• Aucun résultat trouvé

Synthesis of and Conformational Studies _on Proline-Containing Peptid.es:

N/A
N/A
Protected

Academic year: 2022

Partager "Synthesis of and Conformational Studies _on Proline-Containing Peptid.es:"

Copied!
219
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

I '.-'

. .

/

..

Synthesis of and Conformational Studies _on Proline-Containing Peptid.es:

"0.:,',<

"" .

I

Jv

[on~Binding ~yLinear Tetl'speptides

.• 0 Peter.Hugo Rebse;B.S~1Hons.)

Atbesis.sub;;;itted tothe

Scb.~1

of Gradua.te Studies infia:rti~fulrillmeot of tbe

requirements for thed~gree

or

Master

or

Science

'-,

.oJOep:lttmen~ofBiochemi~try Memdri}ll University of Newround1:md

I?ecember 1985

''.

Newfoundland

.,

(6)

\

.~.

/.

I

"'~

. Permission' has be-enc;lrantjld L'"autorisation.aflot!!accordl!e 'to the' National Library of II la Biblioth!que natioode 'Canada- to microfilm thi!L-: du Canada de microfilmer

~g~~~: '~fndth;Oft:;~ ~or-

sell :

~:t~~nJ~:8~e8e\X~emp~~~~:~ ~~

/ . . f'Hm • . '

. The' author (copyright ·owner) '·L'aut.eur (titula"ire du droit

!las' reser"ved' o-ther ;.... d·auteur) se "rl!serve .1;'es p'ublication rights,'~rid :autres draits de publication,

neitOe.r the thesis no[' oi la th~se.01 de lonl/Q

extensive ,extracts from , i t , extraits' de celle-'ci ne.

may be printed'..~['otherwise doivent i!tre 1m'primAs ou reproduced Iwithout .his/her'· autrellient reproauits sans son' wr i t t e n perm!5.Sion. au:torisation ·l!crite. .

ISBN 9-315-))627-7

'.l.

(7)

Abstract

The rel~tionshipbetw'teo peptide b3CkbOoc topology arid ion-binding W:L~

investigated through ·proton and c:a.rbon·13~~fR,'CDandInspe<:VoscoPY. '1\

literJ'Lt~r.e~review·

00 calciu'm-binding proteins· Ilnd

pe~tides"in4ica:ted

.thb.l"..D structu';e

eba.r:lC~terize..d

by

two o~erlll.pping

8-turns m:l.Y be,

involv~d.

To lest

t'hi~

hypothesis twopeptides whichco~ldpotel'ltia.llf,r9rrn. thcabovcshucture .were

,y,lh";,,d. >

.~._~~_

•.••••

.The peptide!' N(lt&cPro~AJaAlaNliCH3 lLnd its glycine' analogue - ...

!'l°t.~cProG[y.~tlNHCH3;,,:,ere ch:tcacterizedi~the un.complex&) 51:1.te.by:\11 or the above mentioned teebniques in' a~variely of solvenls.· Proton NMR temper.ature-dependencc studies in DMSO.d(

and Nt! couPJiflg (On5t:1.I~ts,

along.

with CD "and

m.

spedroscopyiDdic:ated"tbn.t botb peptides in solution were mllde up of

a~Ty_pe_(J'='~turojollowed , .

by

~n o~e;inppins-'Py-p~turrr.---earbon.I;-~.--.

. mm,lR aod CDsped~«:,p~jodic'ated that the DAIa-peptideW3S,asexp~ded,' moiest3bl~th3D the Gly-peptide: '

The ,hi'oding of metaliODS

to

the peptides was monitored using CD spectroscopy, Both peptideswe~e,fOuqdto.beio~;~·p~cific.While both·were up"n.ble of binding c:akium ion and in.c3p3bJe of binding sodiuman~lithium toIUlJ'signifieanL exLent, Lhey differed in their ability to bind magnesium. \ While the

N(ttBoc~roO~"aAJ.aNHCH3· p~ptide boun~

mngnesium

~C3kIY a~

n Icyel

compnr.a~leto its binding to the'~ono';alentions, Lh'e glycine nMlogue bound' magnesiurT\ to a. significant extent, . The Gly-peptide a.lso 'requi.red . a lower

c~ncentration

of

c~lcium ion~to

reacb binding

s~tur4tion.' Thi~

WD.Sattributed to the greater

ne~ibi1ty

of glydne a.nd

~ence

..

ib

enhanced ability to

~.~tje

metal

~n,

r "

...

;

(8)

.

~/, .j

/'

.~.

.-\:..-

, I.: '

. j i

The .~~nrorniatioDalchaDge or the peptides.' upon calcium iob .titfa:tioo .Wll.S.·

[allowed by' proton3n~. e3~bon-~3,~; The changesi~chemical shifts or the carbonyl resonances'andtbe amide proton resona:nces indicated that· aUtOUf

peptide carbonyls (OOrdio3ted to the: ca.lciu'm ion res Itiog in a breaking.or.the

jntramolec~lar

hydroge'o boodsat

th.~

uocomplexe specieS: Analyses

or

the CD binding-curves. indic:l.l.ed that atI~w cOIl;«n,tra~ioDs0 Icitim(0.pee1ide _a 2:1 p.

e~tide.:ion

CO":,p.

le~' ~as

torm'ed,

w~ile

a 'jg.ber

c~.

Dceo,ttalions a .1:1

i6~pl~~ was, ....

predominant. The, 2:l. peptide:i.on mpleX~isabletorillall, eight calciu!11 :"c\oordinatio~sites withthe pe e carbOnyls"wliill\th~1:1 complex requires eith'er the perchlorate anion or. water molecule to, ~ , . . .

,

. . .rillthe r.emaining coordination sites.

(9)

l'

iii

'Acknowledgements .-

.

~

Special lhftnks to my supervisor;Protess; V.S. i\nanthanaraynnan; the oth"Cf

memb~rs

of my'

supe~vi.~o.ry ~omQlittee,rirs.

-

Willii~

S'.'Davidsol) nod

,Br~'l.D

Gregory;. ll.o'd alsoto Dr. Sam.ual K.Att~h.~o~urOt"his _~tient·instruct'ion'iii peptide' ',synthesis

and '_,f't~m

-

inleip[etati~D:

-'Their" O:Ssist

~ ~,

..o.nd .

rric~dghip pro~~ded

an ideal

environ~en't '£or'tb~

pursuit ot,agrndu'ate'

ret..

I

, . ' . .,.. ' .. j

I would like .to extend my,ppreciatioD,'t:o Dr. Hooper and QrucC' McDonald· of . the

Atl:Ui.ti~ ~egion. Magn~t'e ~:S0,Dll.ne~.C~n.t're, H~1Wa~~

t:Jova;:Scottn, rOt

ruoo.ing the,mmanalysis and also·to Dr..S~,tr.i,rotpertormining the. Binding . Constant-anal~sis.

. . .

Many thanks to Mr. Lorne Taylor,torhiscritic~lperusal of the, thesis during prqdu~tion.

- - I This rese3reb' was supporledbya grant from the Medictl\ Rcse:l.rch Councilor

Cantlda. ,> •

\.:.

(10)

iv

"I)

Tabie of Contents

1.

[~tr~duetion

,

-U.-Stru~tura)Cbatacteristics~rthe Beta·Turn 1.1.1. DelinitioDs and Nomenclature

1.2.Positional Preterence otArgino Acids in Beta·Turns·

I.~,Peptide Models tor the Beta-Turn 1.3.1.Cyclic "Peptides

; 1.3.2. Linear Peptides 1.4~Functional Role or.Beta~TurDs' ts.Design of Postulated Calcium-Binding Peptides 2. Experimental"

, 2.1. Mnierials, 2.2.-Methods

· 2.2.1. Purity

or

Peptides

2.2.2. Crystallization

or

Peptides 2.2.3. Melting Point 2.2.4. Elemental Analysis

· 2.2.5.Amino Acid Analysis 2.2.6. HPLe'

~;2.7. Jnrrare~SpeetrosfoPY 2.2.8. Circular Dichroism Spectroscopy 2.2.9, Nuclear Magnetic Resonance 2.2.10. Binding Studies byCircular,Dicbroism 2.2.11. !;IindingStudi~by NMR .2'.3.' Peptide Synthesis

2,3.1. IntroduCtion _2.3.~. N(ltBoeProD~aAl8.NHCH3

2.3.2.1. N(ltBoeProONSU .. 2.3.2.2. N(ltBoeProDAJaOH

2.3.2.3. N(ltBoeProDAJaONSU 2.3.2.4. N(ltBoeProDAlaAlaOH 2.3.2.5. NO'tBoeProDAJaAlaNHCH3

· 2.3.3.N(ltBoePro~lyAlaNHCH3

~ 1 2

,

2

"12 12 13 20 26 2' 29- 29 29 30 30 30 31 31 31 32 - 32 3;l 33 34 34 36-

"36 36 31 -31 38 3'

(11)

'J

3. NMR Charaeterb:atlon 3.1. Introduction to NMR 3.2. Catbon-13~m.

3.2.t.lntrodu.ction to CarboQ-13 mm StudieS 3.2:2.Ca~bon.13·

mm

or NQtBocPjoGlyAlaNHCHa

3.2.2.1. Studies UsingDMSO-~6as Solvent 3.2:2..2,.. Studies UsingAcetoDi~rile-d3"asSolvent 3.2.3. 'Carbon-13 NMR

or

NQtBocP.ror;>AJaAlaf'lliCHa

3.2:3.1.

