• Aucun résultat trouvé

Use of pipe flow characteristics in checking fluid flowmeters

N/A
N/A
Protected

Academic year: 2021

Partager "Use of pipe flow characteristics in checking fluid flowmeters"

Copied!
31
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building Research), 1961-02-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=ffb0e2fb-d315-4c02-a036-ba2c6b77f098 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ffb0e2fb-d315-4c02-a036-ba2c6b77f098

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338324

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Use of pipe flow characteristics in checking fluid flowmeters Racine, J. G.; Sasaki, J. R.

(2)

NATIONAL RESEARCH COUNCIL CANADA

D I V I S I O N O F B U I L D I N G RFrSEARCH

T H E U S E O F PIPE PLOW C H A R A C T E R I S T I C S II? CHECKING FLUID FLOWiIETERS

by J . G. R a c i n e and J. R. S a s a k i I n t e r n a l R e p o r t N o . 217 o f t h e D i v i s i o n o f B u i l d i n g R e s e a r c h OTTAWA February 1961

(3)

PREFACE

The a c c u r a t e c a l i b r a t i o n of f l u i d metering devices poses many problems, y e t t h e r e a r e many kinds of l a b o r a t o r y s t u d i e s which depend on t h e a b i l i t y t o measure f l u i d flow a c c u r a t e l y . The Division has encountered such a requirement r e c e n t l y i n t h e c a l i b r a t i o n of simple p l a t e o r i f i c e meters f o r use

i n t h e measurement of window i n f i l t r a t i o n . Recognizing t h a t t h e establishment of a s u i t a b l e primary s t a n d a r d could be both d i f f i c u l t and time-consuming it was decided t o a c c e p t a s a n i n t e r i m l a b o r a t o r y standard a s e r i e s of commercial flowmeters o f f e r e d w i t h s p e c i a l c a l i b r a t i o n . These were n o t found t o be a c c u r a t e and i n t h e course of checking them

it

was p o s s i b l e t o examine t h e flow c h a r a c t e r i s t i c s of s t e e l pipes w i t h

a view t o u s i n g them a s a c a l i b r a t i o n device. The r e s u l t s obtained a r e now r e p o r t e d .

The f i r s t a u t h o r , M r . Racine, c a r r i s d o u t much of t h e measurement work a s a summer s t u d e n t w i t h t h e Division. M r . Sasaki,a r e s e a r c h o f f i c e r w i t h t h e Building Services S e c t i o n , i s now engaged. i n t h e s t u d y

of window i n f i l t r a t i o n .

Ottawa

(4)

THE USE OF FIFE FLO'JV CHARACTER1STIC:S FLUID

J . G. Racine and J . R. S a s a k i

Five commercially a v a i l a b l e c a l i b r a t e d v a r i a b l e - a r e a flowmeters were purchased by t h e D i v i s i o n of B u i l d i n g Research Lo s e r v e a s a l a b o r a t o r y s t a n d a r d f o r a i r flow measurement. The r o t a m e t e r s were i n t e n d e d f o r use i n t h e c a l i b r a t i o n of sharp-edged o r i f i c e meters. These f lowmeters werc s e l e c t e d t o cover a range of f l o w s and t h e r e was some

o v e r l a p i n range between each p a i r -taken i n o r d e r of r a n g e s . It was -thus p o s s i b l e t o compare t h e r e a d i n g given by one meter a t -the t o p of i t s range w i t h t h a t g i v e n by t h e n e x t l a r g e r rneter o p e r a t i n g n e a r t h e bottom of i t s r a n g e , D i s - c r e p a n c i e s of up t o

5

p e r c e n t were found, b u t it could n o t be determined how much d i s c r e p a n c y coulcl be a t t r i b u t e d t o e a c h meter of t h e p a i r .

The poor correspondence of t h e r e a d i n g s from two s u c c e s s i v e f l o w n e t e r s was a t t r i b u t e d t o two p o s s i b l e s o u r c e s :

a t h a t t h e a c c u r a c y of t h e purchased r o t a m e t e r s was no-t +1 p e r

ten-t,

a s g$arantced by t h e manufacturer; o r

b ) t h e d e n s i t y c o r r e c t i o n s a p p l i e d t o t h e metered f l o w were i n c o r r e c t ,

Subsequent t e s t s showed t h e d e n s i t y c o r r e c t i o n s t o be v a l i d and t h e c o n c l u s i o n was, t h e r e f o r e , t h a t -the r o t a m e t e r s d i d n o t a c h i e v e a n a c c u r a c y of

-

+1 p e r c e n t ,

The ob jec-Live i n d e t e r m i n i n g t h e f r i c - t i o n f a c t o r Reynolds' number c h a r a c t e r i s t i c of t h e t h r e e s t e e l p i p e s u s i n g t h e r o t a m e t e r s was t h r e e f o l d . The f i r s t was t o check t h e

d i s c r e p a n c i e s between t h e i n d i v i d u a l r o t a m e t e r s by o b t a i n i n g t h e c h a r a c t e r i s t i c f o r a p a r t i c u l a r pipe o v e r a range of Reynolds1 number common t o two meters w i t h a n o v e r l a p p i n g flow r a n g e , and comparing t h e f r i c t i o n f a c t o r v a l u e s o b t a i n e d w i t h t h e d i f f e r e n t m e t e r s , The second was t o compare t h e pipe c h a r a c - t e r i s t i c s o b t a i n e d w i t h t h e r o t a m e t e r s w i t h published pipe c h a r a c t e r i s t i c s such a s t h o s e p r e s e n t e d by Moody(2). This would g i v e some i d e a of t h e r e l a t i v e a c c u r a c y

of t h e whole s e t of r o t a m e t e r s i n a d d i t i o n t o t h e r e g i o n s of o v e r l a p p i n g flow. The t h i r d purpose was t o determine whether t h e f lovr r a t e s o b t a i n e d by a p p l y i n g t h e g e n e r a l l y - a c c e p t e d f r i c t i o n f a c t o r c h a r a c t e r i s t i c f o r smooth pipe t o t h e g a l - vanized i r o n c o n d u i t s a v a i l a b l e were s u f f i c i e n t l y a c c u r a t e f o r c a l i b r a t i o n purposes.

