• Aucun résultat trouvé

Université de Grenoble

N/A
N/A
Protected

Academic year: 2022

Partager "Université de Grenoble"

Copied!
68
0
0

Texte intégral

(1)

PhD candidate: Davide Ceresetti

Director: Jean-Dominique CREUTIN Co-director: Gilles MOLINIÉ

Space-time characterization of heavy rainfall events:

Space-time characterization of heavy rainfall events:

Application to the Cévennes-Vivarais region

Application to the Cévennes-Vivarais region

(2)

Université de Grenoble

!

Introduction Introduction

!

Methodological development Methodological development

!

Application: Severity Diagrams Application: Severity Diagrams

!

Conclusions Conclusions

OUTLINE OF THE PRESENTATION OUTLINE OF THE PRESENTATION

!"#$

(3)

INTRODUCTION

INTRODUCTION

(4)

!

Context:

Extreme rainfall in a Mediterranean Mountainous Region

1958-1994:

Daily amount > 190 mm Total: 144 events

Jacq (1994)

Warm humid air from Mediterranean Sea + Orography = Storms

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$"#$

General overview General overview

(5)

General overview General overview

Cévennes-Vivarais: region prone to catastrophic fl ash-fl oods

"#$!%&'(&)*&+!,--,!./001

Social and economic impact (human lives, damages,...)

Social and economic impact (human lives, damages,...)

20+)3/!40516(6057

Specifi c discharge:

5-10 m

3

s

1

km

2

89--!:;

="#$

(6)

General overview General overview

"#$!%&'(&)*&+!,--,!./001

How can we measure the magnitude of extremes?

How can we measure the magnitude of extremes?

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

="#$

Is it a « hydrological monster »or a regular event?

Is it a « hydrological monster »or a regular event?

(7)

Impact of storms at various durations Impact of storms at various durations

#"#$

;>4?40

Spatial and temporal scales are related

(8)

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

#"#$

;>4=40

Impact of storms at various durations Impact of storms at various durations

Spatial and temporal scales are related

(9)

#"#$

;>4@40

Impact of storms at various durations Impact of storms at various durations

Spatial and temporal scales are related

(10)

<,=>?9@"-#

!4A!

Spatial and temporal scales are related

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

#"#$

;>4!A40

Impact of storms at various durations

Impact of storms at various durations

(11)

Aim of the study Aim of the study

HOW TO ESTIMATE THE MAGNITUDE OF RAINFALL EVENTS?

(c)

19 September 2000

(a)

22–23 September 1993

(b)

7 September 1998

BCBDE 3 F ,

B5/&'4*+(3'-)&4G0H # @I# A

E)'3143(/314(3-&4*/6'04G77H #JI? J?I= !$KI@

.3L46)-&'4(3-&M3114G77H !#! !!A ?!K

.3L40)+(1:4-&'/&8-':4G77"0H !?# A? @@

!"#$%&'"#()')*$*)+,&-../0&.),1 !"#$%&'"#()')*$*)+,&-../0&.),1 !"#$%&'"#()')*$*)+,&-../0&.),1

Storms over Marseille

A"#$

!"#$%&'"#()')*$*)+,&-../0&.),1

(12)

HOW TO ESTIMATE THE MAGNITUDE OF RAINFALL EVENTS?

(c)

19 September 2000

(a)

22–23 September 1993

(b)

7 September 1998

!"#$%&'"#()')*$*)+,&-../0&.),1 !"#$%&'"#()')*$*)+,&-../0&.),1 !"#$%&'"#()')*$*)+,&-../0&.),1

NO DAMAGES NO DAMAGES 60 M€

Classic statistics are unable to detect the more dangerous event

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

A"#$

Aim of the study Aim of the study

(13)

Need of a multi-scale descriptor of storms Need of a multi-scale descriptor of storms

Maximum rainfall intensity

:65 :3B

Integration Smoothing Trivial scale pattern

;+(3'-)&N4!@K47-&

O(/3N4!AK4P7?

%&'/&8-':>4?#47740Q!