·~.t.ud~es U~~ng DMSO-~6as

Solvent 3.2.3.2.S\~d~es Us~ng.CHCI3

r

Solvent

3.2..3:3.St~dlest!SUlg Acelonrd6~.Solvent 3.2.4. Solvent-Dependenc.e orCar~oDyrRes'on:mcts

3.2.4.1.Intr~duction

.J

3.2.4.2.N:'~CPrOGIYAlll.~CH3 .', 3.2.4.3" N l!30cProDAlaAlaNHCHa

a.a.

Proton

1'l1>o.m \ . I

3.3.1. Introduction to Proton NMR Studies 3.3.2..

Proto~

NMR

~r

NQtBocPrdGliAJaNHCHa

31.2.1. Peak AssIgnments inIOMSO-d

:3

3 2 2 Peak AsSignments iDjCDC13 6 3323 Peak AsSignments10Acetonltflle-da 3':324 Temperature-Depen ence of

N!:!

Protons 333 Proton NMR of NdtBocPrJDAlaAlaNHCH:r

3331Peak Assignments in1DMSO.d6 3332 PeakAsslgnme\~tsin QDCla • 3333 Peak AssIgnmentsIQAcetone-d6 3334 Temperature-Depen ence ofNflProtons 34 Conformational InformatIon Froi Coupling Constanls

341 Introduction

3.4.2. Conformation orNUtBoCP~GJYAlaNHCHa 3.4.3. Conrorm,ation or NatBocPr ,DAlaAlaNHCH;j

-?

Circular Dichroism, Inrrarf!d.and Modf!1 Building 4.1. Circular Dichroism Characterization '

4.1.1: Intrpduction . , 4.1.2.:,t;-IUtBoCProGlyAlaNHCH3 \

::~:;:~::~:i~s~

Data

I

4.1.3.NUtBocProDAlaAlaNHCH31

•• ••

.2

42 43 43

·10

~.,

5,' 0.&

:i.~~

71 72 73· / ' 73 73 75 75 81 80 03 DO DO 103 108 Ill, _~"117 IIi 12.

123 128 128 128."

130 130 13~

137

.\

I

.~.j

",,';dI

(12)

,

\ ;

'i

~U.3.L

Spl.'ctf-aI.Data (\ / /

4.2.

Inrra~;~·;;~;::aIYsis

and Campa,rlsoo "..,'.

--!

. 4.3..

Suml'!iar'~

of Ulll::omplexed

Pep~e

Data and M04el Building 3.3.1.N(JtBocProf)AJa.~aNHCH3

, 4.3.2. NO't8{lcProGlyAlaNHCHa 6. [on-Binding

5:1. Introduction , 5.2.NQtBocP~oDAJoAlaNHCH3

5:~U.Circular Dichroism S dies 5.2.1.1. Stu"diesUsin ater as Solvent 5.2.1.2. Studies Using Acetonitrile as Solvent f .

5.2.2. NMR S t u d i e s ' "

I

5.3. NO'tBocPro91yAJaNHCHa .

5~Circ:ularDichrois~.Studies 5,3.2. NMR Studies 5.... Ion-Speeilicity Studies

\ 5.5. Ion-Sind.ing Constants - \ 5.6.'Conch:lsioiis andModeqauilding

Reterenees

. '\

131' 14•

142 148.

148 152 1••

155

I.'

15.

IS' 162 • 165

I"

I"

li2 li8 181 182 188

-I

(13)

i,.

, !

vji

List of Tables-

Table i-I: ,s.Turn Types:.8s DefiDl1d by Venk3.tach,1lam (1968) Bll,d Lewis dal. (1973)

Table'l-2: <P,'iRnnges or p.Turns asDefi~edby Chandrasek3f3nttal;

(1913). / '

Table 3-1: Carboo-13 NMR Peak,Ass,ignments

or

Na·tBoe~oG1Y~3NHCHIin DMSO.d6 Table 3.:2: Carbon·13 NMR Peak ¥Ssignments of NQIBoeProGlyAJaOH

jb

DMSO·d6

Table 3-3:

Oj~/:rrans R3tios~r~atBoeProGIYAlnNHC1-l3

in DMSO.d

6as Deter \Oed by Carbon·13 NMR Table 3-4: Carbon·13 NMR uk AssignmontS of . NatBocProGly 3NHCHain Acetonilrile-da Table 3-6:.Ci,/Trans"R ~osof NQtBocProGlyAlaNHCHa~n

Ac~lonilrile-3byCarbon-13 NMR • .Table 3-6: Carbon-13" ',mPe3k AssignTl}ents of NQ/BocProOAhOJI

. inDMSO!d6

Table 3-7:

car~o

lt3

mm.

PeakAssignmentsof . . Nat ,cProDAIa.AJ3NHCH~inD~tSO-d6 Table t\;JV CillTr~n8Ratios of N(llBocProOAlaA1:lI\'HCH" in

IJ.;!SQ-d,

by Cad",.-13 NMR Table

a-g

/

:

CarboD-13WtlRPeak Assignments of N<lItBocPruDAhOIl

in CHCI3 - " .

T&bi.:e 3· :

qarbon-13

NMR

Peak Assignme!"ts of

, . NO'tBocProDA13AlaNHCH

3in CHCI

3 •

Tabl 3.11: Carbon-13mmPeak Assignments or ,N<lIlBocPropAlo.AlllNHCH3inAcetone-do Ta Ie 3-12: ProtonmmPeak Assignmenlrs of

.' I NO'tBocProClyAJl!oNHCHa in DMSO-do /rabJe3~13: Protonl'{MRPenk Assignments of

j'

NO'tBoeProGlyAJllNHCHa inCOCI~

I

.,/

4.

·Ii

50 ,')2

5;')

58 59.

6~

" r

.1

'0 11

·83

(14)

\

. '

viii

Table 3-14: frotoo NMRPeak.Assignments of 88

N(llBocProGlyAlaNHCH3 in Acetoni.trile-da

Table 3-16: Te.!!lperature-D!!pendence ofNHProtons of 04

N

4tBocProGlyAJaNHCHa in DMSO-de .

• Table 3-18: Proton NMR PeakAssignments of , 98

NQtBocProDAJaAJaNHCHa in OMSO-de

Table 3-11: Proton NMR Peak Assi&Umcots of . 105 Nat~cPtODAlaA1aNHCH3joCDCla

Table 3-18: . Proton NMR Peak Assignments or" 110

•. N(I'lBocProDAIaAlaNHCHa in.Acetone-:d6

Table 3-Hl: Temperature-Dependence of

N!!

Protons of "115 N~IBocPr?bAlaAJaNHCHi'D' DMSO.de

Table 3-2f?: N4tBocProGlyAlaNHCHa .. Angles Derivedr~om'Nl::! 121"

~'esOD:LDCeCouplingConsta~tsinD~iso.d6 .

Table 3-21:. ~criBocProDAJaA1aNHCH3~AnglesDerive~fromJ\,!:!.124 Resona\Dce CouplingCoos~aD~sinDMSO-.de

"Table 3-22: NO"IBocProDAlaAJaNHCHa</JAngles Derived froml\1:! J26 Resonance Coupling Constants in CDCI3'

Table 4-01: Maxima and Minima or~TurnCD" Spectral CI:lSses as' 131

DeCined by Woody (IQ74). •

Table4-2: Predicted CD Spectrnl Classes (Woody(Hli4))for .lJ-Turn 132 Types as Defined.-by Lewisdat.(1913)' • Ta.ble .4-3: Circul:u Dichroism Spectra. of NClIBocProGlyAbNHCH3 in ,133,

Various Solvents

Table·...: Circul3r~DichroismSpedrl!- ofNCllBocProQAlaA1a~lICH3139

in V:lfio~sSolvl!nts .

Ta:\),le .e-6:

Il!.rrare~

Spectroscopy

~ide

A and Carbonyl Bands of 145

~n~'

(a) NCltBocProGlyAlaNHCH3·and (blNCltBocProDAlaAlaNHCH

3in CHCI 3

TableoC~8: ','1'Angles Used in tbe Construction of CPK 'Models of 151

NCllBocP,ro.I?AJ:LA1aNH

y

"i, .

(15)

ix

List of Figures

. \

Figure 1.1:1 Dibwral Angles Figure 1-2: . Geometry of thej.Turn . Figure 1-:l: Consecutive~Turns .

Figur.e

2:1i

Outline of Syntbesis of NIIJBocProDAloAl:aNIICIlJ - 3!;

Figure 3-1:

C~r,b~n-13

NMR Spectrum ofN°tBocp'roGIYAI;I:-.IIIClI:l .1-1

in OMSO-dc .

Figure 3'-2: E"xpanded C:l.rbon·13 NMR Spectrumcif

" N°tBocProClyAlaNHCH3

i~MSO.d6

.•

-:"}igure

3-3:

Carbon-13 NMR Spectrum of NQlDocProGlyA"NlICIIJ !)I

joAceto"nitrile-d3 -' . - . -

Figure

3-~:

Carhon-13 NMR Sp;etrum of NlItBocProDAlaAI:1NIl(;IIJ .,50 inDMSO.de

. Figure 3-5: Cllrbon-13mmSpedrum of Nt'OtBocProOAI:1AI:JNHCJl3- 6.') inCHC1

3 . ' .

Figure 3-8: C~rbon·13NMR Spettrum ofN°tBOtProOt,\l.:lI\la.N~.IGII3 ,0

I in Acetone-de ' . .

Flg~re

3-1: Protol:!

~Nm

Spectrum of NO'lBocProGIfAlnNHCII3 in j6

DMSQ.da ... . ' •

Figure 3-8: Expll.nd.edf'I!HR~&!9D.ofthe Proton NMR Spectrum of_ 78

N°lBoeProClyAl:lNHCH3 in DMSO-de '

Figure' 3..0: Proton

m-m.

'Spectrum of N°lBoeProGlrAI:lNIICJl3 in 82

CDC13 • ' .