(5)

D e s c r i p t i o n of t h e Apparatus

The a p p a r a t u s f o r %he t e s t s was a r r a n g e d a s shown i n Fig. 1. A i r flow was o b t a i n e d from t h e l a b o r a t o r y -

compressed a i r supply main and was reduced from 100 p s i i n t h e main t o between 30 and 80 p s i a t t h e i n l e t s i d e of t h e t h r o t t l i n g v a l v e s . Immediately ahead of t h e p r e s s u r e -

r e d u c i n g v a l v e t h e a i r passed through a Logan a r i d i f i e r which e l i m i n a t e d any d r o p l e t s of w a t e r o r o i l , a s w e l l a s p a r t i c l e s of pipe s c a l e o r r u s t e n t r a i n e d i n t h e compressed a i r . The moisture c o n t e n t of t h e a i r which passed through t h e t e s 3 c o n d u i t was measured u s i n g a Burton clew p o i n t a p p a r a t u s . The q u a n t i t y of a i r f l o w i n g through t h e sys-tern was c o n t r o l l e d by t h e t h r o t t l i n g v a l v e s on t h e low-pressure s i d e of t h e p r e s s u r e - r e d.uc i n g valve

.

Prom t h e f l o w c o n t r o l p a n e l t h e a i r passed through a 2 0 - f t l e n g t h of l $ - i n . galvanized i r o n pipe i n t o a l k - i n . h e a d e r pipe and thence through any one of t h e t h r e e 4 0 - f t r u n s of t e s t c o n d u i t of g a l v a n i z e d i r o n . The t e s t c o n d u i t s were t h o s e used i n a p r e v i o u s s t u d y , d e s c r i b e d i n DAR I n t e r n a l Report No.

93 ( 3 ) . From t h e c o n d u i t t h e a i r passed t h r o u g h

a r o t a m e t e r t o atmosphere.

S i x s t a t i c p r e s s u r e h o l e s 1/'16 i n . i n d i a m e t e r had been d r i l l e d a t 60' i n t e r v a l s around t h e condui-t a p p r o x i m a t e l y

4 i n . from one end of each 1 0 - f t s e c t i o n . These h o l e s were covered by b r a s s piezometer r i n g s , s o l d e r e d t o t h e o u t s i d e of t h e c o n d u i t t o make a n a i r t i g h t s e a l .

The i n s i d e of t h e c o n d u i t had been reamed f o r approximately 6 i n . a t t h e end where t h e piezometer r i n g was f i t t e d and 2 i n . a t t h e o t h e r end. This reaming ensured t h a t t h e i n t e r n a l a r e a of t h e f l o w passage was t h e same a t each p r e s s u r e t a p p i n g and t h a t t h e i n s i d e d i a m e t e r of t h e c o n d u i t s were t h e same a t t h e j o i n t s . The d i f f e r e n t i a l p r e s s u r e was measured w i t h a 250 mrn Aetz w a t e r manometer and when n e c e s s a r y w i t h a 100-in. v e r t i c a l Meriam manometer u s i n g coloured w a t e r . Gauge p r e s s u r e s throug!~ t h e system were measured u s i n g a n o t h e r 100-in. v e r t i c a l Meriam manometer and when n e c e s s a r y w i t h a Bourdon gauge. A p r e s s u r e - s w i t c h i n g p a n e l was used t o connect t h e manometers t o any of t h e twelve piezorneter r i n g s . With t h i s arrangement, t h e Betz o r Neriam manometers could r e a d i l y be made t o read t h e d i f f e r e n t i a l p r e s s u r e between any two piezometer r i n g s .

Before assembly of t h e p i p i n g , t h e i n t e r n a l c r o s s - sec-bional a r e a of each l e n g t h of c o n d u i t had been determined. The pipe d i a m e t e r s a r e given i n Table 1.

(6)

- 3 -

TABLE 1 T e s t Conduit S i z e s

The t e m p e r a t u r e s i n s i d e t h e p i p e were measured w i t h thermocouples r e a d on a n e l e c t r o n i c t e m p e r a t u r e i n d i c a t o r . Thermocouples were p l a c e d i n t h e h e a d e r p i p e , a t t h e e n d s o f e a c h p i p e , and a t t h e o u t l e t o f each r o t a m e t e r . Conduit Number 3/4 i n .

I

I1 I11 IV 1 i n . I I1 I11 IV 1 1/4 i n . I I1 111: IV

The a i r f l o w s t h r o u g h t h e p i p e were measured u s i n g f o u r r o t a m e t e r s . The f l o w r a n g e s a r e shown i n Table 2.

~ i a m e t e r ( 3 ) (ft) 6.908

x

6.869

x

101; 6.828 x 6.319

x

1 0 8.744

x

101; 8 . 6 7 1 x 8.712 x 8.728

x

1 0 11.575

x

101; 11.413 x 11.578

x

11.586 x 1 0 I TABLE 2

Rotame t e r Blow Ranges M e t e r 1 2

3

4 1 Flovr Range(cfm) 0.29

-

1 . 6 0 1.15

-

6 . 3 4.0

-

22.5 18.0

-

98.0

(7)

Theory of Flow througli a E p e w i t h F r i c t i o n

A i r f l o w i n g t h r o u g h a p i p e , i n which f r i c t i o n o c c u r s , can be d e a l t w i t h a s e i t h e r a c o m p r e s s i b l e o r i n c o m p r e s s i b l e f l u i d depending on th.e magnitude o f f l o w , t h e l e n g t h of t h e p i p e , and t h e pipe d i a m e t e r . '.men t h e f l o w i s s m a l l , t h e

p i p e l e n g t h s h o r t , and t h e p i p e d i a m e t e r r e l a t i v e l y l a r g e , t h e p r e s s u r e d r o p and c o n s e q u e n t l y t h e d e n s i t y change i s v e r y s m a l l and i n c o m p r e s s i b l e f l o w t h e o r y can be a p p l i e d . I f , hoviever, t h e f l o w i s l a r g e , t h e p i p e l e n g t h l o n g and t h e d i a m e t e r of t h e p i p e r e l a t i v e l y s m a l l , t h e d e n s i t y change c a n no l o n g e r be i g n o r e d , and t h e f l o w must be c o n s i d e r e d c o m p r e s s i b l e .

