• Aucun résultat trouvé

A novel technique for determining bond strength development between cement paste and steel

N/A
N/A
Protected

Academic year: 2021

Partager "A novel technique for determining bond strength development between cement paste and steel"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Cement and Concrete Research, 17, May 3, pp. 478-488, 1987-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=9bf77222-b4d0-4b87-82e0-3f6fb63b02fa

https://publications-cnrc.canada.ca/fra/voir/objet/?id=9bf77222-b4d0-4b87-82e0-3f6fb63b02fa

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(87)90011-1

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A novel technique for determining bond strength development between

cement paste and steel

(2)

Ser

TH1

National Research

Conseil national

11

co

uncil Canada

de recherches Canada

no.

1477

c .

2

Institute for

lnstitut de

B

LDG

Research in

-

Construction

construction

recherche en

A Novel Technique for

Determining Bond Strength

Development between Cement

Paste and Steel

by M.

Nakayama and

J.J. Beaudoin

j ? ? + l r \ ? ! ? ' ~ ~ ~

Reprinted from

Cement and Concrete Research

Vol. 17, No.

3,

1987

p. 478

-

488

(IRC Paper No. 1477)

Price $3.00

NRCC 28322

(3)

Les a u t e u r s d g c r i v e n t une n o u v e l l e t e c h n i q u e s e r v a n t b d g t e r m i n e r l ' a d h e r e n c e d e l a p h t e d e ciment 1 l ' a c i e r . C e t t e t e c h n i q u e t i e n t compte d e l a c o n t r a i n t e i n t e r n e c a u s e e p a r l e p r o c e s s u s d ' h y d r a t a t i o n . Les a u t e u r s p r e s e n t e n t l e s r g s u l t a t s d e s e x p g r i e n c e s r g a l i s g e s d a n s l e domaine d e l ' a d h s r e n c e e t e x p l i q u e n t l e r a l e j o u 6 p a r l a zone d ' i n t e r f a c e d a n s l a d e t e r m i n a t i o n d e 1' a d h g r e n c e e n u t i l i s a n t l e s i n f o r m a t i o n s o b t e n u e s p a r u n examen, a u microscope 1 b a l a y a g e , d e s s u r f a c e s d8tachSes.

(4)

CENXNT and CONCRETE RESEARCH. Vol. 17, pp. 478-488, 1987. Printed in the USA. 0008-8846187 $3.00+00. Copyright (c) 1987 Pergamon Journals, Ltd.

A NOVEL TECHNIQUE FOR DETERMINING BOND STRENGTH DEVELOPMENT BETWEEN CEMENT PASTE AND STEEL

M. ~ a k a ~ a m a l and J.J. Beaudoin Institute for Research in Construction

National Research Council of Canada Ottawa, Canada, K1A

OR6

(Communicated by

M.

Daimon) (Received Feb. 19, 1987)

ABSTRACT

A new technique for determining bond strength between cement paste and steel is described. Internal stess resulting from the hydration process is taken into account. Experimental results of bond

strength development are presented. The role of the interface zone in determining bond strength is discussed with reference to

information provided by SEM examination of debonded surfaces.

Introduction

The bond strength between cement systems and metallic substrates such as steel is an important factor in determing the behaviour of many concrete construction elements. Typical examples where the bonding of steel and concrete is of practical importance include the following: steel fiber- reinforced cement composites, grouting of steel bolts and fastenings in concrete, grouting of post-tensioning tendons in prestressed concrete members, and the fabrication of steel-concrete composite beams.

Estimates of bond strength between steel and cement systems have been obtained by several different methods. These include calculation of average bond strengths From pull-out tests, direct tension tests, slant-shear tests,

and various types of flexural tests (1). All these tests involve

application of external load to the specimen, potential alignment, and reproducibility problems, as well as inherent difficulties in controlling test environments. In addition, measuring the development of bond strength at early ages is not practicable.

In this paper a new method for determining the bond strength between cement paste and steel is described. The method permits estimates of bond

lpresent address: Kajima Institute of Construction Technology, Kajima Corporation, Tokyo-182, Japan.