F1sure3-10:' E!Cp.o.nded

N!!

Region of the Proton' NMRSp~~trumof 8·1 N.oIBocProClyAlll.NHCH3 in CDC13

Ftg~r'e3-i'1: Pro~n ~"MRSpectfum of NOfBocProClyAIaNIIC1I3 in 87 A~etonitrile-d3

Figure 3-12: Expanded

N!!

Region of the Proton NMR Spectrum orI00 'NCtjBoeProGlyAlaNHCH; in Acet.o:nitrile-d3 ... . Figure 3--13:" Expanded

.

N!!R~gionof the Proton NMRSpe~trum' of 01

.-

.'

(16)

149 14i 14' 116

lthe

Caldum.Perturb~, NO'I8?cprOGIYAla~CH3

in

Acetonitrile-d6 .

Frgure 3-14'. Temperllture;Depe;ndetreeofNt!Protons of

II!'

Nll'tBocProGlyAlaNHCH3

in

DMSO.d6

'f',~;, Figure 3-16: ProtoD

mm

Spectrum 9f £'lO'tBoeProDAl:1AlaNHCH3iO' gj

.,.~J: I?MSO-dll ' .

FIgnr; 3-16: . Explmd9i

N!!

Regi~~of the ProtoD~MRSpectrum of .100 N/t/Bo~)Sr~DAlaAla['\lHC~ain DMSO.d6

Flzure 3-17: Proton, NMR Spectrum of

N(llB~cProDAIa.AlaNHCH3

in 10-1 CDCI,

Flgure...3-.18: _'Ji:~pandedN!!Region ,ofI:'rot~:lD

mOl

Spectrum 'of 10;

'\::Na.J8o:cProD..tlaAlar"ffiCH3:fn CDCla

F1sure,3-1V: ProtoD NMRSpectrumotNO'tBoeProDAlaAt:l.NlIC.H3 in 109",

~. 'Attt"Woe-d!l'-" .' ,." . '

FlguJ'e'~~20iExpnnded

N!:!

Region of the Proton

mm

Spectrum of

Wt.,

~alB~ro~Al~lI.NH.CH3in Acetone-.d6 Figure 3-21': Tcmperature-Depco(lence o(N!!.ProtoDsor

~oIBocProDAlaA1aNHCH3in.DM$O.d6~

F!&!J.re 3-22:,Rel4tions~ip .Betwee~the N!:!·CH Coupling.Const~nt IIlJ

.and tbe~Dihedral Angle '

Figure':J: 'Circuln~Dichroism .Spectra

ot

NQtBocProGlyAla!'.l-:ICH3 13-l ... ' .. in Various Solvenis .

Figure ,....2: Circul:n pichr?is" Spectra or N°tBocProDA1D.Aint'litlCH3 138

in Various Sol'{ents' (, .

Figure~-3: lnlrared~pectrumAmideA Band

pr.

(a)N°lBocPrt;K;lYAla~CH3 ~nd lh) N°lBocProDAla.A!aNHCH;j in. CHCI.3 Figure ..~..: lnriared Sp'llctrum Carbon}'l Reg-ion or

(a) N°lBocProGlyAhNHCH3.and (h)N°lBocProDAJaAlaNHCH3 in CHCI3 .Flgur'.e".-6: SchematicD'i~gramorUncomple~ed

N°tBocProDAlaAJaNHCH3 . • '

Flg':lr'e ....8: CP.K Model

or

Uncomplexed N'"amocProDAliAlaNliCH3 150 , Figure 6-1: Circular Dicbroism Sp!!drl1 o:r N°lBoeProDAJaAlaNHCHi...157

at Varibus'Calcium Chloride to Peptide Rll.tios in. Water and in the Pre!ence pr8MGuHCI and 8M Urea

.:: ')'lgure~2: (81;~V8. ICa\l;II(~eptidelor N°l60cProDAJaAlaNHCH3'150 ioWater

·.~

(17)

xi )

161

185 Iii'

183 18·1 Figure&-3: Circular Dichroism· Spedr:L of. N°IBocProO..\Ja.,\1:lOCH3 160

With aDd Without Calcium100io Water Figure &-4: qircularDic.hrois~.sp~traof N°tBocProDAbAlaOH,

N°lBoePro0A1:LN'fIC,H3aDd N°tBocProDAlaOH in Water; With and \Vithout Calcium Ion ' • Figure &-&: Circular~ichroismSpectra or "N°IBoeProDAI:u\la:'-:IICH3 16:1

at Various Calcium to Peptide Ratios in ·Acetonitrile Figure '6-6: 161~;51VB,1~~2+IIIPeptide]or N"'IBocProDAlaAlIlNIIC'113 16·1

in Acetonitrile '

. ,Figure &-11 Change iD Cliemical Shirl...:i N!:! Reson:lnm l'81 166 ICiL~+I/IPeptidel Ratio 'of N°tBoeProDAIa.,AIl),NIICII3 in AcettJoe-d

o '

Figure &-8: Change in ChemiC31 Shirt or Carbonyl Rcsona.nce:I va, 16..'1

.JC:i2+I/IP~pti~eJ

Ra.tio or N"'IBoeProDAIa.AlaNIICII3 . in .

Acetoo~de

Figur.,e.&-O:

C?ir~u!ar

iiichroism Spectr:L or N°lOocProCIYAb.to-lICI13 I,D at Various Calcium to Peptide Ratios in Acetonitrile Flg~re6--10:

19l;;'tia,

IC!l~+IIIP.eptidelol N°lB(~cProClyAI31\1)ICII3I,-t

in Ace'tonitrile

.Flgu.r~&:<11: Change io Chemic31' Shift -'ofN!!Resonances V8, Ij3 ICa2+I/IPeptide]R:i.ti~of N°lOocProClyAI:LNIIClla in , Aeetonitrife-d

3 '

. Figure &-12: Change'in Chemical Shirt of Carbonyl ResonancC$va, IH (Ca2+I/I~eptidelRatio or N°lBoeProClyN:lNlICUa in

Acetooilrile-d3 '

') Sigure

~13:

• loo-Specificity or N"'tBoeProG)yAlaAJaNlICI13 Figure &-14: Ion-Specificity of N°lBoeProOAlaAI3N1WH3 ....~

Figure &-1&:

lej;;14'~;,

(Mg:!'!'II.IPeptide) or

t'l°tBocP'oCIY~I:1i'l11C:::H3

180' ioAcetonitrile

Figure &-'18:' Sebem5ticDi3grr.~orK"'IBoerroDAl3AI:~J:mCH3'in 3) Uncomplexed Form aDd bl Calcium-Complex.d Fprm FI&ur~.&-i1: CPK Models

oJ

N°lBocProDAlaA.laNlICII3

in Calcium-Complexed

For~

) .

FII~re

&-18: CPK

~lo~els

of

N°1l3b~ProDAbAIaNHCH3

.

in Calcium-Complexed Form Without Calciu'alon

. .

'..

" )

. . /

,.'

.' :'

(18)

A"

Aib Ala

A,.

Aip Bu CHCl3 CD COC13 'Cyi DAlto' DCC DCU DMSO DPhe EDTA Glt GuNel Hz 110 ip' HPLC 1R' Leu / ' HCB,

"'eOH 010 NlIR HSU . DEt.

Ph, PiT P"

Sa.

lB••

xii

Abbreviations

.e~t~itril' (I-ami ,oisobut1ric acid.

alani • a.paragiDe ..parttc; acid

'::~~;olo~ .

ClrcularDi,ehroialD deuterated' ,chloroform cy.tdne D:-alanine .:

dic1Cloh,:rylcarbodimidl' dlclclohnyluru di•• thylsulphoxide D-phl111lalanlu

.thrlell..dl&lDl!l.et'~tra.c.ticacid . gl,c1ne

gU&nidi:D.ehJdrochlorl~.

hertz·

isoleucine isoproP11

High Performuc,'LiquidChrOllla~hJ. _ _....

Infrar,d . -,

"/<

;::,:~:

..Calcium-Binding

~arvalbUlDin

. \

IIllth&Jl;o'l llorleucill.l

lI'ucllarUaglilti,c.RUOD&IlCI .1l-h,droxy nccinl'mide

OCH~CH3 phtD~in.

pivot,l pro11nl H-llltbylgl,c1u lertiory"'-But0%7carboIl11

(19)

,"'"

TIIF

. - Ttp T7' UV

xiii t.rifl1l.oroeUluol . t.tr-uydrofllran

tryptophan t.YfOI1I1. • • Ultr&'t'1oh(

I.

-

(20)

Chapter 1 Introduction

i\s

3njncr~asi.ngnumber of proteinlhtee--dimeDsio~alstructuresar~ solve~by _

~.ray erys~aJlograpby,

a.

~g ~Or~ell\ti~n

between

runcti~n

"and the'bve'rall IOP~10gy

or

the,proteinmolecule is.beco,\ing~ViOU!l.Thetopolo~isdepeJ1.deD~

ontb~ r~din'gpatternsof tli,em.o[ecul~and can be clasSified in terms or different .t;peS,orslih·strueture.:d'he

sirnpl~t

struct'ur"alarr"sngements'beyond

th'~

cOValeD}

interaction of the primary structure (or amino acid sequence) are t.be so-called second3.ry 'structu;es sucb as the O"helix,".struc~lIreanath~,8-turn. The specific llrrangement orthese structures within a_(unclional domain 01 aprotein (supcrsetondary structure) correbtes very well-with tbe functioul role of tbat domain~For example, the heme bindingdoro~inis characterized by four (t·belices rold~dbi\ck on themselves,

,.

'flie relationship between str\lcture and function (ontinues to mnnifesli~selfat the level of the completely. folded (t~rti3.ri) structure:and .Ihe association of individual protcin subunits in the qunteroary structure (Creighton, 1083).