R"#$

(14)

Proposition: transform max intensity into FREQUENCY Proposition: transform max intensity into FREQUENCY

SEVERITY DIAGRAMS: Event magnitude at all scales SEVERITY DIAGRAMS: Event magnitude at all scales

;+(3'-)&N4!@K47-&

O(/3N4!AK4P7?

%&'/&8-':>4?#47740Q!

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

@"#$

(15)

S S everity diagrams: a storm comparison tool everity diagrams: a storm comparison tool

(c)

19 September 2000

(a)

22–23 September 1993

(b)

7 September 1998

Weak event Local event Heavy and extended event DS4;ODTBU V%.%EB;4;ODTBU DANGER DANGER

Ramos et al., 2005

J"#$

(16)

Improvements proposed in the thesis Improvements proposed in the thesis

BEFORE AFTER

Size of the region 250 km 2 32000 km 2 Involved events Urban fl oods Flash-fl oods

Regional model Point rainfall extremes Spatial rainfall extremes

EMPIRICAL SCALE-INVARIANT MODEL

SPACE-TIME MODEL EMPIRICAL

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

!K"#$

(17)

<W5/&&/8QC-53(3-8

X:*()Q.W'W)()1)2-,314SF8/(53')(:

O(/3N4$?KKK4P7

?

A larger region A larger region

.3(8/-11/43(/3N4?#K4P7

?

Take into account Take into account spatial heterogeneity spatial heterogeneity

!!"#$

Improvements proposed in the thesis

Improvements proposed in the thesis

(18)

Mediterranean Sea Rhône River Cévennes Massif

Geographical context Geographical context

Cévennes-Vivarais région

Size 160 x 200 km

2

Elevation 0 – 1950 m

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

!?"#$

(19)

Geographical context Geographical context

Cévennes-Vivarais région

The region gathers fl at lands , a SE oriented foothill , a mountain ridge and a plateau .

!

!

?

?

$

$

=

=

= $ ? !

C

CD C

CD

!?"#$

(20)

Climatic features: average annual rainfall (mm) Climatic features: average annual rainfall (mm)

Mountain ridge:

Over 2000 mm / year

Mediterranean sea shore:

less than 1000 mm / year

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

!$"#$

(21)

Measurement network Measurement network

OHM-CV:

OHM-CV: one of the Europe densest rain gauge networks (1/50 km

2

) Cévennes- Vivarais Hydro-Meteorological Observatory Radar ARAMIS network Rain gauge network

Hourly (150 gauges, 1993-2008) Daily (225 gages, 1958-2000)

!="#$

(22)

Université de Grenoble PART II PART II

METHODOLOGICAL METHODOLOGICAL

DEVELOPMENT

DEVELOPMENT

(23)

ACCURATE MODELING OF EXTREMES ACCURATE MODELING OF EXTREMES

TOYTB;49<OVB9N41)&24(/,)(*84353-13F1/

For a reliable magnitude estimation For a reliable magnitude estimation

% ZG%[-H

EXTRAPOLATION

\03'4-84'0/4732&-'+*/

4)M4'0-84)F8/(53'-)&]

!A"#$

(24)

SERIES RECONSTRUCTION THROUGH SERIES RECONSTRUCTION THROUGH SCALE-INVARIANCE METHODS SCALE-INVARIANCE METHODS

ZG%[-H

%

YDTOYTB;49<OVB9N4&)47/38+(/7/&'843'4'0/4*/8-(/*48,31/

E

;

!

;

$

;

?

\03'4-84'0/4*-8'(-F+'-)&43'4 444444'0/4*/8-(/*48,31/]

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

!R"#$

For a reliable magnitude estimation For a reliable magnitude estimation

(25)

ACCURATE MODELING ACCURATE MODELING OF EXTREMES OF EXTREMES

ROBUST MODELING OF

EXTREMES AT VARIOUS SCALES

TOTB;49<OVB9 YDTOTB;49<OVB9

F GHFI6J

EXTRAPOLATION

SERIES RECONSTRUCTION THROUGH SERIES RECONSTRUCTION THROUGH

SCALE-INVARIANCE METHODS SCALE-INVARIANCE METHODS

GHFK6J

F

;

!