(5)

. -

Vol. 1 7 , No. 3

CEMENT PASTE, STEEL, BOND STRENGTH, TECHNIQUE

s t r e n g t h a t e a r l y a g e s and a c c o u n t s f o r t h e i n t e r n a l s t r e s s developed ( i n t h e cement m a t r i x ) due t o t h e h y d r a t i o n p r o c e s s . It i s a p p l i c a b l e t o t h i n c o a t i n g s e n c o u n t e r e d i n r e p a i r s i t u a t i o n s , does n o t i n v o l v e a p p l i c a t i o n of e x t e r n a l l o a d , and i s e a s i l y a d a p t a b l e t o t e s t i n g i n v a r i o u s c o n t r o l l e d environments. T e s t r e s u l t s o b t a i n e d w i t h t h i s method a r e p r e s e n t e d . F a c t o r s a f f e c t i n g t h e development of bond s t r e n g t h a r e d i s c u s s e d w i t h r e f e r e n c e t o SEM and EDX a n a l y s i s of s e l e c t e d debonded s u r f a c e s .

E x p e r i m e n t a l M a t e r i a l s

The P o r t l a n d cement used had t h e f o l l o w i n g composition: SiO (20.78%); A,t,03 (6.20%); F e f l (2.232); CaO (64.83%); MgO (1.84%); SO3 (3.1?%); Na20 (0.05%); K20 (0.40%j. B l a i n e f i n e n e s s was 300 m2/kg.

The s t e e l s u b s t r a t e c o n s i s t e d of s t a n d a r d s t e e l f e e l e r gauge p i e c e s of dimensions 12.70 mm x 304.80 mm x 0.25 mm.

Mixes and Specimen P r e p a r a t i o n

Cement p a s t e mixes were made a t t h e f o l l o w i n g water-cement r a t i o s : 0.25, 0.30, 0.35, and 0.40. Cement p a s t e was a p p l i e d t o t h e s u r f a c e of t h e s t e e l f e e l e r gauge by s p r e a d i n g t h e p a s t e w i t h a s p a t u l a between g u i d e s s e t a d j a c e n t t o t h e f e e l e r gauge. T h i c k n e s s of t h e p a s t e , g e n e r a l l y

0.51-0.76 mm, was c o n t r o l l e d by t h e t h i c k n e s s of t h e g u i d e s used. The s u r f a c e of t h e f e e l e r gauge was c l e a n e d w i t h a c e t o n e p r i o r t o a p p l i c a t i o n of t h e p a s t e . The cement p a s t e - s t e e l composite beams were used t o d e t e r m i n e t h e development of i n t e r n a l stress i n t h e p a s t e and bond s t r e n g t h between s t e e l and cement p a s t e . Up t o f o u r specimens were used f o r e a c h t e s t . Mean v a l u e s of t e s t r e s u l t s were u s e d i n p l o t t i n g d a t a .

C a l c u l a t i o n of I n t e r n a l S t r e s s

The development of i n t e r n a l s t r e s s i s f o l l o w e d d u r i n g t h e h y d r a t i o n p r o c e s s by a d a p t i n g a n overhanging beam method (OBM) o r i g i n a l l y used f o r measuring i n t e r n a l s t r e s s i n s o l v e n t c a s t c o a t i n g s (2). D e t a i l s of t h e t h e o r y and i t s l i m i t a t i o n s a r e d i s c u s s e d by Corcoran (3). The f o l l o w i n g p r o c e d u r e i s used. A cement p a s t e c o a t i n g of u n i f o r m t h i c k n e s s (measured w i t h a micrometer a t t h e completion of t h e t e s t ) i s a p p l i e d on a f l e x i b l e s t e e l s u b s t r a t e t o form a composite beam. The t e s t c o n f i g u r a t i o n i s t h a t of

L

,

0.44 I ,wLL [CWE PASTE BEARING

SUBSTRATE

SUPPORT

1'

WRT, CAPACITATIVE

TRANSDUCER (MID SPAN)

FIG.

1

(6)

Vol. 1 7 , No. 3 M. Nakayarna and J . J . Beaudoin

FIG. 2

S e q u e n t i a l p h o t o of overhanging beam method and a p p a r a t u s

1. Cement p a s t e - s t e e l composite beam d e f l e c t e d upwards due t o s w e l l i n g s t r e s s e s developed d u r i n g h y d r a t i o n