Reference No. 1 s t a t e s t h a t i n v e s t i g a t o r s have

found t h e f r i c t i o n f a c t o r , f

,

t o be a p h y s i c a l c h a r a c t e r i s t i c of a p i p e , independent of t h e Mach number and dependent o n l y on t h e Reynolds' number and t h e p i p e roughness, no m a t t e r what t y p e of flow e x i s t s i n t h e p i p e . The problem i s t o o b t a i n a n e x p r e s s i o n f o r f l o w t h a t r e p r e s e n t s t h e flov? c o n d i t i o n s a c t u a l l y e x i s t i n g i n t h e p i p e . A c h o i c e of t h r e e e x p r e s s i o n s p r e s e n t e d -themselves; t h e i n c o m p r e s s i b l e e q u a t i o n and t h e i s o t h e r m a l and a d i a b a t i c e q u a t i o n s f o r compressible flow. T h e i r developments a r e shown i n

Appendix A . C o n s i d e r i n g t h e maximum flow and t n e minimum p i p e d i a m e t e r t o be encountered i n t h e s t u d y it was decided t h a t t h e p r e s s u r e r a t i o , '2/-pl, would be s u f f i c i e n t l y low t o n e c e s s i t a t e t h e u s e of t h e c o m p r e s s i b l e f l o w e q u a t i o n . Reference No. 1 s t a t e s f u r t h e r , t h a t o n l y i n v e r y l o n g p i p e s w i t h a l a r g e t e m p e r a t u r e d i f f e r e n c e between t h e i n s i d e and o u t s i d e of t h e p i p e w i l l i s o t h e r m a l f l o w c o n d i t i o n s be approached. I n s h o r t p i p e s where t h e g a s t e m p e r a t u r e i s n e a r -the room t e m p e r a t u r e , a d i a b a - t i c c:ond.itions a r e more n e a r l y approached. The c o n d i t i o n s d u r i n g t h e t e s t s on t h e p i p e viere s u c h t h a t t n e a c t u a l t e s t c o n d i t i o n s p r o b a b l y approached a d i a b a t i c more c l o s e l y t h a n iso-iiherrnal, A s a n p l e c a l c u l a t i o n of t h e f r i c t i o n f a c t o r i s shovm i n Appendix

A

u s i n g a l l t h r e e e x p r e s s i o n e . It was fouiid t h a t t h e r e s u l t s o b t a i n e d w i t h t h e i s o t h e r m a l e x p r e s s i o n variecl v e r y l i - t ; t l e from t h a t o b t a i n e d n i t h t h e a d i a b a t i c e x p r e s s i o n , Theref o r e , a l t h o u g h r e a l i z i n g t h a t t h e t e s t c o n d i t i o n s more c l o s e l y approached a d i a b a t i c , t h e i s o t h e r m a l c o m p r e s s i b l e flow e x p r e s s i o n was used t o d e - l - e r m i ~ e t h e f r i c t i o n f a c t o r from t h e t e s t r e s u l t s f o r i t s s i m p l i c i t y . The i s o t h e r m a l c o m p r e s s i b l e f l o w e x p r e s s i o n f o r f r i c t i o n f a c t o r i s

(8)

The c o r - r e s p o n d i n g p i p e Reynolc?st number i s

The above symbols a r e d e f i n e d i n i'A~penc?ix !Z.

T e s t Procedure

The ro-l-arneter was c o n n e c t e d t o t h e p a r t i c u l a r p i p e t o be t e s t e d . The a i r from t h e l a b o r a t o r y s u p p l y was t u r n e d on and governed by t h e c o n t r o l v a l v e u n t i l t h e a p p r o p l - i a t e f l o w was i n d i c a t e d . on t h e r o t a m e t e r . F o r t h e g i v e n f l o w , t h e p r e s s u r e d r o p a c r o s s o n e , two o r t h r e e l e n g t h s of t h e c o n d u i t bei-ng t e s t e d was measured u s i n g t h e B e t z m a ~ o m e t e r f o r . t h e s m a l l v a l u e s , and t h e 1 0 0 - i n . Tderiam manometer f o r t h e l a r g e r v a l u e s . ;'hen t h e p r e s s u r e d r o p was small., i t tvas measureci o v e r t h e l o n g e s t a v a i l a b l e l e n g t h , i . e . t h r e e 1 0 - f t s e c t i o n s t o g e t h e r . The gauge p r e s s u r e a t t h e p i p e i n l e t was measured w i t h t h e 1 0 0 - i n . manometer and w i t h t h e nourdon gauge a t t h e l a r g e r pressures, and t h e p i p e i n l e t and o u t l e t and. r o t a m e t e r o u t l e t t e m p e r a t u r e s were measured w i t h thern!ocouples. The above read.ings were made a t e a c h f l o v ~ r e a d i n g .

The b a r o m e t r i c p r e s s u r e , room t e m p e r a t u r e and t h e l i n e a i r de-m-point t e m p e r a t u r e were measured a t t h e s t a r t and f i n i s h of each t e s t . Four t e s t s were made u s i n g m e t e r 1 and t h r e e tes-t-s each were made with m e t e r s 2 ,

3

and 4 on t h e

3/4 i n . p i p e . Three t e s t s e a c h were made w i t h m e t e r s 2 , 3 and 4 on t h e 1 i n . p i y e , and t h r e e t e s t s e a c h were made w i t h

m e t e r s 2 ,

3

and 4 on t h e 1& i n . p i p e . Data process in^

The d a t a p r o c e s s i n g was performed by t h e G-15 Dendix computer f o r rvhich a program was w r i t t e n . The program

computed v a l u e s of f r i c L i o n f a c t o r and t h e c o r r e s p o n d i n g

Eieynolds' numbers. 11 p l o t t e r s u b r o u t i n e was w r i t t e n i n t o t h e program t o p r o v i d e two forms of o u t p u t : t y p e - o u t i n f i x e d p o i n t n o t a t i o n and punched p a p e r t a p e . The punched p a p e r t a p e r e s u l t was i n p u t t e d t o a IiIosely p l o t t e r which y i e l d e d a p l o t of l o g ( f ) v e r s u s l o g ( R , ) . The p r o c e s s e d r e s u l - t s o f t h e t e s t s a p p e a r i n F i g s . 2 t o 8 , i n c l u s i v e . I n a d d i t i o n , s e v e r a l t e s t p o i n t s were r e - c a l c u l a t e d w i t h t h e v a l u e of Q, m o d i f i e d by

-

+

l p e r c e n t t o

-

+

5

p e r c e n t . The i n a c c u r a c y i n t r o d u c e d int;o t h e f i n a l r e s u l t s due t o i n s t r u m e n t e r r o r s i s o u t l i n e d i n b-ppendix B.