;

$

!@"#$

For a reliable magnitude estimation For a reliable magnitude estimation

(26)

Dealing with ungauged scales: SCALING Dealing with ungauged scales: SCALING

SCALING OF A PROCESS

relation between probability distributions of a process at different scales

%4G77"0H 6G%H

! " " # $%# * # ! " " ! $

44444444444!!=40 44444444444!!?40 44444444444!!!40

=40

?40

!40

ZUS^O^%V%E_4;%9EU%^YE%SD

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

!J"#$

%L3/&!65M3+635L&!0.!'1.7

(27)

Prerequisite: Evaluation of rain gauge uncertainties Prerequisite: Evaluation of rain gauge uncertainties

```4``

44`

E(+/4U3-&M3114G77H SF8/(5/*4

U3-&M311 G77H

?K"#$

(28)

Evaluation of rain gauge uncertainties Evaluation of rain gauge uncertainties

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

?!"#$

Wind effect Neglectable for high intensities

Bottom hole lamination underestimation in case of very high intensities

Tipping-bucket device

Rain collector

(29)

Heavy rainfall Underestimation: 5-10% 5-min rainfall 2-5 % hourly rainfall

?!"#$

Reversal time:

~ 0.2 s in which no water is stored

!

Experimental calibration

!

Numerical Simulation

Evaluation of rain gauge uncertainties

Evaluation of rain gauge uncertainties

(30)

Tails behavior Tails behavior

Identifi cation of the behavior of point-rainfall extremes

```4``

44`

Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%4G77"0H 6G%H

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

??"#$

(31)

Open question: how are the distribution tails of rainfall?

Upper bounded (Weibull)

Exponential (Gumbel)

Hyperbolic (Fréchet)

44

441)24 446G%H

1)24G%H

$4O''(3,'-)&4;)73-&8 Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

?$"#$

(32)

'3P/&4M()74./8'(/a4?KK@

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model One has 3 possibilities:

1) Extract Maxima

2) Peaks over Threshold 3) Work on distributions

N&1OL&!73)'/&!76P&

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

?="#$

(33)

At various duration --> tail behavior of point rainfall series

Ceresetti et al, 2010, WRR

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Rigorous method

!

K-S test for lower bound x

min

!

Estimator for power-law slope

Goldstein et al, 2004, Clauset et al., 2007

L

7-&

Straight line in log-log Power-law Fréchet distribution

ZS\ BUQV

O\

?#"#$

(34)

DUAL BEHAVIOR: Need of a GENERALIZED model for EXTREMES DUAL BEHAVIOR: Need of a GENERALIZED model for EXTREMES