2. Beam i n i n t e r m e d i a t e p o s i t i o n d u r i n g d r y i n g

3. Beam d e f l e c t e d due t o s h r i n k a g e s t r e s s e s developed d u r i n g d r y i n g

4 . Cement p a s t e c o a t i n g h a s debonded from s t e e l s u b s t r a t e

a n overhanging beam (Fig. 1) where t h e overhang (1,) i s e q u a l t o 0 . 4 6 t i m e s t h e midspan l e n g t h ( 2 ) . A photograph of t h e a p p a r a t u s i s g i v e n i n F i g . 2. The midspan d e f l e c t i o n f o r t h e overhanging beam geometry i s i n d e p e n d e n t of any u n i f o r m l y d i s t r i b u t e d weight changes i n t h e cement c o a t i n g . Measurement of t h e midspan d e f l e c t i o n w i t h time p r o v i d e s a means of d e t e r m i n i n g t h e development of i n t e r n a l s t r e s s . The s t r e s s i s t r a n s f e r r e d t o t h e s u b s t r a t e by s h e a r developed a t t h e cement p a s t e - s t e e l i n t e r f a c e . A s s t r e s s d e v e l o p s i n t h e cement p a s t e due t o t h e h y d r a t i o n p r o c e s s t h e beam bends. A n a l y s i s ( 3 ) h a s shown t h a t t h e i n t e r n a l s t r e s s , a, c a n be c a l c u l a t e d u s i n g t h e r e l a t i o n s h i p : where: yc = midspan d e f l e c t i o n Es = modulus of e l a s t i c i t y of s t e e l s u b s t r a t e t = t h i c k n e s s of s t e e l s u b s t r a t e t c = t h i c k n e s s of t h e cement p a s t e l a y e r v = P o i s s o n ' s r a t i o of t h e s t e e l s u b s t r a t e R = midspan l e n g t h of t h e overhanging beam

(7)

Vol. 1 7 , No. 3

CEMENT PASTE, STEEL, BOND STRENGTH, TECHNIQUE

Bond S t r e n g t h E s t i m a t e s

Measurements f o r t h e e s t i m a t i o n of bond s t r e n g t h a r e t a k e n i n two s t a g e s . I n t h e f i r s t s t a g e t h e overhanging beam specimens a r e p l a c e d f o r a p r e d e t e r m i n e d t i m e i n a chamber c o n d i t i o n e d a t 100% r e l a t i v e humidity (RH). The i n t e r n a l s t r e s s developed d u r i n g h y d r a t i o n i s monitored. I n t h e second s t a g e t h e specimens a r e removed from t h e 100% RH environment and p l a c e d i n a second chamber c o n d i t i o n e d a t 0%

RH.

I n t h i s chamber t h e cement p a s t e w i l l l o s e w a t e r and s h r i n k a g e s t r e s s w i l l be g e n e r a t e d i n t h e m a t e r i a l . When t h e i n t e r n a l s t r e s s imposed on t h e cement p a s t e due t o d r y i n g i . e . , s h r i n k a g e s t r e s s , i n c r e a s e s t o t h e v a l u e of t h e bond s t r e n g t h between cement p a s t e and s t e e l , t h e cement p a s t e s p o n t a n e o u s l y debonds from t h e s t e e l s u b s t r a t e .

The bond s t r e n g t h a t a p a r t i c u l a r time i s t h e r e s u l t a n t of i n t e r n a l s t r e s s due t o h y d r a t i o n a t 100% RH and t h e a d d i t i o n a l s h r i n k a g e s t r e s s r e q u i r e d t o debond t h e sample a t 0% RH.

SEM and EDX A n a l y s i s

A Cambridge S t e r e o s c a n 250 w i t h a TN-5500 X-Ray Analyzer was u s e d f o r e x a m i n a t i o n of debonded s u r f a c e s . R e s u l t s and d i s c u s s i o n I n t e r n a l S t r e s s Development I n t e r n a l s t r e s s developed i n t h e cement p a s t e d u r i n g h y d r a t i o n a t 100% RH was c a l c u l a t e d from t h e e x p e r i m e n t a l d a t a f o r p e r i o d s up t o 168 h. R e s u l t s a r e p l o t t e d i n F i g . 3. T e n s i l e s t r e s s e s a r e developed d u r i n g t h e f i r s t 15 h. Maximum t e n s i l e s t r e s s o c c u r s between 5 h and 7 h. They a r e a t t r i b u t e d t o autogenous s h r i n k a g e r e s u l t i n g from a d e c r e a s e i n s p e c i f i c I volume of t h e h y d r a t i o n p r o d u c t s w i t h r e s p e c t t o t h e r e a c t a n t s ( 4 ) . A f t e r

7 h compressive s t r e s s e s a r e g e n e r a t e d because of s w e l l i n g of t h e cement p a s t e . S w e l l i n g o r i n c r e a s e s i n volume of t h e cement p a s t e d u r i n g t h i s

I p e r i o d have been a t t r i b u t e d t o d i f f e r e n t f a c t o r s ( 5 , 6 ) . It h a s been

s u g g e s t e d t h a t e x p a n s i o n i s due t o t h e h e a t evolved d u r i n g t h e h a r d e n i n g of t h e p a s t e (5). An e x p l a n a t i o n based on s t r e s s r e l a x a t i o n r e s u l t i n g from a n a l l e v i a t i o n of s e l f - d e s i c c a t i o n e f f e c t s h a s a l s o been advanced ( 6 ) .