\

The Hurn is a ;econd:ny strucunl feature pervasive throughou't globular proteins. On-an average;'

abo~t

30 percent' of 'the secondary structure of all globular prot«!ins is made up or tbe ,B-turn.

,.

The .,B-tUrDischaracterized by a '.

(21)

reversal or nearlyt8(}"in tbe direction or. peptidecb.i~ ~ndis stabilized by an intramolecular bydrO&en bo;:d betweeo thec~~nyl(C=O)or residueIi)::Lnd tbe amide IN·H) of~eSidueli+3)IZ~ermanDodIcbetag~.IOH; Cr:Lwford~aI.•

l{li3jSmith and Pease, 1'iJ80). By reversing thedireet~oof the polypeptide cha.in, the ,6-turn provides:L.useful device~h.icheO:lbles the more periodic and repetitive secondary structuresto fold intoth~irfin:llsuperseco~d':1fY:lnd tertilltY

. I

structures (Sitnnda and Thornton,lOSS). AJthough this effect nn bd Il.ehieved by

.

. .

. a· ·random coil-, the llbilit)' ort~e .8-t~r.nto form a hydrogenbond~ncL"lLSII.

-driving force". The~turnhILS~ee.nimplicated as a.site ornucl~lltionin protein

. .

folding (Ptitsyn, 1081). Sinceitsformal derinitionby·Venkata·fh~I.~in IUG8, ::L co?sider~ble amount of errort has beenexp~n.ded ~. delcrmin~thestrl~ctllral characteristics or the various ,6-turn types in bothprol~iosand pcptidl'S. ·In recent Ye3n,.se~erlL~functioDlllr~les.bo.ve been investigated. I wiU-summnrin below the n;levaot datiL00,6-turnsan~rel:lted areaswbic~would formIIuseful b:lSis for l¥

, . .

stu~

described. in this thest's.

1.1. Structural Characteriatk.

or

~he. Beta~Turn 1.1.1.

D~nnitlona .~d

Nomenelature .

I .

The J-turn, like. oth.ersecgJtd3~ystructures, can be'defined by. et or dihedr.i angles th::Ltdescri~ethecoororm~tionor the peptide bn.ckbone. A dihedr31 angle ,is defined as follows: if. system.~rrour atomsA~B-C-Dis projec d ontoIIplllne oorm!llto borfd B.C, the.angle be.tween the projectililO of A-B a. d the projection ofCDis~~tribed as the dihedral '.ngle. The dihedral • gle is.cO~5idered' . positive or oes:ntive ac'cordiogtowhether,wh~~~e.system viewed..~longtlie

(22)

~\

central bond B ... C (or C ... B), the.bon~to the front atom A (or DJisrotated to

. .

the right or to th,e lert. respeetively,·jn order thatit mayeclips~the bondtQt~e

I

UfatomD(OfAl (eReHandbook of Biochemistry and Molecular Biology, .761. Fig...'-I·d.n.., tho dlh.d..1angl. and

1moD;t'~t"

tho O' and 180' positions of both the4'and the0;angles.which correspond, respectively, to the

~ot3.tions

about the'N-Co

an~ ~on~s.

-<rile dihedral anglew

r~rers

to the

rotlltionnhout the peptid,e(N-C)bond which is given a~3.1ueof180-:'(lrap8 conform3tionl.in .derining the various~iurDtypes although slight deviations from planarity do occur (Ramachandrandal.,1,073).

.

'

'. : . -

rile JH,urn was originally classified into three main .:rpes-(l,nand ill) andt~e.ir

~irrorimages (1','0' and IlI'1base~.?n.the 41,'1' .:ngles ort~ecorner residues'li+1) and (i+~l (see Table HI (Venkatachalain, lQ68).VE!nkatachalam's. (IQ68)·

cl3SSiri,cation system was dc.rived rrom theoretica.1 calculations. based on a linked three-peptide unit,(Cfto C: and the ability to rorm a 4 -.: I bydrogen bond. The pepiide bond between residues

(i~l)

and (i+2) or Types I andn

diff~r

by

approximately 180·. The 1J'pe IIIissimilar to the conformation 'of the Type I, . the

rQrme~·

being tbe beginning or a

3

10·belb::. ·The mirror images refered to by the prime (')di~rerTrom their roots~y

s:

sign change. Hence the 41{i+l) or a Type 1:,8-turnis·60· wbile that.or•.Type I' is+60·. A diagram of the P-turq (in the Type I and Type II forms)is· shown in· Figure 1·2

~Iong

with the,

notation9~usei·

for ','"a~glesof the respective amino acid residues.

In' 1073, ChandrllSekarnntl a/.~orrelatedtheqretical stu.dies withex~erimental , data and produced a'range notation (see Table 1·2).

. .

' The experimental data .

(23)

• -.>

'b

'i~" .

C--;;r--N

<!>'!180'

I

H

H

I · .

0

c ~IL i/ ~

C 'l'.(f

l -:

risure1·1: DihedralAbr;les

.

\

(24)

Type

Table 1·11 ~Turn Types as Defined by Veokataehalam (1968) and LewiS dal. (1973)

f'(i+l) ~(i+2)

.,j"'tt-

I -60' -30· ·90· O'

'1' 60' 30' 00· O·

D -50' 120' 80· 0'-

D' 60' ,120' ,80· 0"

m

-60' -30'· ·60' -30·

III' 60· 30' 60,' 30'

rv

exists when two or more or the angles of TypesIthroughill' differby at lellSt 40' ,from any

of

the values listed above.

V · 8 0 · ' 80' ' 80' ·80'

,v· 80'

·80· -80· 80: .

V1 containsa d. proline at position (i+2)

YO a kink in the proteineh~iocteated byf'ti+l)::i:::.180' and 1"'(i+2)1<6O· or1~(i+l)1<60·and~(i+2j:::::1180' . Types

rv

through YO are (rom the expanded definition o( Lewis d

.

.. al.,1973.

or-

(25)

· FIsu"1-2: Gtometry ofthe6-Turo

.. 'i

.~.

" \

\

(26)

/ /

Table1~2: _,IiRa~gesof~TurDs as DeCined byCbaDdras~ka.randol. (1073)

B -(;+1) !J;H -(;H) "'(;+2)

I. I I-'OH-'Or (-.OH-IO), 1-150H70), 10-80·

Ib U (-'0)-(_30)' 80-140· . 20.80' 10-iO·

n. !' 20-80· 10-00· 70-150' -1-'OH-IO) ,

nb U' 30-80' - (-160)-(-70)' . (-SOH-20)' (;70H-IO),

m U (-.0)-1-30)' 70-160' 30-170' (-70,'0'

IV U' 3O-QOe (-160)-(-70)' (-170)-(-30)' (-80,'0'

A,....- Typea.s·nota~by Chandrasekarlm d at

B

=

Correspondinprype as ,derined byVenka.t~chalam

.(

, /

i:l .

(27)

I

"

were based on the crystallographic structures of Iysolyme, chymotrypsi1!, andII.

scri~r:trpeptides, and on the NMR profiles of severnl cyclic peptidl.'s. TIle (ollowing month, in the S3mejournll.l, Le~isel al.(107'3Fprodll"tpdn extensive"ist of·p..W:tls- lXcurring in proteins. They examineJthe crystal

- ~.-,

structure of eight p/~sandidentified'~bend~'as structures )V1\l're11,11' distance between ~he'Cl"'C3rbonsor the ith and (i+3}tQ. fesidul.'S was

'$

i.,t.

Since thederiniti?DS are based upon~stancerather than on thel.'xi~lt'llC·CaLa hydrogen bond, the term "bend" was~sedby these authors rather than "luru", .:xhey diHerel'ltiated the P-bends (r.om

, ,

a-heliees~eqUiting

.

tke a-hC!liclS to h:m four or more consecutiveRi,{i+3)a-carbon distil ces

or <

8". Usingthe :lbo.ve criteria, they identified 135 .8-bends. FrofQ the above data, and the enera minimization calculations on. a number 'of peptides, thE;Y expanded the d-tUrrl notation of Venkatachalam ,(1968) homSL1to eleven (see Table \-1). The dihedml a.ngies of Types I throughill'as originally proposed by Venbtachalam (lg68) were retained. These "bends" were allowed to have one dihedral angle differing fr0ll\(he ",idenl- value by up

to

50'nnd still maintaini~Sdesignation even if there was no inlramoleeular hydrogen-bond'ing. A Type

rv

bend occ,!Jrred if two or more of the dihedral angles AlScd to define Hurn types I through Ill' differed by more than40'from the ideal. . Type V was represe.nt3tiveat"n,C7

co_n~er

or '1"turn (with an i+2 - j

~r

3 -

11

y drogen bond) as oPPO!l!d to thc C10Hurn which .h3;' ani+3- 0I'or 4- 0I hydrogen bond. The Cx notation refers to the number of atolT}s involved in the ring formed by the hydrogen-

"bonded 'reverse lurn. Type V' was n?l observedbtLewis el al. (lO!31 however, tbey stated tbat it could theoretically exist. Type VI

, .

isproduced by aci~proline

(28)

in pOsitionfi+2)and Typ:'vnis. effectivelya -kink" in the proteinehai~. In additio,D to the C 7 and CIO~onrorm-er5mentionedabove, Lewis etal.,(19,3).rt~r...

tothe existence of aC-

s

conformer(2 - 1 hydrogen bond). The existence

~

based on the

lit

results of energy minimization calculations

or

•N-3c~tY.l.N'.methyl,AlnAlaAlnAtaAmide. The majorroo9iderationof the work of Lewiselal.(1973)

~nd

C,hnndr:lSek:lrnoetal.(199)istha:t there

~s a

ra.nge off,.1f' vnlues for tach of thevari~us/l-turn types.