(9)

Discussion of R e s u l t s

I n t h e subsequent d i s c u s s i o n , a l l d i s c r e p a n c i e s i n

f

a r e expressed a s percentage d i f f e r e n c e s i n flow.

I. Pi-oe F r i c t i o n Fac-tor C h a r a c t e r i s t i c

( a ) 3/4 i n . @ Conduit ( P i g s . 2 and 3 )

The f i g u r e s show v e r y poor c o r r e l a t i o n between t h e c h a r a c t e r i s t i c s a s determined by d i f f e r e n t meters. The poor c o r r e l a t i o n between t h e c h a r a c t e r i s t i c s was a t t r i b u t e d t o t h e c a l i b r a t i o n of t h e meters. A t R = 2240, t h e d i f f e r e n c e i s e q u i v a l e n t t o a d i f f e r e n c e of

4&

Eer c e n t i n t h e v a l u e s of flow a s measured by meters 1 and 2. A t Re = 12,000, t h e d i f f e r e n c e i n terms of flow i s 2Q pe? c e n t . A t Re = 42,600, t h e d i f f e r e n c e i n terms of flow i s 2 2 p e r c e n t .

Prom Pig. 2 it can be s e e n t h a t i n t h e t u r b u l e n t and t r a n s i t i o n r e g i o n s a d i f f e r e n - c e of 1 p e r c e n t i n Q produces a 1 p e r c e n t i n c r e a s e i n R and a 2 p e r c e n t decrease i n

f

which can be seen qui%e e a s i l y . However, a change i n

l;m

of 1 p e r c e n t i n t h e l a m i n a r r e g i o n can

s c a r c e l y be d i s c e r n e d a s t h e i n c r e a s e i n R and t h e d e c r e a s e i n f follolvs c l o s e l y t h e s l o p e of t h e lamifiar flow l i n e .

I n Pig.

3

published pipe f r i c t i o n f a c t o r s a r e p l o t t e d f o r comparison: curve 2 f a l l s from t h e smooth p i p e c h a r a c t e r i s t i c by 2 t o

5

p e r c e n t of flow, curve

3

by 2 t o

3

p e r c e n t of f l o w , and curve 4 by 1 t o

4

p e r c e n t of flow. If t h e c h a r a c t e r i s t i c of a pipe w i t h roughness 0.0004 i s t a k e n a s t h e mean, curve 2 f a l l s o f f from 0 t o 4

p e r c e n t , curve 3 f a l l s off from 1 t o 0 p e r c e n t and curve

4

f a l l s o f f by 4 p e r c e n t . T h e r e f o r e , i f t h e published pipe c h a r a c t e r i s t i c s a r e assumed c o r r e c - t , and t h e method of c a l c u l a t i n g

f

and Re a r e assumed c o r r e c t , t h e r e s u l t s show

a t l e a s t 2 of t h e 3 meters a s having e r r o r s i n t h e c a l i b r a t i o n g r e a t e r t h a n 2 p e r c e n t .

( b ) 1 i n . @ Co11d.ui-t ( F i g s . 4 and

5 )

The poor c o r r e l a t i o n between t h e c h a r a c t e r i s t i c s , a s determined by meters 2 ,

3

and

4 ,

was a g a i n e v i d e n t , and i n t h e same manner. The d i f f e r e n c e between c u r v e s 2 and 3 i n c r e a s e d a s m a l l amount and t h e d i f f e r e n c e between c u r v e s 3 and 4 decreased.

I n Pig.

5

it

i s seen t h a t t h e c h a r a c t e r i s t i c f o r a r e l a t i v e roughness of .0004 i s a good approximation f o r curves

3

and

4

which a r e only about +1& and -2 p e r c e n t o f f . However, curve 2 i s o f f by a s much a s 2 t o 4 p e r c e n t .

(10)

( c ) 1$ i n .

jd

Conduit ( F i g s . 6 and

7 )

Very s i m i l a r i n c l ? a r a c t e r i s t i c t o tlie

3/4-

a n d 1 i n . p i p e s , e x c e p t t h a t t h e d i f f e r e n c e between c u r v e 2 a n d

3 i s q u i t e

s m a l l . The p r e s e n c e o f t h e lower p o i n t s on c u r v e 3 i s due t o a n e r r o r of 0.45 p e r c e n t i n t h e d i a m e t e r t h a t w a s u s e d i n t h e c a l c u l a t i o n . F i g u r e

7

compares t h e t e s t r e s u l t s ~ v i t h t h e curve f o r .0004 r e l a t i v e r o u g h n e s s . Curve 4 f a l l s below by 1 p e r c e n t , curve

3

l i e s above by 2 p e r c e n t and curve 2 l i e s above by

3

t o

5

p e r c e n t .

11. F i g u r e 8 shows a l l tlie measured c h a r a c t e r i s t i c s p l o t t e d on a s i n g l e g r a p h . Lkcepl; f o r t h e t r a n s i t i o n and h i g h t u r b u l e n c e r e g i o n s , a l l t h e c u r v e s f a l l v e r y n e a r l y one on t o p o f t h e o t h e r , a n i n d i c a t i o n t h a t a l l t h r e e conciuits t e s t e d h a d s i m i l a r r e l a t i v e r o u g h n e s s . C o n c l u s i o n s I . The p i p e f r i c t i o ~ ? f a c t o r c h a l - a c t e r i s t i c s a s d e t e r m i n e d w i t h t h e f o u r r o t a m e t e r s were a t v a r i a n c e w i t h one a n o t h e r i n t h e o v e r l a p p i n g r a n g e s of f l o w . The c a l i b r a t i o n of m e t e r 2 was lower t h a n t h a t of m e t e r 1 by a s much a s 4; p e r c e n t o f t h e flow v a l u e . The c a l i b r a t i o n o f m e t e r 3 v r a s h i g h e r t h a n t h a t of m e t e r 2 by 23 p e r c e n t o f t h e flow!, and t h s c a l i b r a - t i o n of m e t e r 4 was h i g h e r tlian t h a t o f m e t e r 3 by 2$ p e r c e n t of t h e flovr.