G e n e r a t i o n of i n c r e a s e d amounts of C-S-H and H 0 e n t e r i n g t h e i n t e r l a y e r may a l s o c o n t r i b u t e t o s w e l l i n g . C o n f l i c t i n g r e s u l t s on t h e e f f e c t of

water-cement r a t i o on t h e amount of s w e l l i n g have been r e p o r t e d . The r e s u l t s i n Fig. 3 a r e i n g e n e r a l agreement w i t h t h e volume-change

measurements of d e l Campo, who observed t h e s w e l l i n g e f f e c t t o d e c r e a s e w i t h w a t e r c e m e n t r a t i o ( 5 ) .

Bond S t r e n g t h

Bond s t r e n g t h between cement p a s t e and s t e e l v e r s u s h y d r a t i o n time i s p l o t t e d i n Fig. 4. Each s t r e n g t h v a l u e r e p r e s e n t s t h e a v e r a g e of up t o f o u r t e s t r e s u l t s . The v a r i a b i l i t y of t e s t r e s u l t s i s dependent on h y d r a t i o n t i m e . V a r i a t i o n from t h e mean f o r w/c = 0.25 p a s t e s r a n g e s from 4.2% a t 3 h h y d r a t i o n t o 17.6% a t 168 h. Bond s t r e n g t h i n c r e a s e s t o a maximum a t 24 h f o r water-cement r a t i o w/c = 0.25 and 0.35, a t 15 h f o r w/c = 0.30, and a t 48 h f o r w/c = 0.40. Maximum bond s t r e n g t h s w i t h r e s p e c t t o water-cement r a t i o a r e i n t h e f o l l o w i n g o r d e r : 0.35, 0.30, 0.40, and 0.25. The bond s t r e n g t h a t w/c = 0.40 i s o u t of sequence. P a s t e s w i t h w/c

>

0.40 have h i g h e r p o r o s i t y , h i g h e r d e g r e e of h y d r a t i o n , lower CIS r a t i o of t h e C-S-H

(8)

M. Nakayama and J . J . Beaudoin Vol. 1 7 , No. 3 0 357 15 24 48 168 H Y D R A T I O N TIME, h FIG. 3 I n t e r n a l s t r e s s developed i n cement p a s t e d u r i n g h y d r a t i o n a t 100% RH. S h r i n k a g e s t r e s s e s a r e p o s i t i v e p r o d u c t and d i f f e r e n t p o r e s t r u c t u r e t h a n p a s t e s w i t h lower w/c r a t i o ( 7 ) . U n l i k e mechanical p r o p e r t i e s s u c h a s compressive s t r e n g t h , bond s t r e n g t h of

cement p a s t e t o s t e e l does n o t i n c r e a s e w i t h a d e c r e a s e i n t h e water-cement r a t i o . T h i s may be due t o d i f f e r e n c e s i n i n t e r f a c e p r o p e r t i e s from bulk p r o p e r t i e s . I n t e r f a c e p r o p e r t i e s of cement composites d e t e r m i n e t h e magnitude of bond and o t h e r p r o p e r t i e s s u c h a s work of f r a c t u r e . The dependence of f r a c t u r e e n e r g y , f o r example, on t h e w/c r a t i o of some f i b e r - r e i n f o r c e d cement composites i s s i m i l a r t o t h a t f o r bond s t r e n g t h i n t h i s i n v e s t i g a t i o n (8).

T y p i c a l bond-strength v a l u e s determined by o t h e r t e s t methods and t h o s e c a l c u l a t e d from t h i s work a r e g i v e n i n T a b l e 1.

T h e - b o n d - s t r e n g t h v a l u e s f o r t h e overhanging beam method a r e of t h e same o r d e r of magnitude a s t h o s e d e t e r m i n e d by o t h e r t e s t methods.