Ceresetti et al, 2010, WRR

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Flat lands Flat lands

Mountainous region Mountainous region

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

?A"#$

Gumbel

Fréchet

(35)

```4``

44`

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%4G77"0H ZG%H

Construction of a scaling model for point rainfall maxima

?R"#$

(36)

Menabde et al, 1999

Veneziano et Furcolo, 2002

%4G77"0H ZG%H

! " " # $%# * # ! " " ! $

44444444444!!Z;b4G!4c//PH 44444444444!!Z;b4G!4*3:H 44444444444!!Z;b4G?40H

Annual Maxima Distribution is scale-invariant in the range 2 h – 1 week

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

?@"#$

(37)

%4G77"0H ZG%H

& " # $ '%# ( & " ! $ '

44444444444!!Z;b4G=40H 44444444444!!Z;b4G?40H 44444444444!!Z;b4G!40H

4441)2 E-7/4G0H

!40 ?40 =40

4441)2

7)7/&'8 4444[%

d

e

b-(8'47)7/&'4Gd>!H 9/,)&

*47)7

/&'4Gd>?H E0-(*

47)7/&'4Gd>$H

Scaling moment linearity in log-log vs scale

! " " # $%# * # ! " " ! $

PROBABILITY DISTRIBUTION STATISTICAL MOMENTS

Gupta et al., 1990

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

?J"#$

(38)

Extreme distribution defi ned through moments

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Moments scaling Extreme distribution scaling

EXY9

ZG%f-H

%

R4;O_9 !4;O_ !4XSYU

B g EU

O ZS

VO E% SD

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$K"#$

(39)

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

IDF: Intensity – Duration – Frequency curves

Q0R!S Q0R!6!

H))TUJ

8U 8!V&&W

IDF: implicit scale-invariance relations for one T R

$!"#$

!K4:(8

!KK4:(8 5

8 3

8--

%;b %

& ' (

)

% * " (

)

$ &

)+"()$

(40)

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

IDF: Intensity – Duration – Frequency + GEV Extremes

Q0R!S Q0R!6!

H))TUJ

8U 8!V&&W

8

IDF + GEV Model for all scales and all T R

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$!"#$

!K4:(8

!KK4:(8 5

8 3

8--

X!GSY!H)3B6)3J

TBC

%;b %

& ' (

)

% * " (

)

$ &

)+"( )$

(41)

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

GEV simple-scaling IDF model

X!GSY!H)3B6)3J

Q0R!S Q0R!6!

H))TUJ

8U 8!V&&W

8

Use of daily series to estimate extreme rainfall down to 1 hour

$!"#$

*

&

%+ ,

&-./

" 0 $, -

&-./

. ) -

&-./

. / " ! ).$0" &

&

-./

$

)

+

.)7/&'848,31-&2

-

&

"

% 1

&-./"

" 0 $.

"

/ " ! ) " .$)/ " ! ).$

"

" &

&

-./

$

)+

.

&

%.

&-./

TBC

%;b %

& ' (

)

% * " (

)

$ &

)+"( )$

(42)

Need of a regional model for IDF relations

Mountainous region

Flat lands

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$?"#$

(43)

GEV simple-scaling IDF model:

Rainfall Tr=100 years ,!U 9!U

8,!U ,>!U

ROBUST:

Obtained using daily data

(> 50 years of data at 225 gages)

.3L-7+7N b13'413&*

.3L-7+7N 7)+&'3-&

(-*2/

Daily data hides information on infra-daily scale Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

$$"#$

Ceresetti et al, 2011, Submitted to WRR

(44)

```4``

44`

Need to model extremes in space Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$="#$

(45)

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%4G77"0H ZG%H

! " " # $%# * # ! " " ! $

44444444444!!Z;b4G=KK4P7

?

H 44444444444!!Z;b4G=K4P7

?

H 44444444444!!Z;b4G!4P7

?

H

RADAR IMAGERY spatial scale-invariance

detected in the range 1-400 km

2

RADAR Few events, not enough data

Solution 1: Statistics on radar data

$#"#$

(46)

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Solution 2: Interpolation of point data

Signifi cant underestimation of maxima in coarse networks

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$A"#$

(47)

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Solution 2: Interpolation of point data

Spatial undersampling Underestimation maxima 20-50%

%6)O/3(&1!.6&/1 F5(&+'0/3(605!0.!'065(!)&37O+&)&5(7

$R"#$

(48)

ARF computed from historical series 1993-2008

ARF: Areal Reduction Factor

8 OUb

O4GP7

?

H

Example: rainfall fi eld

" (- " 2 '( $% " (- " #$ ( $1 2)3 (- " 2 '( $

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

2)3 % " 2

" # 2 !

Solution 3: Semi-empirical model based on gages

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

$@"#$

(49)

Tails behavior

Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Solution 3: Semi-empirical model based on gages

We can build AREAL REDUCTION FACTOR

Dynamic scaling model for ARF

(

2 4 % #5+16

Dynamic scaling ratio

De Michele et al., 2001

$J"#$

(50)

ARF in Cévennes- ARF in Cévennes- Vivarais region Vivarais region

Duration has lower infl uence in mountain

C+&3!HW)

,

J CNY

Flat Lands

?0 =0 @0 !?0 ?=0

Tails behavior Tails behavior Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

=K"#$

C+&3!HW)

,

J CNY

Mountainous region

?0 =0 @0 !?0 ?=0

(51)

Point rainfall model Point rainfall model h Spatial rainfall model Spatial rainfall model

9!U Y/3(!/3517

=!"#$

(52)

Point rainfall model Point rainfall model Spatial rainfall model Spatial rainfall model

Regional model for assessing the magnitude of extremes Regional model for assessing the magnitude of extremes

h

9!U Y/3(!/3517

Severity Diagrams Severity Diagrams

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

=!"#$

(53)

APPLICATION:

APPLICATION:

SEVERITY DIAGRAMS

SEVERITY DIAGRAMS

(54)

Storm comparison

Use of Severity Diagrams Use of Severity Diagrams

Observed storm Virtual storm

(numerical simulation)

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

=$"#$

(55)

From rainfall fi elds to severity diagrams From rainfall fi elds to severity diagrams

O (/ 34 GP 7

?