11. The p i p e f r i c t i o n f a c t o r c h a r a c t e r i s t i c s p r e s e n t e d by Moody were t a k e n a s a r e f e r e n c e . Vihen t h e e x p e r i m e n t a l c h a r a c t e r i s t i c s were superimposed, t h e y d i d n o t l i e on any one l i n e of a g i v e n r o u g h n e s s b u t c r o s s e d s e v e r a l . Die r e s u l t s o b t a i n e d f o r t h e 3/4 i n .

jd

p i p e can be t a k e n a s a n example. Curve 3 l a y a l o n g t h e g e n e r a l c h a r a c t e r i s t i c f o r a p i p e w i t h a r e l a t i v e rougllness o f 0.0004. Curve 2 l a y above t h i s l i n e , i n d i c a t i n g t h a t t h e whole c a l i b r a t i o n on m e t e r 2 may be low by u p t o 4 p e r c e n t . Curve 4 l a y below t h e l i n e , a n i n d i c a t i o n t h a t t h e whole c a l i b r a t i o n of m e t e r 4 may be h i g h by 4 p e r c e n t . 111. The s t u d y sllovlrs t h a t t l i e r e i s a d i s t i n c t p o s s i b i l i t y t h a t f o r

R

) GOO0 t h e p u b l i s h e d p i p e f r i c t i o n f a c t o r c h a r a c - t e r i s t i c s !!!an be u s e d a s a c a l i b r a t i n g means, p r o v i d e d t h e g e n e r a l c u r v e s a r e a c c u r a t e a n d t h e p i p e r o u g h n e s s can be c l o s e l y e s t i m a t e d . The f r i c t i o n f a c t o r i s a n i n v e r s e f u n c t i o n of t h e s q u a r e o f t h e f l o w , a n d a n e r r o r of 2 p e r c e n t i n d e t e r m i n i n g t h e f r i c t i o n f a c t o r w i l l r e s u l t

i n

o n l y 1 p e r c e n t e r r o r i n flow. T h e r e f o r e . i f one i s a b l e t o choose a m b l i s h e d p i p e f r i c t i o n f a c t o r c h a r a c t e r i s t i c t o w t h e t r u e c h a r a c t e r i s t i c , by assuming no f l o w v a l u e s a c c u r a t e t o

I

p e r c e n t can b i t h i n 2 p e r c e n t of e x p e r i m e n t a l e r r o r , e o b t a i n e d .

(11)

I n t h e l a m i n a r r e g i o n , t h e r e i s o n l y one c h a r a c t e r i s t i c and t h i s i s i n d e p e n d e n t of r o u g h n e s s . However, t h i s c h a r a c t e r i s t i c must be v e r y a c c u r a t e s i n c e a srnall e r r o r i n

f

i n t r o d u c e s a v e r y l a r g e e r r o r i n t h e d e t e r m i n e d f l o w . Acknowledgements The a u t h o r s w i s h t o e x p r e s s t h e i r t h a n k s t o D. G. Stenhenson f o r h i s a s s i s t a n c e i n t h e s e l e c t i o n of t h e f l o w e q u a % i o n s , a n d t o C . J. S h i r t l i f f e f o r h i s a s s i s t a n c e i n programing t h e t e s t c a l c u l a t i o n s . R e f e r e n c e s 1. I a p p l e , C .

E.

I s o t h e r m a l and a d i a b a t i c f l o w o f c o m p r e s s i b l e f l u i d s . American I n s t i t u t e o f Chemical E n g i n e e r s , T r a n s . , 1943, v. 39, p. 385-432. 2 . Moody, L. F. F r i c t i o n f a c t o r s f o r p i p e f l o w . American S o c i e t y o f Mechanical E n g i n e e r s , Nov. 1944, T r a n s . , v. 66, n.8, p. 671-8, d i s c u s s i o n p. 678-81. 3. Stephenson, D. G. P r e s s u r e l o s s a s s o c i a t e d w i t h a i r f l o w i n e l e c t r i c a l c o n d u i t s . N a t i o n a l Research C o u n c i l , D i v i s i o n o f B u i l d i n g R e s e a r c h , I n t e r n a l R e p o r t No. 9 9 , August 1956, 4 1 p . ,

1 5

P i g s .

(12)

MODIFIED UNION

CONNECTION FLOW CONTROL

PRESSURE

SWITCHING PANEL

13 TO LOW PRESSURE FLOW METER

SlDE OF MANOMETER

14 TO HIGH PRESSURE

SlDE OF MANOMETER LOGAN ARlDlFlER

(13)
(14)
(15)
(16)

L L G L N V :

---- T E S T CHARACTERISTICS

pU6LlSHEU CHAQACTEqlSTlCS

x VARIATIONS IN Q M of t 1,2,3,4,5,%

I

F l G U R L

5

F R I C T I O N FACTOP, vs. REYNOLDS NUMBED

in

C O N V U I T S E C T I O N S C O M P A Q I S O N of T E S T A N 9 PUBLISHLV C U A q A C T L Q I S T l C S

(17)

, I I I I I I I I I

-

s

-

In

*-

*:

-

'?!

-

-

+

t %

-

25

-

d Z 0

-

-

w c4 -4-: C r c r K G

-

u.ldu.ld

-

+ + b - s

U U J d d

Z E Z >

..

-

b

-

z x o x

d

* v e v .

-

" ' 0 0 0

-

A

-

-

-

-

-

-

h

C

-

4

-

-

I I I I I I I I I 0 0 0 0 0 0 0 0 0 C I 2 0 0 m og 9 u\ -4- ccr rJ 0 I-

(*)'

Ol

so;

I r a

(18)
(19)
(20)

STEADY PLOB OF A I R !THROUGH A PIPE T/I!ClI PEICTIOI\T

An e x p l a n a t i o n o f t h e symbols u s e d i n t h e e q u a t i o n s t o follokv m i l l be f o u a d a t t h e end o f Appendix A.