Inuiis thesi5, .the originalf,t/Iangles andhydrogen-bondingrequirement of

~"katachal,m

(1.68) will b,used. The n;'at!<1n'

,r

L,w;, " 01:

i'.'3)

and

Chaptlrasek:uan etal. (U)i3lalong withthe

C~

notationwiil,bereferred 'to on occBSion.

1.2.P~8itionalPreference;or AminoAcidsin Beta·Tt,lrns The ,8-turo, unlike more uniform structures such as a-helices and ,8-sbeels, demonstrates a mar).ed positional preference. of amino acids adding another

~iO~ ~

lb.

m'~"/b"'k" app~"b U~;

in lb, piedlol:,n01 p,,;ein and . p~ptlde secondary structures. _. . ThIS preference was first recogolzed by Venkatachal3m (UI68) wbopoint~doutth~t.becauseof steric requirements the

"Type I p..turn tends top~ererthe'LL' sequence and tbe Typenprefers the

J.D"

sequence. The notation refers to the particul:u amino acidenantio,"?~rsin positi~Ds(1'+1) and (i+2) of the ,8-turn, respectively. This chinl preference woul\

later.~e used to advantage in tb"esynth~sis'of ,8-tur'nm~ders(seesedioa1.31. \-"

Crawtord d",af.(1973), arter a study of 'the crystal

stF"uc~ure

of 11 proteins, observed that aspartic acid seemedtoQe preferred in the first~ition,proline in

(29)

.,..

~htsecond, asparagine in the third,and10tryptophan inl~e rp~rth. They Sl:ll ...u

tbat the limited dnta pool (125 11l(05) W35 Dot enough

.,

rora-ddinitin'~tlltlr ibey also pointed out what appeared l? be a 'v:lfi:ln('e or positional prr(t·rt'nrt· •.

based on p.turn type.

In 191'7, Chouand

Fasma~mpteted

nmue-h

m~re

extensive'stud,· usingthe

ato~jc_

coordinates, as determine.dby

x-ra~ crystallogm~hY,

or29

p~otcins. ,')1

1 di5covered 460

~turns

as described by Lewis dal. (IQ73). The percent

rr/l~IlCY

ofoccurrence or- eachparticular"type is: Type I, 41.8; "'('ype II, 15',2;T)'j"'ut,18.3.

witb the-other types (]. tbrouf;bytl)occurring with much smalrcr .frequents?' Type I is thusseeDto be by fat the mostcommODro1lowedqyType-Ill'3.0,<1then Type n.The rema.ining p.turc. types are re1:l.titely ra.re. AsdidCrawfordd

af.

(1973). Chou and Fnsmnn(l9i1)..Doti~~davaria.tioo in theposi~ion:J.1prererenc"-.

amino acids based 'on .6-turn type, but ..

~ecause

or a.

Iimit~~

dat:J. pool, t h e y ' "

- • . 4

groupedthe~t.urllStogether.~The most common amino a.cids were; prn;itloni, Asn(17%)1 'rs (l1%); As'p (16%); posi.tion(i+J),Pro (33%). Set11-I%),Lys

tJ ..

(13%); posit'n(i+2),As.n(21%), Asp (20%), Gly (20%); lind at positinn fit3), it: •Trp(19%), Gly (11%), Tyr{1~%1· Sterinonsid~Q,tionsare an importnntf~ctor but it appe:J.rs that there is also dn inyerserel~tionsh1pbl!tween hydrophobic'iti llnd turn·forming potential. Chou and Fa;sman ('l07i) al:!lO 'examined the region! ..."

.~4 residul!5 to eaehside.~ tbe.~turDform,iog It:t:rapeplide ""nd still noled positional pre(erenees. It must ber~memberedthat the aboJit: values are weighted

tow~rds

whilt occurs for

t~

most eommon ".turn type, By looking at the data on no individual p..tUrDbnsis certain sl:!,tementsC:J:Obe made. The mosl cor,n'mon

/

(30)

11

li+ 1),(i+2) sequence ort~eP.tufnisProGly. This sequence occurs mosto~tenror Type n rollowed by Type I and t&:oqIbut neverrOtany of the mirror i,:,oges.

This

~s t('l~':-likel)'i,due

totbe

sleri~3.lIy

restrictive

prol~ne.

Glidae witb no side chain could act as either a D or L amino acid and therefore (it the LO

,

.

cQnllg!".atioq J:equitement or the Type ~ ~lUtD !Yenka~achala~, HI68;

Chandrasebran, 1973). Aninteresting pointis'that severalL-nmino.

a~ids

can also .bc)qund at

~ii+2Jh

position or the Typen,8-tura. 'Although these Type' If JJ-luins ",are probably not

i~etl.l, t;e~'

LD requirement is bbviously an

.

' .

. . . .

~ . '.

ovetsimpliric:1tion. . The

to'

·'requirement.I was based on the 'so-called alanine -'peptides' (Ramll.chandran

a~d

Snsisekhamn, W6S).

Theposi~ionllJprderoence~ran -amino acid depends' upon .the neighb9uring resit.!u,es-:- This W.as, demonstrated b)'. Ananthanllrayanantl ql,(lgS"') wbo se:uched the sequences of .H globulnr proteins df known crystal sttucture for the

..

\',

lelrapeplide sequence Z-Pro-Y-X,';bichrL'(es prd!ine as the (i+l)th. resid'uf They compared their results with those of Chou and Fasman (10;;) and noted

. , . ' .r'._ ..

, that there were S?me major difrerences. - . Forexam~le, aro~lltieltydrophobic residues su'ehll.S~ryptophnnand,' pbenylalnnine were found.t.o have a relatively high occurrence nt, position i when proline was in . position {i+l.l, . while su.ch hydrophobic residues are generally Dot'preferred int~isposition in the Chou- F35man (lgi7fanal~.sis, Glycine, although one of the top three in, overall oceurre~.ceat 'position

F+2)

in the analysis of Chou and Fil!!mnn (19~7),'hecomes by rar. the

~ost

predominant residue ·ai thiS

po~i.tion

when

p~oline

isat position

(31)

\ 0 '

12

(i+l). The'eause of maoy of these eHeetsenD be" explnincd.through the results or

: , \

Schimmel and Flot.y (1968) who observed that thepraliDI.' ring restricts the conformational space avnilable toits:immediate N·terminal neigb'bour.(Further e:HI.~inationof~turns'with more tban one residue rL'\cd becomes difficult because of thelimited pool of protein structural data.

1.3. Peptide Models forthe.Beta~Turn

'Tb'e exnmination of~t~rnsillp~oteinshasitslimitations (see section1.2). The _use of peptidemod~lscnn provide Olu'ch more fundamentalinrormntionsince

not

only' do'one look at a

s.i.m~lcr i~olnted

sys(em but thepolen'tinl

dllt~'

pooi can be increasedoY.er

t~at

lLv!-ilaMe'in

'~r''!t~ins.

A synthetic a.pproach also hIlS .the adped advtLDt:'l.ge or the possible addition or g'roups which 'do not norm:l.lly occur in - "proteins. Amino a.tids such as p..alanine, N-melhylglycini! (Sar), . /

Q.am~~·obut~rY·1

(Ai!>.)' nnd 'the -b.enantiomeric 'amino ncids p,rovide

>..~nique st~ric'

restrictions whIch canbe very userul in the study or peptide conformation.

---

1.3.1. Cyclie Peptldes

Cyclic peplides havebe'e~ wid~ly'usedi~thestud~or~turns. These include

oxyt~cin

(Urry an'd Wnlter, 1(71):

i~

aDnlogue' (Pro3,Gly4J-oxyiocin (Bllll:J.rdiJid al., ~g7S) and wholly synthetic peptides (To.rchia. ~tal., 1072; Blo.h:'l. and '\

Budesinsky,'lg73; Kopp'ledal., tg78; Pease and\yn~n,'IUi8; Nemethy'd?{.,' 1981; Maxfieldt!l

at,

19S1). The major advantage of using cyclic peptidesi~also theirm~jor ~is:1dvantage.Cyc1izationrestric~th"conformational "mobilitr or the peptide. Hence l p..turn would' tend to remain in 'a particular definable conliguration. Because or this.' the cyclic peptide is not the best system~orthe

1

0

(32)

13 ~ _ study

:'f

the

re~ative

stabilities of;turns and lh,e effect of

DeigbboUr~

residues

l?n that stability.. Linear peptides are much morecODdu~ivetothis type of study.

1.3.2. Linear Pepttdes

The proline-contnining lin(!8.r peptides have aroused the most1nterest in the study of~tutnsfor,tWOte:LSons. ProlineW3Sfoundtobetb~.mos~abundant residue at position(i+1) of the p.turn in proteins (Cho'u and Fa.sman, lQn, Hli8) (see section 1.2) and through conformational e-nergy calculations (Zimmirman and

Sehi!~aga, ~g71;'

Zimm:rmnnel01.',If77) wns shawn to. be 'Iimited to a )nail number of confor;-ations because of the restricted fotation around the N_C- ttbond

.

in the"pyr;olidine ring (1

~

.GO'} InlOtO,'Boussl1rd

a

,af.investigated as;ries of proline-conta.ining tripeptides.

lF~e P.tIJr~S wer~ '~,iabili~ed

by hydrogen- bonding between the carbonyl of the N-terminal

pr~tecting

group RCO

and~

the C-terminal protecting group NHR where R in both cases was either a methyl, isopropyl or a ter/.butyl group. The use of protecting groups to provide the . ,.. carbonyl and NH required for 'hydrogen ~pnd formation and hence p.turn

stahilization is a theme which occurs again and again with synthetic linear peptide models. ·BousSlud

e!

al.{lOjOji'1-vestigoted Pro-X and X-Pro containing sequences using proton NMR and infured methods. They found thnt the Type II .8-turn

~as

the most

f~;ed

conformation with ProDAIa and ProGly

co~;aining

sequences while ProAla contained semi-openedG,.C

6

and CSC7conformers in

.