H

O,,+7+13'-)&4*+(3'-)&4G0H

Multi-step process involving historical series

9/5/(-':4;-32(374G:(8H

Z6)&!HUJ

U3-&423+2/4*3'3

U3*3(4*3'34)(48-7+13'/*47)*/1

=="#$

!

%(0+)!L0)'3+6705

!

:01&/!&M3/O3(605

!

N&3/#(6)&!)056(0+65R

(56)

Severity Diagrams computation Severity Diagrams computation

AREAL REDUCTION FACTOR INTENSITY- DURATION- FREQUENCY

9 Z O E %O V 4U O %D bO V V 9 B C B U %E _

Assign to each spatial rainfall observation Assign to each spatial rainfall observation a frequency value (severity) a frequency value (severity)

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

=#"#$

(57)

Application of severity diagrams Application of severity diagrams

U/86/,'4')4U37)84QQe413(2/(4*)73-&4c-'0

!

4X/'/()2/&/-':4)M4(3-&M3114/L'(/7/4F/035-)(4GM13'413&*8a47)+&'3-&IIH

!

4<)3(8/(4(3-&M3114&/'c)(P

\/4,3&4+8/4)+(4863,/Q'-7/47)*/14')4,)76+'/49BCBU%E_4;%OTUO.9 M)(43&:48')(74),,+((-&24-&4'0/4<W5/&&/8

Applications:

1. Evaluation of meso-scale deterministic simulations (MesoNH) 2. Evaluation of the variability of Ensemble simulations (AROME)

=A"#$

(58)

Evaluation of deterministic simulations performance: 2005, Sep 06 Evaluation of deterministic simulations performance: 2005, Sep 06

Wrong Maximum Location - Rainfall Underestimation – Different space-time scales Wrong Maximum Location - Rainfall Underestimation – Different space-time scales

4&+&7&((6!&(!3/[!,-88[!7O*)6((&1!(0!\CY

]*7&+M&1!+365.3//

:&702^!+365.3//

SF8/(5/*48/5/(-':

9-7+13'/*48/5/(-':

Small scale max ~ 500 yrs 3-4 hours / 0-100 km2

Large scale max ~ 300 yrs 7-10 hours / 0-30 km2

Small scale max ~ 50 yrs 3-6 hours / 0-50 km2

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

(59)

Deterministic simulation performance: 2003, Dec 03 Deterministic simulation performance: 2003, Dec 03

4&+&7&((6!&(!3/[!,-88[

!7O*)6((&1!(0!\3Y

]*7&+M&1!+365.3//

:&702^!+365.3//

SF8/(5/*48/5/(-':

9-7+13'/*48/5/(-':

Maximum Severity: ~500 yrs Time scale: 9-14 h

Spatial scale: 0-200 km2

Maximum Severity: ~500 yrs Time scale: 14-18 h

Spatial scale: 200-500 km2

Severity: an effective multiscale diagnostic

=R"#$

(60)

Evaluation of ensemble simulations variability Evaluation of ensemble simulations variability

Determine the variability of the members

.)*/1N4OUS.B4S6/(3'-)&314.)*/14G.W'W)Qb(3&,/H

Z()F3F-1-8'-,4/&8/7F1/N42()+64)M48-7+13'-)&84)F'3-&/*46/('+(F-&2

F56(63/!40516(6057

_0O513+`!40516(6057

?KK@a4D)5/7F/(4K!49')(7

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

=@"#$

(61)

Application: effect of initial conditions Application: effect of initial conditions

Space-time scales OK, LOW magnitude

S^9BUCB;

9BCBU%E_ ZBUES^9QOUS.B

i! ZBUES^9QOUS.B

i?