F o r t h e s t e a d y flovr o f a i r t h r o u c h a p i p e , t h e f o l l o w i n g r e l a t i o n s w i l l be assumed t o h o l d : ( i ) C o n t i n u i t y e q u a t i o n c o n s t a n t f o r a c o n s t a n t a r e a p i p e ;

ng

=

>=

( i i ) P e r f e c t g a s l a w The s t e a d y f l o w o f a f l u i d t h r o u g h a p i p e c a n be c o m p l e t e l y d e s c r i b e d b y t h e f o l l o v i i n g e q u a t i o n s : ( a ) t h e e q u a t i o n f o r t h e c o n d i t i o n o f s t a t e ; ( b ) -the dXnergy E q u a t i o n o f f l o w . The G e n e r a l Energy J q u a t i o n i s t h e a l g e b r a i c e x p r e s s i o n o f t h e f i r s t l a w o f t h e n n o d y n a m i c s which s t a t e s t h a t i n a c o n v e r s i o n o f therrflal e n e r g y t o m e c h a n i c a l e n e r g y , t h e amount o f m e c h a n i c a l e n e r g y d e v e l o p e d i s e q u a l t o t h e amount o f t h e r m a l e n e r g y v ~ h i c h d i s a p p e a r s a n d v i c e v e r s a . Ttle e q u a t i o n c a n be e x p r e s s e d a s f o l l o r v s , f o r h o r i z o n t a l f l o w , i n which no work i s done :

J d q

-

J d u = d($+ d

( P N )

Vhen f r i c t i o n i s p r e s e n t i n t h e p i p e , p a r t o f t h e n l e c h a n i c a l e n e r g y d e v e l o p e d i s r e d u c e d b y t h e f r i c t i o n t o h e a t . An e n e r g y e q u a t i o n i n v o l v i n g tile f r i c t i o n can be d e v e l o p e d from t h e dynamic e q u a t i o n . C o n s i d e r a n e l e m e n t o f f l u i d , dm, moving from p o i n t 1 t o p o i n t 2 a l o n g t h e p i p e . A c t i n g on t h e u p s t r e a m f a c e o f t h e e l e m e n t i s a p r e s s u r e ( p ) a n d on t h e downstream f a c e , ( p d p )

.

The v e l o c i t y a t t h e u p s t r e a m f a c e i s V a n d a t t h e dorvnstream f a c e V -t- dV.

(21)

R e s i s t i n g t h e movement of t h e element i s t h e f r i c t i o n s h e a r s t r e s s , T o , where fo =

ff

v2

8 g

If t h e p i p e h a s a d i a m e t e r , do, and t h e element h a s l e n g t h , dL, The dynamic e q u a t i o n s t a t e s t h a t t h e s u m of a l l t h e f o r c e s a c t i n g on t h e e l e m e n t c a u s e s t h e e l e m e n t t o a c c e l e r a t e . A c c e l e r a t i o n i s a = dV

fi

S i n c e t h e f l o w i s s t e a d y , t h e a c c e l e r a t i o n i s a f u n c t i o n o f l e n g t h o n l y . dV

-

dL VdV

- -

- = - d t dL ' d t dL VdV

[P

-

( p d p ) ] do2

-

% .

d .

do. dL = dm.

-

dL which i s

9

,

f v 2

.dL =

-

VdV

P

2gdo i5 T n i s i s t h e energy e q u a t i o n , i n c l u d i n g f r i c t i o n . The e q u a t i o n s f o r i n c o m p r e s s i b l e f l o w and i s o t h e r m a l and a d i a b a t i c c o m p r c s s i b l e f l o w s c a n be developed from t h e e n e r g y e q u a t i o n ( 2 ) by i n c o r p o r z t i n g t h e p a r t i c u l a r c o n d i t i o n s of s t a t e . ( a ) I n c o m p r e s s i b l e Plow The c o n d i t i o n of s t a t e f o r i n c o m p r e s s i b l e f l o w i s

N=

c o n s t a n t and s i n c e = c o n s t a n t , V = c o n s t a n t

2

Xquation ( 2 ) r e d u c e s t o

(22)

Upon i n t e g r a t i o n , t h e e x p r e s s i o n f o r f r i c t i o n f a c t o r i s g i v e n a s where Afm f o r t r u e i n c o m p r e s s i b l e f l o w i s e q u a l t o and

/Lf,

b u t f o r a i r f l o w i s e q u a l t o t h e 1 2 mean.

The correspond i n g p i p e Reynolds number i s

s i n c e d m i s c o n s t a n t , and f u r t h e r assuming t h a t t h e t e m p e r a t u r e from p o i n t 1 t o p o i n t 2 i s n e a r l y c o n s t a n t , A i s c o n s t a n t and t h e r e - f o r e

Re

i s c o n s t a n t a l o n g t h e p i p e l e n g t h . ( b ) I s o t h e r m a l Compressible Plow The condition of s t a t e f o r i s o t h e r m a l f l o w i s dT = 0 The P e r f e c t Gas R e l a t i o n d (p/vj = RdT = 0

-

c o n s t a n t From t h e c o n t i n u i t y e q u a t i o n ,

- -

/Ir E q u a t i o n ( 2 ) , r e - a r r a n g e d , g i v e s I n t e g r a t i o n g i v e s ,

(23)

( c ) A d i a b a t i c C o m p r e s s i b l e Flow The c o n d i t i o n of s t a t e i s dq = 0 and E q u a t i o n (1) becomes 2 ( V ) + J d . u = O d ( p W ) + i& 1 S i n c e Jdu = J c V dT =

~mr

.d ( P M ) The e q u a t i o n of t h e c o n d i t i o n of s t a t e becomes: ( h - 1 ) d V*

-

d ( p n d + k 0 - -2g

( 5 )

The e n e r g y e q u a t i o n i s E q u a t i o n ( 2 ) S o l v i n g E q u a t i o n s

( 5 )

and ( 6 ) s i m u l t a n e o u s l y and o b t a i n i n g a n e x p r e s s i o n f o r

,.