A d e c r e a s e i n bond s t r e n g t h o c c u r s a f t e r t h e maximum v a l u e i s o b t a i n e d . T h i s o c c u r s when a s i g n i f i c a n t p r o p o r t i o n of t h e t o t a l amount of CH h a s formed f o r t h e w/c = 0.40 and 0.25 p a s t e s (12). A t h y d r a t i o n t i m e s g r e a t e r t h a n 168 h t h e bond s t r e n g t h v a l u e s ( n o t r e p o r t e d ) g e n e r a l l y d i d n o t change s i g n i f i c a n t l y . O t h e r workers have o b s e r v e d d e c r e a s e s i n bond s t r e n g t h a t l a t e r a g e s a f t e r a maximum h a s been reached (13-15). Burakiewicz r e p o r t e d t h a t t h e bond s t r e n g t h of s t e e l f i b e r t o cement mortar d e c r e a s e d a f t e r 14 days (13). S c h n i t t g r u n d determined t h a t bond s t r e n g t h of cement p a s t e and a l i t e p a s t e t o p o l i s h e d s t e e l d e c r e a s e d a f t e r 14 and 7 days

(9)

Vol. 1 7 , No. 3

CEMENT PASTE, STEEL, BOND STRENGTH, TECHNIQUE

4.0nl I I I I

W I C

-

1

H Y D R A T I O N TIME, h

FIG. 4

Bond s t r e n g t h between cement p a s t e and s t e e l

TABLE 1

Maximum Bond S t r e n g t h Values Between Cement Systems and S t e e l Bond S t r e n g t h (MPa) D e s c r i p t i o n T e s t Method Reference

1.52

-

3.17 s t e e 1 beams Pu 11-out French ( 9 ) embedded i n

0.61 m of c o n c r e t e

s t e e l f i b e r i n Pull-ou t Gray and

cement p a s t e Johnson (10) s t e e l f i b e r i n Pull-out Maage ( 1 1 ) m o r t a r steel-cement D i r e c t s h e a r Alexander ( 1 2 ) p a s t e cubes w i t h z e r o normal s t r e s s

cement c o a t i n g Overhanging T h i s work on s t e e l beam method

s u b s t r a t e

r e s p e c t i v e l y (14). Laws e t a l . observed a d e c r e a s e i n bond s t r e n g t h between g l a s s f i b e r and cement p a s t e a f t e r s e v e r a l d a y s h y d r a t i o n a t 100%

RH

(15). Zimbelmann found t h a t bond s t r e n g t h between cement s t o n e and a g g r e g a t e

(10)

M. Nakayama and J.J. Beaudoin

Vol. 1 7 , No. 3

d e c r e a s e d a f t e r 100 d a y s h y d r a t i o n ( 1 6 ) . Decreases i n bond s t r e n g t h a t

l a t e r a g e s have been a t t r i b u t e d t o c r y s t a l growth i n t h e c o n t a c t l a y e r between cement p a s t e and t h e i n c l u s i o n o r s u b s t r a t e m a t e r i a l (16).

D i f f e r e n c e s i n maximum bond s t r e n g t h and t h e i n c i d e n c e of s t r e n g t h d e c r e a s e may a r i s e from time-dependent d i f f e r e n c e s i n t h e p r o p e r t i e s of t h e c o n t a c t

zone. These d i f f e r e n c e s may be a s c r i b e d t o t h e s e n s i t i v i t y of t h e test

method a s w e l l a s t o t h e changes i n t h e m i c r o s t r u c t u r e of t h e matrix. The

r o l e of t h e t n t e r f a c e o r c o n t a c t l a y e r i n d e t e r m i n i n g bond s t r e n g t h is d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n .

Cement P a s t e - S t e e l I n t e r f a c e

A unique zone a t t h e cement-steel o r cement-aggregate i n t e r f a c e h a s

been i d e n t i f i e d by s e v e r a l workers (17). The zone h a s g r e a t e r p o r o s i t y t h a n

t h e bulk m a t r i x and i s t y p i c a l l y about 40-50 +m t h i c k . A duplex f i l m

c o n s i s t i n g of a l a y e r of CH and C-S-H c o v e r s t h e s u r f a c e of t h e s u b s t r a t e

m a t e r i a l . A l a y e r of l a r g e impure CH c r y s t a l s e x t e n d s from t h e duplex f i l m

i n t o t h e b u l k of t h e cement-paste matrix. E t t r i n g i t e h a s a l s o been observed

on t h e s u b s t r a t e s u r f a c e s (17).

There i s no agreement on how t h e mechanical p r o p e r t i e s of t h e zone

a f f e c t s bond s t r e n g t h . SEM and x-ray a n a l y s i s of s e l e c t e d debonded s u r f a c e s

( o b t a i n e d w i t h t h e overhanging beam method) p r o v i d e some i n s i g h t i n t o t h e r o l e of t h e i n t e r f a c e zone i n d e t e r m i n i n g bond s t r e n g t h .