,

additionto. the expected Type I ".turn. Aubry.el

al.:

(111i7) also found the RcoAla sequence formsIiTypeI.8-turn in solutibli, however, in crystalth~yfound tbnt

N~tBuProAJaNHipr

prefers -ttle"' Type

JJ·.8-~lira

conformation,. Thisis a

(33)

"

n

strl?Il$-reinind~r that the crystal structure does o9t alwllYs reneet the conformation in solution. 10' this 'instance, they blamed the formntion 'of intermolecuiar hydrogen.bonds in crystllltorthe dirrerence. The X-Pro sequencJs s~em'ed

to.

prefer the mirror im"gc .8-turns asderinedbyVenhtllch:l\l\rn(H)l)8) :l.nd were generallylessstabl~

The cUcct of the X residue00the".tUt~Tormingability of the sequence N·

Il.cetytProGly-X.OH WllS investigated by Brahmllchari dat.(IUS:.!). -They tound,

. . ' I .

using Pf.otonNMR" CDand" lR spectroscopytpatthe X residue affected Ihl!

"relative'stability'oC the~tu'rnin ,the order: Leu>Ala>llc'>G1Y>Phe. 'the tripeptide, N-acetylProGlyLeuOH~~d.be,en previously shown. to benea~ly100%.

Type

iI: .8-~uro

in TFE at -40' C,· using vacuum ultnviolet

CD measllremenl~

(Brahmachariel 0/.,19i9). The peptide N-acetylProClyPbcOH wns shown by X·

ray crystallography to form a Type 0 ,6-turn (Brahmncbari elai.,1081). The formation or th_e, 4 .... 1 hydrogen. bond is very imporll1nt in derining. the

,

contormalion or the ,6-tUrD; The cryslal structure of the' dipeptide NQIBocProClyOH,w~ich.canp.ot form a CIOhydrogen-bonded stru:lureWI\S shown to-,tontain~,"angles for the Pro and Gly residues5i~'lfto those round in n Type l,6-turn (Benedetti, 19i7), This is in

sh:l.r~"contrl1St

to Ute Type lI,6-lurn formed by ProGly sequences in thetriPePtide~"';~..~tare capable of "?rming n, hydrogen-honded Hurn (see prece"eding paragraph), I~maybe mentioned here' Lhat"although the ProGly sequence is the" most commonly lountl lor 6-lurns in proteins, the conlormational nexibility of the· glycine residuemight~eexpected to lead to other "random"

st~~ctures;

pnrticularily in solution.

(34)

1.

~

The erred of the (i+2Ithre.sidueODthe sta.bility of the~turn ~asdemobstr;.ated by Tamburroelat.(19~4).'TbeyiD~estigated,through CD and IR spectroscopy, ,the eercet of the X residue i,n the seq'ucnceNlIlBocPr~X·GlyOEton the stability' . of the HurD. They foundth~tinTFEa~.~~mtemper3.1ure, the molar fraction of ".t'urD conformation(hence

sta~i1ity)

wasV;I>lIe>!'J1e>Pro,Leu. Ina "Similar study, BOt1SS3rd 311d Marr3ud (19S5) found th.atwaenproline was in position (i+l) or the D-turn there wasaDincrease ib the percentnge .8-tUtn in CH2Clz, going (rom L-nlanine to glycine to D-alanine ,as the (i!t2)th residue. These datll, toge~herwitb the theoretical calculations~r V~kat~eb~la.m(1968).conibi~eto give an interesting,insight into the relative stabilities of Type Land Type IT ,8-turns.

~~cording

toVenkntachal;l.rn (1068)· the T1P.en,8-turn prefers the -LL- sequcnce whereas the 'TypenIJ-turn prefers/the-LO-sequence. Hence, the

,

'

'OOAb.

sequence containing peptides would be exp,ected to take on a Typen

•IJ-turn conformation whileexpe<'ted to take00.a Type I IJ-turn, cooformntion. The steric restrictions

t~~

ProAla sequence containing peptides

. . w~uld

p~acedbe upon both theL-and the D-alanines are the same; yet a signtriCtllltly gretlter percentage or the pepqde containing theProDAI~sequence forms a ".turn&' This indiC3.t~sa lower stllbility ,of the Type I IJ-turn as comparedtothe Type

n

8-turll

'when proline is 'Int~e(i+l)th position. This statement is further supported by the observation thnt ProGly containing .8-turns are almost invariably Typeneven th'oughgly~ine,cnn be considered either a0or aLami~oacid (Boussard., 107g;

Brnhmnchari,efal., IgSl, UIS2; see chapter 3). Both crystnland solution studies bn.vesbo~::~'at.8-turn forming peptides with the P!oDAla sequence take on a Typenconformation (Aubry IIItJ~,HI77; Analltbanarayanan and Sbyamasundar,

, ,

.

/-

(35)

)

' /

16.

~9~1;

Raoet tJl., 1083; Crismll. d al., IOS4). This "bkeo inconjunctionwith the dataofBoussard aDd Marraud (HISS)indicat~that theSUbstit~i~nof thegl~i.ne with D·:llnnlnew~uldstabilize the Type II ,8-turn conformation. Therefore, the inclusionofsteric:llly restrictive

.:m'ino

acids at position (i+2) of the tt-lufn to -lock" the conformation into a limited potentialra~gebecoml'sattractive.

~'.' _~ber

amino acid residue9,'besides D-lllanine,I

wh~h

do not normntly occur in

\

'

.

peptides, hll.ve been. used to produce conformationnlly restricted.8-turn·rorming

Iinea~

pep tides. These include'otber D

~mino

acids

sj~

as D·scrineniltl

D"prolin~

..

(~airIII al.,19jO.;"Boussard andMarralldJ.l~8S)and (l-aminoisohulyric,llcid (Aib)

• (Nagaraj and Balaram,

.~~~,

10SI; Rno e!al.,HJSO; Smithelai.,IUSl; Prtl$nd e!

al.,1082; Jungetaf.,1083; VanRoeyet al.,1083;Bonon.elat.,IUg·l; Crisml1e!

af.,1084). The peptides.containing D-serine and O-proline al. position (i+2jotll.

.8-turn with proline at position(i+t)were fouod to be100%D-lurnns opposed to the00% D-turn achieved with O·alanine in that posilion (Boussardei al., HJ8S.'.

Tbiswoul~be expected since the D-proLine and O·serine side chain. groups arc much bulkier than the methyl groupotO·allloine. Hence they are milchmOle conformatio?ally~estriclh·e. T~eAib group is characterized by lwo mothylson the a-cnrbon as opposed to the one found with, nl:!.nine. The prderpd eon(ormn"lion, whether proline is .itsMlgh~ouron not, appears to be;131O.hc1ix or n~ypeDI(I)JJ-t~rnvnrintion even though PrasndeIai. (HI821 reported:l.Type II .8-turn.with PivProAibNHCHa in etY,stnlnnd solution.Theo!eticnl.confurm:tlion~1

.

.

...

analysis pertormed by Pr35adeIai. (l08Z1 indicated thnt the Type II p.turIJ:

conformer wasZkeol mol'l more stablethan

t~e

Type HI. They

attribut~d

the

(36)

..

17

3'O·be1ix observedby otbers to long range factors, The Aib..:containing sequence!!

previously studied were';ligopeptides.

The three pointsthat revul themselves arter3Dexamination of the li'terature are that:

• Cyclic {leptides are not required to obt:l.in a stable~turnstructure: A linea.r peptide with im appropriately chosen sequence cO,uld form tbis structure. •

T~stability Dnd type or".turn formed depends onresi~uesI'through (i+3).

• TheType I p.turn isin~rjDsicallyless stable than the TypeD,1HU~n.

Thenbove_~QDsideralioIiswill become ih.tportant during the design of a double tpturn-r~~mingtetrapeptide. A study. analogous to tbose performed by· Chou and Fasman,pOii, 1978)a~4.Ananth·an3.r3.yan3n eIal.(1984) on the occurrence of -

. ";"(~j' .

.8:'turns in pfoteinswu'perform~d

by

Isogili IIIaI.(iQSO). They examined the crystill str,ucures of 23 proteins fOf. multiple bends. A double bend was deCined as II.sequence

~'l

whjch two

~~ccessive

distances b,etween.

C.~

andltC(s'+31

(R~l

and

C~'+IIilndC~Hl{R3l meet the requirements or Lewis III~l.(lQ73) for il .8-ben,d. _ . [0other words, they, are se.quences with two overlapping4 ...1 b!drogen bonds

which are not, part or .ahelix~. They~ound tha~.4%of ill!resi~uesoccl:!r in mu~tiplebends. or these, thirty eigbtp~rcentha.vea. distance between

Cf

aod C;H

(~

..) or· less than

5.8

A.. These st.ructures are rolde4 more

tightl~'

than o-helices nnd ~hOse doubl~ .6-b~ndswhich arc merelydistort~d helices. The rormatioD or these tightfy wound' structuresisaided by the frequentoccurr~nceor glycine.

(37)

18

There ate several peptides which have been proposedtotake onD.double ".tutn st~u.cture.Apart from the Aib containing peptides which. as expected, lake-on a

~3 10·heIL,"~onrormatioll(N3.g:uaj d at., 19;9; Van Roey d at., HJ83j, -there nrc' several peptideswbi~hproducedouble ,8-turns but do not contain Typem

p.turos. Aspointed out in section 1:1, the Type III .8-lurnC30be coo:olidcrcd the

, ,

~eginningor a3l(jhe~ix. Ane~mpleof a <!ou,;"turn whit'h dol'S not contnin a Type mp.turnisPivProProAlal\rICH3which inth~crrstallineSl3t~exi:;lsas a .. Type D' ,8-turn rallowed by nn

overl~pping Ty~

I 6-turn (Nairet'a1.,lim).