P i n t e r m s of pl and p would. 2 g i v e p r o p e r e x p r e s s i o n f o r

f

~.

However, t h e r e s u l t i n g e q u a t i o n i s d i f f i c u l t t o s o l v e and n o r m a l l y t h e E q u a t i o n s

( 5 )

a n d ( 6 ) a r e e x p r e s s e d s e p a r a t e l y . E q u a t i o n

( 5 )

i n t e g r a t e s t o - )

vL

-

c o n s t a n t P&+

7 - 3 -

v

S i n c e

I

7

4

=

g P M of s t a t e . E q u a t i o n

( 6 )

c a n be r e - w r i t t e n a s

(24)

S u b s t i t u t i n g n i n t o ( 6 a ) and i n t e g r a t i n g , g i v e s t h e r e s u l t i n g energy equation: By s o l v i n g t h e e q u a t i o n s of s t a t e and energy t o g e t h e r f o r a p a r t i c u l a r value of '2/pl, t h e value o f f r i c t i o n f a c t o r i s obtained.

SAbTFLE CALCULATION U S I N G THE THIBE EXPFBSSIOMS

T e s t Condition

-

10 f t of uninsulated. i r o n pipe do = 6.828

x

f t (3/4 i n .

9)

Ba = 29.67 in.M.C. tdp = 17'3' Bc = 29.54 5n.M.C. hl-h2 = 63.6 i n . W.C. = 2.30 p s i P1 = 13.25 p s i g Qm = 97.1 cfm Ti = 541.2OR To = 538.6OR

Tr

= 538.7OR Ta = 536.6OR S o l u t i o n

P m

-

-

1i1:17

-

-378 p

]

= C v le317 538.3 x 29.51 = 0.07220 pcf

(25)

Pa = 2085 psf p 1 = 3993 psf p2 = 3661 psf

fi

= 7.210 c f p ( a ) I n c o m p r e s s i b l e Plow ( b I s o t h e r m a l C o r n ~ r e s s i b l e P l o v ~ ( c ) A d i a b a t i c Compressible Plom

(26)

p2/p1 = 0.9144;

B y i t e r a t i o n

4

z,-

-

1 , 0 8 8 3

,

and

-

Checking t h e I s o t h e r m a l C o n d i t i o n Prom Heat T r a n s f e r C o n s i d e r a t i o n

-

The g e n e r a l e n e r g y e q u a t i o n f o r t h e i s o t h e r m a l c o n d i t i o n i s For i s o t h e r m a l , L - A =

37

-

Pf, 1.0907 from p r e v i o u s example. Thus, f o r a f l o w of 7 - 1 6 lb/min, t h e h e a t f l o w r e q u i r e d t o m a i n t a i n i s o t h e r m a l c o n d i t i o n s i s = 7.16 x 6 0 x 0.21 90 ~ t u / h r . T h e r e f o r e , i s o t h e r n a l c o n d i - t i o n s would have r e q u i r e d a h e a t f l o w from t h e s u r r o u n d i n g s i n t o t h e p i p e . During -the t e s t , t h e room t e m p e r a t u r e was l e s s t h a n t h e t e m p e r a t u r e i n t h e p i p e , making it v i r t u a l l y i m p o s s i b l e f o r h e a t t o f l o w i n , and w i t h t h e s m a l l t e m p e r a t u r e d i f f e r e n . c e e x i s t i n g , t h e p i p e was e f f e c t i v e l y i n s u l a t e d , a p p r o a c h i n g t h e a d i a b a t i c c o n d i t i o n r a t h e r t h a n t h e i s o t h e r m a l .

Symbols Used .- i n Appendix .-

-

A

p=

a i r s p e c i f i c w e i g h t = a i r s p e c i f i c volume

(27)

do = pipe d i a m e t e r ft V = a i r v e l o c i t y f t / s e c \rJ = a i r weight flow lb/rnin

T

= a b s o l u t e t e m p e r a t u r e O R q = h e a t flow Bt-u/lb u = i n t e r n a l energy Btu./lb J = mechanical e q u i v a l e n t of h e a t =

778

f t

l b h t u P = f r i c t i o n energy l o s s = 0

f

= pipe f r i c t i o n f a c t o r

A

= a i r dynamic v i s c o s i t y l b s e c / f t 2 C

I?

k = r a t i o of s p e c i f i c h e a t s = -- = 1.4 f o r a i r

Cv

C~ = s p e c i f i c h e a t a t c o n s t a n t volume = s p e c i f i c h e a t a t c o n s t a n t p r e s s u r e L = l e n g t h of pipe f t d = d i f f e r e n t i a l o f , R = gas c o n t a c t f o r a i r =

53.7

Re = Reynoldsf number P = gauge p r e s s u r e P S ~ E p = a b s o l u t e p r e s s u r e p s f a g = a c c e l e r a t i o n due t o g r a v i t y = 32.2 f t / s e c 2 I n = n a t u r a l logari-thtn o f , a = a c c e l e r a t i o n f t / s e c pv = vapour p r e s s u r e i n . 1iI.C.

d-)

Jo = f r i c t i o n s h e a r s t r e s s Q, = volunle flow cftn

(28)

= dew p o i n t t e m p e r a t u r e o ;$ t d ~ I

M

= hlach number Ti = a b s o l u t e a i r t e m p e r a t u r e a t p i p e i n l e t O R = a b s o l u t e a i r t e m p e r a t u r e Tr a t f l o v m e t e r O R = a b s o l u t e mean a i r ICm t e m p e r a t u r e O R hl-h2 = p r e s s u r e d i f f e r e n c e between p o s i t i o n s 1 and 2 p s i g

p,

= mean a i r s p e c i f i c w e i g h t pcf

Ys

= s t a n d a r d a i r s p e c i f i c w e i g h t = .075 pcf

(29)

APPENDIX B ACCURACY OF THE APPARATUS

A l l t h e measuring a p p a r a t u s showed f l u c t u a t i o n s i n r e a d i n g s , and c e r t a i n i n h e r e n t e r r o r s .