SEM micrographs of t h e debonded s u r f a c e s

-

cement-paste s i d e and s t e e l

s i d e

-

were t a k e n a f t e r 24 h and 72 h h y d r a t i o n . They a r e p r e s e n t e d i n

Figs. 5 and 6 . I n a l l c a s e s f a i l u r e t a k e s p l a c e w i t h i n 50 pm of t h e s t e e l

s u r f a c e , i . e . , i n t h e i n t e r f a c e zone. A t 24 h h y d r a t i o n t h e s o l i d s a d h e r i n g

t o t h e s t e e l s u r f a c e were mostly n e e d l e - l i k e c r y s t a l s c o n s i s t i n g p r i n c i p a l l y

of CH and C-S-H, t h e r e l a t i v e p r o p o r t i o n s depending on water-cement r a t i o .

The s o l i d s a t w/c = 0.25 have h i g h e r CIS r a t i o (18). T h i s i s c o n s i s t e n t

w i t h t h e o b s e r v a t i o n t h a t t h e Ca/Si peak i n t e n s i t y r a t i o was much g r e a t e r a t

w/c = 0.25. A t h i g h e r water-cement r a t i o s t h e s o l i d s a r e predominantly

C-S-H. There a r e few a r e a s f o r which t h e Ca/Si r a t i o i s v e r y l a r g e .

D i f f e r e n c e s i n C-S-H/CH r a t i o may account f o r lower bond s t r e n g t h a t

w/c = 0.25. Some e t t r i n g i t e was a l s o d e t e c t e d i n a l l t h e p r e p a r a t i o n s .

The s u r f a c e coverage on t h e s t e e l i n c r e a s e d w i t h water-cement r a t i o

(Fig. 5a-5d). E s t i m a t e s of s u r f a c e coverage f o r water-cement r a t i o = 0.25,

0.30, 0.35, and 0.40 a r e 10, 15, 65, and 85% r e s p e c t i v e l y .

Examination of t h e debonded cement s u r f a c e s r e v e a l s a r e a s of p l a t y CH

and c l u s t e r s of n e e d l e - l i k e c r y s t a l s of C-S-H. The n e e d l e - l i k e morphology

was c l e a r on h i g h e r m a g n i f i c a t i o n photomicrographs, which a r e n o t p r e s e n t e d . The d i s t r i b u t i o n of CH c r y s t a l s t h a t have s e p a r a t e d from t h e s t e e l s u r f a c e

i s d e p i c t e d i n t h e micrographs (Fig. 5e-5h). A t w/c = 0.25 v i r t u a l l y a l l

t h e CH f i l m h a s been removed from t h e s t e e l s u r f a c e . A s t h e water-cement

r a t i o i n c r e a s e s l e s s CH i s removed from t h e s t e e l , and f a i l u r e t a k e s p l a c e

through t h e C-S-H behind t h e CH f i l m .

A f t e r 72 h h y d r a t i o n t h e s u r f a c e coverage of s o l i d s on t h e debonded

s t e e l d e c r e a s e d a t h i g h e r water-cement r a t i o s (Fig. 6a-6d), c o r r e s p o n d i n g t o

lower bond s t r e n g t h s f o r t h e s e specimens. Coverage was approximately 20,

5,

30, and 1% f o r water-cement r a t i o s = 0.25, 0.30, 0.35, and 0.40

(11)

Vol. 1 7 , N o . 3 455 CEMENT PASTE, STEEL, BOND STRENGTH, TECHNIQUE

FIG. 5

SEM micrographs of debonded s u r f a c e s (24 h h y d r a t i o n , OBM specimens) ( a ) - ( d ) : s t e e l s u r f a c e ( e l - ( h ) : cement s u r f a c e

( a ) , ( e l : ~ 1 ~ 0 . 2 5 ( b ) , ( f ) : w/c=O. 30 ( c ) , ( g ) : w/c=O.35 ( d ) , ( h ) : w/c=0.40

(12)

Vol. 1 7 , No. 3 M . Nakayama and J . J . Beaudoin

FIG. 6

SEM micrographs o f debonded s u r f a c e s ( 7 2 h hydration, OBM specimens) ( a ) - ( d ) : s t e e l s u r f a c e ( e ) - ( h ) : cement s u r f a c e

( a ) , ( e ) : w/c=0.25 ( b ) , ( f ) : w/c=O. 30 ( c ) , ( g ) : w/c=O.35 ( d ) , ( h ) : w/c=0.40

(13)

Vol. 1 7 , No. 3

CEMENT PASTE, STEEL, BOND STRENGTH, TECHNIQUE

Micrographs of debonded cement s u r f a c e s a r e g i v e n i n Fig. 6e-6h.