ZBUES^9QOUS.B

i$ ZBUES^9QOUS.B

i= ZBUES^9QOUS.B

i#

=J"#$

(62)

Université de Grenoble PART IV PART IV

CONCLUSION AND CONCLUSION AND

PERSPECTIVES

PERSPECTIVES

(63)

Conclusion Conclusion

.O%D4UB9YVE9N

!

4j+3&'-M-,3'-)&4)M4'0/4/(()(4,)77-''/*4F:4(3-&423+2/4*/5-,/8

!

4j+3&'-M-,3'-)&4)M4'0/4+&*/(/8'-73'-)&4*+/4')4863'-314+&*/(83761-&24

!

4O88/887/&'4)M4'0/4'3-14F/035-)(4)M4(3-&M3114/L'(/7/84

!

4U/2-)&31-k3'-)&4)M46)-&'"863'-314(3-&M3114/L'(/7/84G%;bhOUb4,+(5/8H

!

4;/'/,'-)&4)M4'0/4863'-3143&*4'/76)(3148,31/Q-&53(-3&,/4(3&2/8

!

4B8'-73'/4'0/4732&-'+*/4)M40/35:4(3-&M3114/5/&'84-&4'0/4<W5/&&/84(/2-)&

!

4B531+3'-)&4)M46/(M)(73&,/4)M47/'/)()1)2-,3147)*/18

#!"#$

(64)

Perspectives Perspectives

!

4U3-&423+2/4+&,/('3-&'-/8N4*/8-2&4)M434&/c4(3-&423+2/4&/'c)(P4GX:./g46()l/,'H

!

4U/2-)&314%;bhOUb4,+(5/8N48/5/(-':4,03(3,'/(-k3'-)&4)M4M+'+(/4/5/&'8

!

49/5/(-':4*-32(3784)M4/&8/7F1/48-7+13'-)&8N4-76()5/7/&'4)M4/&8/7F1/48-7+13'-)&84

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

#?"#$

(65)

;-88/7-&3'-)&4)M434(-2)()+84M(37/c)(P4-&4c0-,04 6(/,-6-'3'-)&4-848//&438434,)&'-&++74)M48,31/8

#$"#$

<3&4c/43661:4'0-84M(37/c)(P4')4)'0/(453(-3F1/8]

(66)

Université de Grenoble Université de Grenoble Université de Grenoble

EXODm4_SYn

(67)

;-88/7-&3'-)&4)M434(-2)()+84M(37/c)(P4-&4c0-,04

(3-&M3114-848//&438434,)&'-&++74)M48,31/8

(68)

%&'()*+,'-)&

%&'()*+,'-)& ./'0)*)1)2-,314*/5/1)67/&'8./'0)*)1)2-,314*/5/1)67/&'8 9/5/(-':4;-32(3789/5/(-':4;-32(378 <)&,1+8-)&<)&,1+8-)&

;-88/7-&3'-)&4)M434(-2)()+84M(37/c)(P4-&4c0-,04

(3-&M3114-848//&438434,)&'-&++74)M48,31/8

Références

Documents relatifs

Indeed, in section 4, it is shown that with a (sufficiently long) high-resolution data set, the rain support and average rain rate of the time series used in the present study

Pour pouvoir étudier plus de droites et de plans (ou d’autres ensembles de points), on passe à la géométrie affine, celle dont les éléments de base sont des points dans un espace

The regionalization of the rainfall variability (a values, Figure 7), the agreement between the power law model and the tail distribution shape (confi- dence interval, Figure 9) and

In this example, initially, the domains of Boolean terms are in {–; ⊺} and the domains of all the floating-point terms are [−∞; +∞], COLIBRI handles infinite and finite FPNums

(1) (E) n’est pas linéaire (y est au numérateur et au dénominateur) et n’est pas à va- riables séparables (impossible de factoriser le membre de droite en une partie dé- pendant

Une fois que vous avez candidaté à une formation, vous devez aller renseigner les informations dans votre dossier de candidature. Vous devez fournir un dossier

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Then we shall consider the one-step versions in model (1.1) and show that the tail-behavior of the Newton-Raphson iteration is determined mainly by that of the initial estimator,