( a ) Rotameters

Readings made on t h e r o t a m e t e r s were g e n e r a l l y s t a b l e . Meter 1 mas r e a d a b l e t o

+

0.001 cfrn, meter 2 t o

+

0.005 cfm, meter

3

t o

+

0.01 cfm, and meter 4 t o

+

0.10 cfm.

-

-

-

The u n c e r t a i n t y i n t h e r e a d i n g s averaged

+

$

p e r c e n t of t h e l o v ~ e s t flow measured by each meter. HoGever, s u f f i c i e n t r e a d i n g s were talcen t o v i r t u a l l y e l i ~ n i n a t e t h i s u n c e r t a i n t y . ( b ) Thermocou>le

-

I n d i c a t o r Combination However, t h e e r r o r when w i g e t h e r o r w h e i n s t a l l e d i n a c a l i b r a t e d

The i n d i c a t o r s c a l e could be r e a d t o

+ O.l°F.

t2.lermocouples themselves were s u s c e p t i b r e t o . r e s o f d i s s i m i l a r d i a m e t e r s were joined t o - In t h e thermocouple junct-ions were improperly

t h e p i p e s . The thermocouples were checked with thermometer and found t o be a c c u r a t e t o

-

+

1°P. ( c ) Manometers and P r e s s u r e Gauge

( i ) Betz.

-

A t t h e l o w f l o w s , t h e r e a d i n g s were v e r y s t a b l e and could be read t o + 0.02 mm VI.C. b u t under t u r b u l e n t f l o w , t h e readings were u n s t a b l e . Small amplitude, high-f requency f l u c t u a t i o n s werc superimposed on a l a r g e a m p l i t u d e , l o w - f requency f l u c . t u a t i o n , ma k i n g t h e r e a d i n g s d i f f i c u l t t o t a k e . The low-frequency f l u c t u a t i o n appeared t o f o l l o w t h e f l u c t u a t i o n i n t h e r o t a m e t e r r e a d i n g .

heref fore,

t h e t ~ ~ o r e a d i n g s were made a s n e a r l y simultaneous a s p o s s i b l e , which l e f t only t h e s m a l l amplitude h i g h -

frequency f h ~ c t u a t i o n : ; a s e r r o r i n r e a d i n g . This e r r o r reached a magnitude of approximately

-

+ 0.7 p e r c e n t .

( i i ) 100 i n . Manometers.

-

These manometers were normally s t a b l e , b u t a t t h e h i g h f l o w s , reached

f h l c t u a t i o n s of n e a r l y + 1 - i n . w a t e r column, o r approached a n u n c e r t a i n t y o f

-

+

1 p e r c e n t i n r e a d i n g .

( i i i ) Bourdon Gauge.

-

The Bourdon gauge r e a d i n g s were g e n e r a l l y s t a b l e and were r e a d a b l e t o

+

1/8 p s i g i n t r o d u c i n c .t maximum u n c e r t a i n t y of

-

+ 1.2 p e r c e n t .

( d ) Dew P o i n t Apparatus

The dew p o i n t temperature was determined t o w i t h i n

-

+ rj°F, bu-b s i n c e i t s e f f e c t on d e n s i t y i s v e r y s m a l l ,

(30)

t h i s e r r o r was c o n s i d e r e d n e g l i g i b l e .

Extraneous l e a k a g e s from t h e a p p a r a t u s were reduced u n t i l t h e y were l e s s t h n n a p p r o x i m a t e l y 1

x

10-3 cfm,

The r e a d i n g s t h a t were made d u r i n g t h e t e s t were a l l s u b j e c t t o s y s t e m a t i c and random e r r o r s .

The measured f l o w was c o n s i d e r e d a s h a v i n g a s y s - t e m a t i c e r r o r , and t h e random e r r o r was assumed n e g l i g i b l e . The p r e s s u r e measurements were c o n s i d e r e d t o be s u b j e c t t o o n l y random e r r o r s .

The random e r r o r s could be c o n s i d e r e d s e l f - e l i m i n a t i n g when a s u f f i c i e n t l y l a r g e number of p o i n t s were talcen, On

t h e o t h e r hand, t h e s y s t e m a t i c e r r o r s would p e r s i s t no m a t t e r how many r e a d i n ~ s were t a k e n .

The f l o w was c o n s i d e r e d a s h a v i n g a s y s t e m a t i c e r r o r of

+

1 p e r c e n t ; t h e t e m p e r a t u r e s , a s h a v i n g a s y s t e m a t i c

e r r o r of

+

0 . 2 p e r c e n t , S i n c e t h e p r e s s u r e measurement e r r o r s weFe c o n s i d e r e d random, even t h o u g h l a r g e , t h e i r

e f f e c t s may be i g n o r e d , provided a s u f f i c i e n t l y l a r g e number of r e a d i n g s were made.

The s p e c i f i c w e i g h t o f t h e a i r , which i s a f u n c t i o n of t e m p e r a t u r e and p r e s s u r e , w i l l have a maximum p o s s i b l e s y s t e m a t i c e r r o r of

-

+ .2 p e r c e n t .

The weight flovt of a i r

By assuming t h e e r r o r

in^

and

-

d a s b e i n g n e g l i g i b l e ,

P1

The e r r o r i n I n

-

i s n e g l e c t e d , and P2

(31)

T h e r e f o r e , when t h e e r r o r s i n t h e p r e s s u r e measure- ment a r e c o n s i d e r e d a s b e i n g o n l y random, t h e maximum p o s s i b l e e r r o r i n Re i s + 1.1 p e r c e n t , and t h e maximum p o s s i b l e e r r o r

*

-

i n

+.

i s

+

2.4 p e r c e n t . However, i f t h e r e were s y s t e m a t i c e r r o r s in t h e p r e s s u r e measurements a s w e l l , t h e maximum p o s s i b l e e r r o r s would be g r e a t e r . I t can be assumed t h a t t h e p r o b a b l e e r r o r w i l l be l e s s t h a n t h e maximum v a l u e s d e t e r m i n e d , t h e d e t e r m i n i n g f a c t o r b e i n g t h e signs of t h e flow and t e m p e r a t u r e e r r o r s .

Figure

FIGURE  I  LAYOUT  OF  APPARATUS

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé "plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