Evidence of CH c r y s t a l growth i s p r o v i d e d i n Fig. 6e. A t w/c = 0.25, l a r g e CH c r y s t a l s 20-40 pm i n s i z e were observed. CH c r y s t a l growth may

c o n t r i b u t e t o lower bond s t r e n g t h a t 72 h.

Micrographs of f a i l u r e s u r f a c e s were a l s o o b t a i n e d f o r a few w/c = 0.30 specimens (Fig. 7a-7d), which had been debonded i n a d i r e c t t e n s i o n t e s t a f t e r 24 h h y d r a t i o n . The bond s t r e n g t h was 1.50 MPa, compared t o t h e v a l u e of 1.63 MF'a o b t a i n e d w i t h t h e overhanging beam method. The morphology of t h e f a i l u r e s u r f a c e s i s q u i t e d i f f e r e n t from t h o s e o b t a i n e d w i t h t h e overhanging beam method. A much g r e a t e r p r o p o r t i o n of s o l i d m a t e r i a l remains a t t a c h e d t o t h e s t e e l s u r f a c e . The debonded cement s u r f a c e a p p e a r s t o be much more porous and t h e C-S-H i s n o t masked by p l a t y s h e e t s of CH. A t 72 h t h e i n t e r f a c e m i c r o s t r u c t u r e i s n o t v e r y d i f f e r e n t . There a p p e a r s t o be a s l i g h t d e c r e a s e i n t h e amount of s o l i d s a t t a c h e d t o t h e s t e e l s u r f a c e and l a r g e r CH c r y s t a l s masking t h e C-S-H on t h e debonded cement s u r f a c e s . The b e h a v i o u r of t h e i n t e r f a c e zone i n a bond-strength

d e t e r m i n a t i o n may be dependent on t h e t e s t method

-

a s u b j e c t t h a t needs f u r t h e r i n v e s t i g a t i o n .

Concluding remarks

A new method h a s been developed f o r d e t e r m i n i n g t h e bond s t r e n g t h of cement p a s t e t o s t e e l . The development of bond s t r e n g t h a t e a r l y a g e s of cement h y d r a t i o n c a n be followed. Experimental d i f f i c u l t i e s a s s o c i a t e d w i t h

FIG. 7

SEM micrographs of debonded s u r f a c e (24 and 72 h h y d r a t i o n , d i r e c t t e n s i o n ) ( a ) , ( b ) : s t e e l s u r f a c e ( c ) , ( d ) : cement s u r f a c e

( a ) , ( c ) : w/c=0.30, 24 h h y d r a t i o n ( b ) , ( d ) : w/c=0.30, 72 h h y d r a t i o n

(14)

M. Nakayama and J.J. Beaudoin

Vol. 1 7 , No. 3

a p p l i c a t i o n of s t r e s s t o bond-strength specimens have been e l i m i n a t e d . I n t e r n a l s t r e s s developed d u r i n g t h e h y d r a t i o n p r o c e s s i s t a k e n i n t o account i n t h e e s t i m a t i o n o f bond s t r e n g t h . The f o l l o w i n g c o n c l u s i o n s a r e drawn:

1. Maximum bond s t r e n g t h i n c r e a s e s w i t h w/c r a t i o when 0.25 < w/c <

0.35.

2. Bond f a i l u r e o c c u r s c o n s i s t e n t l y i n a l a y e r a few micrometers from t h e s t e e l s u r f a c e .

3. The i n t e r f a c e l a y e r c o n s i s t s e s s e n t i a l l y of CH and C-S-H, and i t s composition and m i c r o s t r u c t u r e a r e c o n s i s t e n t w i t h a unique i n t e r f a c e zone d e s c r i b e d by many workers.

4. The amount of CH l a y e r removed from t h e s t e e l s u r f a c e a p p e a r s t o d e c r e a s e w i t h water-cement r a t i o .

5. Bond s t r e n g t h d e c r e a s e s a t l a t e r a g e s , p o s s i b l y due t o c r y s t a l growth of CH i n t h e i n t e r f a c e zone.

Acknowledgements

The a u t h o r s acknowledge t h e a s s i s t a n c e of Messrs. R.E. Myers and E.G. Quinn w i t h t h e e x p e r i m e n t a l work.