Th~

nb~ve'

stru'cture bas alsg beeJ.1

prop~e.d r~t

.the,.grt:micidin

S

nnalugllc, di·N-....

.

methYI.ieucin~- gram'ic~~in S~JKu'mn~.

et

a/~

• .HI,iSl.. Through solution ,speetr cupic

~tudie·s, Venkatachalapa~hi.and-Salaram (1979) ljcscribed PivProProAlaNCH~

as 'an incipient 3 1O-belix althou,gh it is likely that that the'struc~llrcmay actually prove ·to be made up or a polyproline-II-like extended st"ueture r6110wed by a Type II d-turn (AJHlothan:uayanan, personal communication).

With two overlapping p.turns, the (i+2)th residue or the rirst .lJ-llirn is nlso the (i+l)th residuedrth~second. To be sterically ·cbmpntihlc·, their~lIl)wed4>,lJI angles must be very close. Figure 1·3 plots the4>,1/1angles?fthe (i"·Hlthn~d (i+2)tb residu,es of .8-turn types I, I', OJ U,-aS defined by Venkat:lchnlam(1068)on a Ramnchandran plot (Ramachandran and Sasisekhnf3n,1068). Asseen in Fir;!1re I,.,?,II.Type0.lJ-turn can oBly' be followed by a Typel'or III'. Although not sbown,i'n the rigure, the4>,ofIa~esor the (i+lllh!=S' ueOf,a Type llI' p.turn

• r

llre identical to that or the Type I'

~tll

(Venkat.:tl: alam,

Ig~8l.

The

4>~

angles

corresponding to the (i+l)tb residue or all the other p.turn types areDot.~lqse

(38)

\

.

..

~ 19

Figure 1·3: ;,'1"m.p showing stericalJyaliowed.regions (or both L aDl:! D amino ..

aei~s. ~,

tully allowed tor [,.residu.flj

ffJ,

allowed for

L-alaoine;~.

tully

allowed tor

ri-residl1ej~,

allowed for D-alanine.

""t~trn

Types I, 1',' nand 0' afe

iDdi~.ted b~

a.rrowsbegluniog at "tbe 1,'1 angles

~r

residue 'i+l and ending at the , ',' &Dgles orresidueH2.

.. ...

(39)

(

"

20

. enoughtothe

',f

angles of the (i+2)th residue pf the TypenHurD. Also. the

..

'

(i+2)tb residue f,'" angles of types I and I' are quite diUerent hom those of the

,

(i+l)th, residue of (l,oy of the Hurn types. Henceit would be dirricultfota Type lor 'Fype I' tJ-luro<fb be followed by any type of,d-turD.The non.3.o·hclix double 6-Jn would therefore he eitherII.Type

ti

.tHurn rellowN byeitherIt.

Type

I'

~r

m'or aType n' followed by • Type I or m.cHurn. ThellboYe t'onsider3tions become veryim~rtlLDtin designingIIdouble6-1urn-rormingtetupepticlewhich can potentially bind c:sldum ion.(s~esection 1.5).

1.4. Functional Role of Beta-Turns

The high occurrence

of

,lJ-turns,. especitLlly111the surface of proteins (Kllntz, IOi5), ledtothepostul:11ionofa.Dumberorfunttionnl rples in addition to it!

str'!!cturaluse·fuln~S5. These include the /l-turn serving as recognitton sites for en:tymalic phospborylation (Small dal.,IOn), glyc:osyl3tion {Allbut dor.,

10~

and, proline bydroxyla.tion iBrahmlLC}a.ri and Anan'tbaoIHaY3oa.n, IOi8, 10iOI.

~-

.

In1970, Vogt d al. exdmined the loop repoo ofIlseries of homologous calcium·

,

.

binding proteill5 for /l-turo forminr; potentil1l bilScd on thes~onda.rystrudure predidion methods or Chou and Fasm3n (lOiS). They founda.strong cofrel3tion between the ability t9 bind <:a.lcium ion and the

~ition

and ;inu.f density of.

- .Boturn forining residues. A brief description of the struclural data0.0the cnlcium- ' binding regions.~rthese proteins is pre.sented below.

\

The'solution of the X-ray crystallographic structure of the carp. muscle calcium- binding paivalbumin (MCBP) indica-ted the involvement ofDOa-helix-loop-a-helix

... -

.'

(40)

21

.~.

slruet~re in calcium-binding aDd suggested that the twelve-.residue long loop

'~ment

was

r~ponsible

f.or the

~etu31

complexing to the

caJ~ium

ion

(Kre.tsi~ger

~Nockolds,f9i3). This segmentcontain~regularlys~cedcarbonyl, carboxr1 and hydroxyl ligands which. could coordi?a.te to the positively cb3.rged calcium ion. There\\!Ctetbr<!c such struduresfoundin parvnlbumin but only two, referred to as1<.:Dbnnd

and

EFband

respectj~ely,

were capable. of binding calcium ion. The .third, referredtoas

As

hand,WlJScharacterized by. aten~

~esi~ue

loop

segmeDt_instea~

of the twelve residues found in

tb.os~psca~able.ot

bi.oding.

. Or

greater jot,crest was the discovery....oraTypeI~turn

.

at the very beginning of ihe loop segments capable of~iDdrng cal~iumion and the .absence of this structure in the "loop segment which could

no~

bind (Moews·and· Kretsinger:

}975). }'he two deletions in the bUer 'loop segment co'rrespond to positions 6 and

~

of the twelve-residue 'loop segmentS. It

~l\S

generally

accept~d

that

~he

lack or

binding was due to the deletions (Kretsinger, iQgOl. These deletions would lIot be expectedtoaffect 'the p...turn structure. A number of ?thercalc~um.b!nding prot~insshowed a good homology in the n-helix-loop-&:-heli.'< region even though the relationshipbet~eenthe entire sequences was often fairly weak., The homologous region!! of prote'ins such as heart troponin C, T4 lysozyme,modul~tor protein, vitamin-O inducedcalciu~-bindingprotein, the alkali-extractable (ALC) nnd dithionitrobenzoate-extradnble (OLC) light chain of lf1uscle myosin,' the EOTA-extrt\ctable light ohain (ELC) from mollusc myosin, and smooth muscle -light chniq. myosin{SLC)were deemedto'bnve. thesam~structure as thilt of parvalbumio" (Kretsinger, 1076, 19801. ,...The solution of the X-ray structures of other ca.lcium-binding proteins such'. as ,bovine intestinal calcium-Mnding protein

(41)

. {Stebenyi dat.,1981} a'nd, more recently, troponio C (Henberg and James, 1985;

Sunda.ralingam d 0.1., 1985) and. calmodulin (Ba.bu dol., 1985),sbow~th3t the previous structurlll correlations based on homologywer~. t55e~ti:lllyCOffKt. The lat'k of ca.lcium-bindiol activity exhibited by wme or the homologous~uent'~. . could dot be explained bythe~numberand position of the lig3nds and the number of residues in the loop segmentIW~eds and Mt'Lat'hlip, 10;4; Tu!ty and' Kretsinger, 19i5).

Vogtetat.(19i9)examined the loop segments or the 0t'alc~um-binding·proteins listed above)'· Because or a multitude of homologous regions in. some proteins, they

··:e~e

left with 26 dat::l:telS

~itb

some sequeot'es capable of oinding

'talchim·i·~n

wlfile others were

oOK

They examined all possible tetrapeptidcs ...itbin..ttleI~P segm.eots and calculated tbeir .lJ-tUtnforminfpotenti~.interms· or the probability parameter Ptas derined by Lewis'd 0.1. (19il):

Where f,.. etc. are the frequencies oftesidu~.in~hefour successive positions of tbe .lJ-turn as observed in known protein strudures.. The values used by, Vogt.d al.

(119i91were obtained by. Chou d 0.1.(I07S)from a survey of the X'fay cryst:ll structures of 17 proteins (298~~urlls). Loclli stretches of high Ptvalues indicate a series of overlapping tetupeptides each with a higtl .lJ-turll potentillllLcwis d ai., 11l}7l). In the 26 homologous sequences examined by Vogt d 0.1. (1079) two consecutive peaks with Pto-values great!!r than or

e~unl

to Uie value or 3.0xlO··

were found to occur precisely at the first residue

or

eacb loop region tbat binds

/. f ..

'-

(42)

23

calciumiOD. These "-doublets- would be expected fot two overlapping p.turns IVagtct01.,lQj9). The,start of the doubletobtainedfrom the loop :Iequence of the calcium-binding region 'ofMeB?aligned precisely with the start of the MCBP Type I

~turn5.

Very· interestingly.,

tb~re

were no'

suc~

doublets found in tlfe homologous loop sequences which did not bind~aleiumiOD,and neither were C9mpBrab!e doublets found in any other part of the. sequences of calcium-binding proteins. In rabbit skeletal,ttoponin C no

tetrape~e,'

apaFt, from,

th~

in1valved in the doublets, had'ptvaluesgre~ter than or equaltothe value

or

3.0xlo·-t.

