• Aucun résultat trouvé

Coulomb Blockade in a Quantum Dot

N/A
N/A
Protected

Academic year: 2021

Partager "Coulomb Blockade in a Quantum Dot"

Copied!
2
0
0

Texte intégral

(1)

Chapter 3. Coulomb Blockade in a Quantum Dot

Chapter 3. Coulomb Blockade in a Quantum Dot

Academic and Research Staff

Professor Patrick A. Lee, Dr. Konstantin Matveev Graduate Students

Dmitri Chklovskii

Technical and Support Staff Imadiel Ariel

3.1 Project Description

Sponsor

Joint Services Electronics Program Contract DAAH03-92-C-0001 Grant DAAH04-95-1-0038

this single terminal geometry, the conductance of the quantum dot cannot be measured. However, one can monitor the average charge Q on the dot as a function of gate voltage; Le., one can measure the capacitance of the dot. Such experiments have

b)

Figure 1. (a) Schematic view of a quantum dot con-nected to a bulk 2D electrode. The dot is formed by applying negative voltage to the gates (shaded). Solid line shows the boundary of the 20 electron gas (20EG). Electrostatic conditions in the dot are controlled by the gate voltage Vg. Voltage Va applied to the auxiliary gates controls the transmission coefficient T through the con-striction. (b) Constriction between two 20 regions. Inside the constriction the wave functions have 10 form which can be modeled by a single channel.

2DEG

a)

Several years ago, Professor Kastner's group1 dis-covered that the conductance through a quantum dot exhibits periodic oscillations as a function of gate voltage. These oscillations were interpreted as being due to the Coulomb blockade energy for adding an electron to the quantum dot. Most of the experimental and theoretical work dealt with the condition of strong blockade, where the electron states on the dot is coupled weakly to the states in the leads because the tunneling matrix element is small. However, it can be seen from the data that as the gate voltage is increased and the coupling between the dot and the leads becomes stronger, the sharp Coulomb blockade structures begin to merge and eventually become sinusoidal oscil-lations on top of a smooth background. The ques-tion then arises: what is the condiques-tion under which Coulomb blockade disappears as the coupling to the leads increases? Is there any signature remaining of the discrete quantization of charge as the dot becomes more open to the outside reser-voir? This question was addressed by our research group in the past year.

Instead of tackling the transport problem, a slightly simpler problem was considered. The quantum dot is coupled to the outside reservoir via only a single lead, as shown in figure 1a. Furthermore, the lead is assumed to narrow adiabatically as shown in figure 1b, so that the electron state in the narrow region can be described by a single channel. In

1 M.A. Kastner, Rev. Mod. Phys.64: 849 (1992).

(2)

Chapter 3. Coulomb Blockade in a Quantum Dot

been carried out by Professor Ashoori's group.2The

coupling of the dot to the outside reservoir can be parametrized by the transmission coefficient T of the narrow lead. If T=0, the dot is completely iso-lated, and we expect perfect charge quantization, and Q should increase in steps as shown by the thick solid line in figure 2. If T

=

1, the dot is fully open to the outside reservoir, and we expect no Coulomb blockade effect at all. Therefore, Q should be a simple linear function of the gate voltage, as shown by the thin solid lin~ in figure 2. The question of interest is: what is the behavior of

Q for intermediate T. The results are found to be the following:

1. If the electron is spin polarized, for instance, by an external magnetic field, the result is that for T slightly less than unity, the charge fluctuation can be described by a sinusoidal function. In this case, the Coulomb blockade washes out gradually as the coupling to the lead increases. 2. If the electron spin degeneracy is not lifted, a

rather unexpected result is obtained. For any value of T between 0 and 1, it was found that

Q as a function of gate voltage retains a non-analytic behavior at the point where Coulomb blockade occurs for the truly isolated dot. There is some residual memory of the blockade condition even when the dot is par-tially open to the outside reservoir. This sur-prising finding is related to rather subtle effects connected with the two channel Kondo problem, with the spin degeneracy playing the role of the two channels. In particular, the slope of the curve shown in figure 2, i.e., the capacitance, is predicted to show a logarithmic divergence wheneverQ is a half integer. In conclusion, the capacitance of a quantum dot coupled to the outside world is predicted to exhibit

2 R.C.Ashoori et aI.,Phys. Rev. Lett:68: 3088 (1992).

68 RLE Progress Report Number 137

N

Figure 2. The average charge Q of the dot as a function of dimensionless gate voltage N at different values of transmission coefficient: T=0 (solid line), T<1 (dashed line), 1 - T<1 (dash-dotted line), andT=1(thin line).

quite different behavior depending on the presence or absence of a magnetic field. We are hopeful that in the future, this prediction can be tested by capacitance measurements of the kind carried out by Professor Ashoori's group.

3.2 Publications

Matveev, K.A. "Change Fluctuations Under the Coulomb Blockade Conditions." Physica B 203: 404 (1994).

Matveev, K.A. "Coulomb Blockade at Almost Perfect Transmission." Phys. Rev. B 51: 1743 (1995).

Figure

Figure 2. The average charge Q of the dot as a function of dimensionless gate voltage N at different values of transmission coefficient: T = 0 (solid line), T&lt;1 (dashed line), 1 - T&lt;1 (dash-dotted line), and T = 1 (thin line).

Références

Documents relatifs

In preparing the Brief, the Conseil conducted a review of literature to trace the history of services offered by institutions in the education network, and collected various data

Résultats : Après un suivi médian de 3 ans, 306 (11,6 %) des 2 635 participants sous rosiglitazone ont atteint l’objec- tif primaire comparativement à 686 (26,0 %) des 2 634

Assuming that the coupling to the leads is weak, we have investigated the sequential-tunneling and the cotunneling limit, and have taken into account both the charging energy and

Exprimer le gain en tension de l'étage grille commune v o /v i2 et sa résistance d'entrée R i2 en fonction de g m2 , χ et R ( en considèrera r 02 la résistance de sortie de Mn2

We can now give the typechecking rules for terms. The term c is considered in an environment where the type variable X is defined and the term variable y has type B. Inside c, the

Of course for lower densities than 1/4, other configurations may be possible as long as the number of loops is larger than the number of electrons, but a system with only loops

Le mouvement d’un bras du corps humain est complexe puisqu’ il est constitué d’un assemblage d’éléments en mouvement tridimensionnel. La modélisation de ce bras est

Ensuite, et une fois rentré dans cette zone de saturation, le réseau se dégrade progressivement par un pas plus petit jusqu’au point limite de la saturation, où le débit