E E

3 2

P P

a T

a T or TE (= 557 ans) > TP (= 248 ans) donc

2 E 2 P

T 1

T  alors

3 E 3 P

a 1

a  ou a3E a3P finalement aE > aP, l’orbite d’Éris se situe au-delà de celle de Pluton.

2. Découverte de Dysnomia 2.1. Mouvement de Dysnomia

2.1.1. On utilisera un référentiel constitué par le centre d’inertie d’Éris et par trois étoiles lointaines et fixes. On pourrait parler de référentiel « ériscentrique ». Ce référentiel est considéré comme galiléen.

2.1.2. Considérons le mouvement circulaire uniforme de Dysnomia dans le référentiel

« ériscentrique ». Le satellite Dysnomia est soumis à une unique force d’attraction gravitationnelle exercée par Éris, FE D

.

Appliquons la deuxième loi de Newton à Dysnomia : FE D M aD.

.

. E2 D. ED D.

D

GM M u M a

 R   

. E2. ED

D

a GM u

  R

 

2.1.3. Le vecteur accélération est porté par le rayon de la trajectoire (il est radial) et est orienté vers le centre de la trajectoire (il est centripète).

E

D

uED

F  E D

(9)

2.1.4. La période de révolution TD de Dysnomia est la durée pendant laquelle Dysnomia effectue un tour (distance parcourue = 2..RD). Sa vitesse est . . D

D

v 2 R T

  (1)

Le mouvement de Dysnomia est circulaire et uniforme, la norme du vecteur accélération est dans ce cas : a =

2

D

v R .(2)

D’après (1) v2 = . . D

D

2 2 2

4 R

T

 , que l’on remplace dans (2) alors a =

. . D D

D

2 2 2

4 R

T R

= . .

D

2 D 2

4 R

T

soit 2 . .2 D

D

4 R

T a

 

Or d’après la question 2.1.2. la norme du vecteur accélération est . E2

D

a GM

 R . .

.

2 2 D

D E

2 D

4 R

T M

GR

 

= . . .

2 3 D E

4 R

GM

 (3)

on obtient TD =  3D

E

2 R

G.M

Et d’après (3) on retrouve la troisième loi de Kepler

2 2

D 3

D E

T 4

R G.M

 

2.2. Masse d’Éris

2.2.1. D’après la troisième loi de Kepler on a : 

3

E 2 D

D

G.M 4. ².R T

  3

E 2 D

D

M 4. ² .R G.T

   

   

7 3

E -11 6 2

4 ² (3,60 10 )

M 6,67 10 (1,30 10 ) = 1,631022 kg

2.2.2.  

22 E

22 P

M 1,63 10

M 1,31 10 = 1,24

La masse d’Éris est un peu plus grande que celle de Pluton.

Si Eris n’est pas considérée comme une planète, alors Pluton qui a une masse moins importante que celle d’Eris ne l’est pas non plus.

Eris et Pluton sont en fait des représentants des « planètes naines ».

Références

Documents relatifs

Question : Lors d’un tir au but au hockey à ras la glace, la trajectoire de la rondelle correspond à quel mouvement et un lancer au panier avec un ballon de basket-ball correspond

Définition du rayon de giration : Dans une direction déterminée, le rayon de giration d'un corps est la distance de l'axe d'inertie à un point fictif de masse égale à la masse

L’effet Larsen peut endommager le matériel (micro et haut-parleur) et il peut aussi produire un sifflement très douloureux pour les auditeurs2. L’effet larsen est parfois recherché

Avec une semelle de ski hydrophobe, les gouttes d’eau sous la semelle sont quasiment sphériques (doc .3 schéma 2.) alors qu’elles sont davantage aplaties avec une semelle non

a) En utilisant les estimations ponctuelles précédentes, donner un intervalle de confiance de m au seuil de confiance de 95 %. On peut seulement affirmer que dans 95 % des cas, m

- Le mélange avec de l'eau salée permet de réaliser une extraction liquide-liquide, c’est-à-dire de séparer l’ester du milieu réactionnel car celui-ci est peu soluble

L’énergie mécanique n’est pas conservée : elle diminue au cours du mouvement car une partie de l’énergie mécanique est transformée en chaleur.. Étude de la chute de

Le paramètre, non pris en compte dans ce problème, qui peut expliquer cette différence est la force de frottement de l’air sur la balle.Remarque hors programme de terminale : Au