R e f e r e n c e s

1. H.R. S a s s e and M. F i e b r i c h , M a t e r i a l s and S t r u c t u r e s ,

16

(941, 293 (1983).

S.G. C r o l l , J. O i l and Col. Chem. Assoc.,

63,

271 (1980). E.M. Corcoran, J. P a i n t Tech.,

41

(538), 635 (1969).

S. Z i e g e l d o r f and H.K. H i l s d o r f , 7 t h I n t . Cong. Chem. Cem. P a r i s . , Vol. I V , 333 (1980).

M. d e l Campo, RILEM B u l l . No. 4, 18 (1959).

J.F. R a f f l e , Proc. B r i t . Ceram. Soc., No. 35, 295 (1984). R.F. Feldman, Cem. Tech.

2,

5 (1972).

S. Akihama, T. Suenaga, and T. Banno, Kajima I n s t . of C o n s t r u c t i o n Tech., Report No. 53, 97 (1984).

E.L. French, i n Proc. Conf. on Aspects of Adhesion, U n i v e r s i t y of London P r e s s , London, England, 120 (1963).

R.J. Gray and C.D. J o h n s t o n , RILEM Symp. on T e s t i n g and T e s t Methods of F i b r e Cement Composites, The C o n s t r u c t i o n P r e s s , Hornby, England, Paper 6.1, 317 (1978).

M. Maage, RILEM Symp. on T e s t i n g and T e s t Methods of F i b r e Cement Composites, The C o n s t r u c t i o n P r e s s , Hornby, England, Paper 6.2, 321

(1978).

12. V.S. L m a c h a n d r a n and R.F. Feldman, I1 Cemento

15

( 3 ) 311 (1978).

13. A. Burakiewicz, RILEM Symp. on T e s t i n g and T e s t Methods of F i b r e Cement Composites, The C o n s t r u c t i o n P r e s s , Hornby, England, Paper 6.5, 355 (1978).

14. G.D. S c h n i t t g r u n d , Bond S t r e n g t h Between Cement H y d r a t e s and S t e e l , PhD T h e s i s , U n i v e r s i t y of I l l i n o i s , Urbana, I l l i n o i s , U.S.A., 192 (1975). 15. V. Laws, A. Langley, and J. West, J. Mat. S c i . 21 289 (1986).

16. R. Zimbelmann, Cem. Concr. Res.,

15

( 5 ) , 801 (I&).

17. P.J.M. Monteiro, J . C . Maso, and J.P. O l l i v i e r , Cem. Concr. Res.,

3

953 (1985).

(15)

T h i s p a p e r i s being d i s t r i b u t e d i n r e p r i n t f o r m by t h e I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n . A l i s t of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research C o u n c i l o f C a n a d a , O t t a w a , O n t a r i o , KIA 0R6. Ce document e s t d i s t r i b u e s o u s forme d e t i r 6 - a - p a r t p a r 1 ' I n s t i t u t de r e c h e r c h e e n c o n s t r u c t i o n . O n p e u t o b t e n i r une l i s t e d e s p u b l i c a t i o n s de 1 ' I n s t i t u t p o r t a n t s u r les t e c h n i q u e s ou l e s r e c h e r c h e s e n matiere d e b l t i m e n t e n 6 c r i v a n t B l a S e c t i o n d e s p u b l i c a t i o n s , I n s t i t u t de r e c h e r c h e e n c o n s t r u c t i o n , C o n s e i l n a t i o n a l d e r e c h e r c h e s du Canada, Ottawa ( O n t a r i o ) , K1A OR6.

Références

Documents relatifs

In this section, the authors show how the models presented in ‘Homogenization procedure’ and ‘Micro consistutive models’ sections are combined together in an algorithmic procedure

The concluding part describes four different applications that were built using the various KBS toolkits presented in the previous chapters: Two classifi- cation systems using

VIII - :ةساردلا لكيه :يلاتلا وحنلا ىلع لوصف ةثلاث ىلا عوضوملا اذه ميسقت ىلا ةرورضلا تضتقا ةساردلا فادهأ قيقحتل  لولأا لصفلا : لصفلا اذه لوانتي

Also at Department of Physics, California State University, Sacramento CA; United States of America. Also at Department of Physics, King’s College London, London;

assess the retention rate of the delivered ASCs. We found that 1 h after transplantation approximately 4.5% and 24% of the ASCs injected into the myocardium remained in the heart

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

within nanofabricated hydrophilic (as opposed to hydrophobic) surfaces, and the influence of an extended precursor film on the wetting dynamics of water penetrating a