Vogt-e.t al.(igj9j also examined the sequences of several non-homologous

';Id"~-b;'d;"

pm',;". Tb,,; ;,d"d,d51,phy''''''"'

"oI",s,.

th"molys;,.•

r

concanavalinAand trypsin. AJtbough doublets do occur at calcium-bindingSitej . they are not

tte

rule as with the homologous proteins. Howev~r,·in the'majority of ClISes one linds at

1~~L

one tetrapeptide with a high Ptvalue

near~

calcCm-

binding site. ,ThereisthereTorea strong suggestion th;t a p.turn is involved. in

.;-'" .

calcium-bjnding.· It should be noted thattheahove data relied on predictio.n methods based on non-ulcium.bindin.K

r~~gions.

l-1ence

t~e,8-turn predieti~ns

refer

. to uncompll!Xed sequences and do nolpertainto the conformation after calcium

.~~ coni.plex~d

to.tb{ loop segment. Un't'n DOW; the ahov; .obserntioDS

,;~

one of mere

;nter~st.

Thelaharator;in which

th~

results presented in this thesis were obtnin;d bas been Interested In delineati.ng theconrormation~1

. .

' fCeatures orth~,6-turn by spectral methods and elDt!idating its involvement in Cunet}ons such proline-hydrdxylation (An3nthanarnyan3n, lQ83;

-.

(43)

ADantbanarayaDan tlal.,'1984; Bu.bmacb.ri and~tballll:D.1antln, 19i5;

Brabmac:hariet al., 19jO, 1981,1082; Chopra and

Aaantbanaray~nl1n,

1;811..It was tberdore Iogic:al to er.lmine tbe role of ","turns ill metal ton:binding. The final c::atalyst for the.proj~tume from :n examination of cyt'!ic: peptides.

~Iany

c:yelic \ peplidcs, both synthetic and

natur~.

:ate c:ap:ab.le or .selec:ti,·e1;

. c:omplexing with calcium ion or other alkali or alk31i~~:l.fthmetal ions." T,,'l') fea.tures that these ionopbores 'havei~common are ttre~resenc:e

.

.of ,d-tllrnll i'n the.

unc:omplexeds~:'c:iesand the coordination ofth~ .p'eptid~C:;Lrbonyl groups.totill!' metal iOI) in the C:0':llplexed species.. Both' valinomydn {Degclaentla/.,!Og·lll1nll

. . .

. its I1nalogue cyclo-!AlI1GlyDPhePro)3 (Vishwanl1'th and Ea.sw:nan, l082) were .,' sbown to

eont~iD

si..'(4 - I

hy~rOgeD ~.!\dS. "~he

c:arbonyls wcre

c~dinaltd

to

c:aldum ion uPon binding aDd this involved the bru.king of 'inlramo!ec:ul:u b~4rogeD ~nds. ~n~Jh~rexample is round iq a paper. by Pease and' Watson.·' (HI78). Tbey designed the penta,peptide cydo-(GlyProDAlaProl witj1 the intent of

. r"

having both a ,.turn and a ..,.tu,n(~-Ihy~rogenbondl·present. Again,4S with

" - tbe valinomycins, tbe hydrogen hoDds were- broken u .tbe c::arbonyls coordiuted c.., to the metal ion. This partic:ular peptide wu subjected to amol~ul:lf m~haniuJ.

study by Lynn aDd Kushick (1084)~ provides a set" of~exc:dlent stereoding1y.ms of tbe

pept~de i~

l!:oth

i:J uo~mPlex.ed

and

lithium.comple~ed

form. A similnf set or diagrnms cnD be found in a paper-b,. Duax and Smith

..

(llJ81) wbo were interested in detailing a sequenc:e 'of steps involved in the complexing pf the metal ion to valinomyciD. The dingrnm5 relateIIprogrc1iiive

,

..

~oordinntionor carbonylsto metal ion artl breaking of ;'ntramolecuJaf hydrogen

. .

- . . .

../

...

~

(44)

~\"'; .',

.,:·'1·,

25

f "

bonds. hradditionto the uneomplexed andeomplexed f?tms therear~~aseries 'of

interm~di3,tes.

Several C?ther eyclic-peptides are also

capabl~ or

complexing metal idn's . in:luding

~yc1o-!DPheProGlyDAlaPro)

(Karle•. Itl84). cyclo-(SarSarGIY)2' cyclo-(S:l.f)8 (Sughih3f3:etai., 1976) and cyelo-(P.roSar)ll (0=3,4) (Shimizu and Fujishige, lOgO). The paperby Karle (UI84) c::ompares the crystal structures

ot

the uncompl:;/d

an~, magnesi~m-~omplexed

species. The carbonyls involved in the

rorm:lti~n

of

~ntram~lecular'

hydrogen be,sintb: un.complexed species

(.s-

and T"turns) are coordi'[;3Ced to themagnesium lem in the complexed species. The Illtt:r two papers

in~icate'

theplesenceoC'intrJrnolecula;

hYdrO~en

bond:' inthe .

un~ompiexed

sta'tes

,~

the required c'arbon>:'. coordination to the metdl ion for ..

bindi~g

but go...110

furth~r

except to53yth'ere

~as

,a.p,:ssibilitT o{ multiple.

conformers. Other exa.mples of c.yclic metal ion-binding peptides i.nc1ude , cyc1o-(X.Pro).., :....here· X= Phe, Leu or Lys{Nc.protected)

(~~u:a

a.nd l!flanishi, .

Ig83j lilld theb~Ct,IiF:S,S··Bis-cyc1o-(GlyhemiCysGlyGlyPro) (Sehwyzer et

ar., Igj'Ol~

The la'tt;E!r t"9

pape~o

not talk about the conCotma.lion·of the

pe~tides

1-' '

in the uneomplexed state but do point out tolit the complexed state is achieved :through the coordination of the peptides' carbonyls to. the metal ion. _ The above . ,p,apers 8.re very useful not only in presenting·a·pOssible relationship betwe'en ion-

·'bin.ding O'iliJ'"lhe

~turn

buCalso·for

th~r

technical merit. The methods useJ in the,abov~pa.pers to deter.mine and .foll0j,ion.binding,e~pecially those by Vishwanatb and Easwaran(10S2) and PeiSe

,;d

Watson (ig,S), were used as a.

bUis

·for' the

cal~ium.bindiDg s~udies pr~erited

in this thJ!Sis. These authors characterized the uncomplexed spedes and {ollowed lon~bindlng USlDg both carbon·r3 and proton NMR a;d GO spectroscopy,

~he

peptidesstudied bfpease

f'

(45)

26

and Watson (Hlj8) andyishwall:Ltband.Easwaran (1082)-were.like the peptides .studied in this thesis, too sm:sll to be .studied bym:LD)'or thetetb~iqul:'S((Derally

~ used 'or studying calcium-binding proteins.

The~turn·rormingdoublet p:lttern observtd by Vogtd

at

(lOi9)in the '?Op

'. «

5egm~ntor bOf!lOlogou$ c3.lcium.:bioding proteiD sequences tilong with the resulls

. ,

o.r the eydic,ion·binding peptides ledto l.be belief th3t the,d-turnis:lr:l.vour:l~le . conformationalprereq~isiterOfiOD.bindi~g. To. testthis"pos.tu13ted!9,!e,1liot':H peptides,w~icbcould ,mimicthe ov;rlapp!ng.~turns s~nwit.hth4fmOlogOllS cllldum-bindillg proteins, were synthesized arid theiri~ter:lctionswithcalcium a-nd .othermet31ions werestudiedandco~pllredtosingle "..turno.nd non-p.luro

\. , . '

.

. ,

-

.

forming peptides.

1.S;' Designor,polt.ula~edCaleium-BindingPeptide.

Twoconsi~eralioDshi 'the design 'of peptides u.pahle of torminl two oyer1:l.pping

~~urllS

,and potent!an; bindiog calcium ion have to be made especiallyirone wisbestoeXllimioe the telo.l.iooship betweeo ,true lute and

fu~ction.

First,th'

peptidecotlfOtmat~DmustIttst3ble in solution and secondly, sinee the hioditl;lof

. .

cllicium. ion probabl; involves a tonform1l.lion:a1 eb:ange. the peptide must

. .,\ .

."

mniotaina'~ertaiD

,

delrte of nexibiliLy. Therefore, the amount of conforrn3tional

.

restriction provjded by the amino acids' incorporated into tbe pcptjde ";ust ,cncet ah,I....

b'lW:~b'

\wo'

n';~"

Th';'.plid,

N~IDO'P'~DAI""I'NI1C1l3 ~nd:

.

. jts poteotinlly mote nCl!ible annloguc NQIBocProGlYAlaNHCII3 were considercd

~apabltof striking thc balance. Tbe'peptides art tbeor;ticllily clpn.bleofforming' two overln.pping

~tu·rD'.

Thc' first'

~turD

is

~ilt.biliz.ed

by a

bYd~OICn bo~d

Références

Documents relatifs

- Leached glasses, when measured with SIMS (fig. 1 ) , exhibit typical S-shaped sodium profiles, indicating a leaching process with an effective diffusion coefficient

The ACL is a band-like structure of dense connective tissues. The bony attachment is located at the posterior part of the inner surface of the lateral femoral condyle and not,

Inscrivez le produit du nombre de chaque colonne et rang´ee dans l’espace.. La Crise Math´ematique de 5 Minutes

We have developed a simple method using a tech- nique borrowed in strongly turbulent plasma theory, this technique is quite genera1,it can be applied also to explain the existence

Les valeurs calculées de l'indice de réfraction (n) des couches minces obtenues pour différents trempages (4 et 6), dopées à différents teneur de cobalt et traitées

This paper addresses the nature of some of the existing traditional berbal and folk methods of family planning, as well as other sexual beliefs and practices by

Il ne reste plus une miette dans son assiette, place au dessert maintenant Anna reste quand même intrigué par la personne qui se trouve à la place du chef, mais c’est n’est pas

Insgesamt hat Bader eine detailreiche Studie vorgelegt, aus der die Diskussion über das Lehenswesen viel Ma- terial wird schöpfen können.. Brought to you by |