• Aucun résultat trouvé

Beyond Petrov-Galerkin projection by using « multi-space » priors

N/A
N/A
Protected

Academic year: 2021

Partager "Beyond Petrov-Galerkin projection by using « multi-space » priors"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: hal-02173637

https://hal.inria.fr/hal-02173637

Submitted on 4 Jul 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Beyond Petrov-Galerkin projection by using “ multi-space ” priors

Cédric Herzet, Mamadou Diallo, Patrick Héas

To cite this version:

Cédric Herzet, Mamadou Diallo, Patrick Héas. Beyond Petrov-Galerkin projection by using “ multi-space ” priors. European Conference on Numerical Mathematics and Advanced Applications (ENU-MATH), Sep 2017, Vos, Norway. �hal-02173637�

(2)

Beyond Petrov-Galerkin projection

by using « multi-space »  priors

Cédric Herzet Inria, France

Joint work with M. Diallo & P. Héas

(3)

The target problem…

where H is a Hilbert space (h·, ·i and k·k) a : H ⇥ H ! R is a bilinear operator b : H ! R is a linear operator

Find h?

(4)

… and its Petrov-Galerkin approximation

Find ˆhPG 2 Vn such that a(ˆhPG, h) = b(h) 8h 2 Zn

(5)

The precision of Petrov-Galerkin can be

quantified by an « instance optimal property »

(6)

Standard methods constructing Vn often

return a set of subspaces and their « widths »

5

Standard outputs of methods constructing :Vn

such that

E.g., « reduced basis » methods

dim(Vk) = k

V0 ⇢ V1 ⇢ . . . ⇢ Vn,

k = 0 . . . n. dist(h?, Vk)  ˆ✏k,

(7)

The Petrov-Galerkin projection

discards most of the available information

6

Standard outputs of methods constructing :Vn

such that

E.g., « reduced basis » methods

dim(Vk) = k

V0 ⇢ V1 ⇢ . . . ⇢ Vn,

k = 0 . . . n. dist(h?, Vk)  ˆ✏k,

(8)

Can we use this information to improve the projection process?

(9)

The Petrov-Galerkin projection can be reformulated as a variational problem

ˆ hPG = arg min h2Vn n X j=1 (bj haj, hi)2 span ⇣{zj}nj=1⌘ = Zn

aj is the Riesz’s representer of a(·, zj)

bj = b(zj) where

(10)

The proposed « multi-space » decoder adds new constraints to the variational problem

ˆ hMS = arg min h2Vn n X j=1 (bj haj, hi)2, subject to dist(h, Vk)  ˆ✏k, k = 0 . . . n 1.

(11)

A graphical representation of the problem n = 2 Vk = span ⇣ {vi}ki=1 ⌘ •PVn(h ?) v2 v1 span(Vn)

(12)

A graphical representation of the problem • ˆ hPG •PVn(h ?) v2 v1 span(Vn) “iso-contour” of Pn j=1(bj haj, hi) 2 n = 2 Vk = span ⇣ {vi}ki=1

The shape of the iso-contours depends on G = [hai, vji]ij

(13)

A graphical representation of the problem ˆ✏0 • ˆ hPG= ˆhMS •PVn(h ?) v2 v1 span(Vn) “iso-contour” of Pn j=1(bj haj, hi) 2 {h : dist(h, V0) ˆ✏0} n = 2 Vk = span ⇣ {vi}ki=1

The shape of the iso-contours depends on G = [hai, vji]ij

(14)

A graphical representation of the problem ˆ✏1 ˆ✏0 • ˆ hPG • ˆ hMS •PVn(h ?) v2 v1 span(Vn) “iso-contour” of Pn j=1(bj haj, hi)2 {h : dist(h, V0) ˆ✏0} {h : dist(h, V1) ˆ✏1} n = 2 Vk = span ⇣ {vi}ki=1

The shape of the iso-contours depends on G = [hai, vji]ij

The feasibility region depends on {Vk}nk=1 and {ˆ✏k}nk=1

(15)

Can we give some guarantee on the

(16)

Instance optimality properties

Petrov-Galerkin:

« Multi-space » decoder: h? hˆPG  C(G) dist(h?, Vn), h? hˆMS 0 @ n X j=`+1 2 j + ⇢ `2 + (dist(h?, Vn)) 2 1 A 1 2

where ` and j’s are “easily-computable” quantities only

(17)

Particularization of the instance optimality bound to some examples

ˆ✏1 ˆ✏0 • ˆ hPG • ˆ hMS v2⇤ v⇤1 •PVn(h ?) v2 v1 span(Vn)

(18)

Particularization of the instance optimality bound to some examples

ˆ✏1 ˆ✏0 • ˆ hPG • ˆ hMS v2⇤ v⇤1 •PVn(h ?) v2 v1 span(Vn) h? hˆPG  1 h? hˆMS  3✏ 1 2 j = sing. values of G = 8 < : 1 j = 1 . . . n 3, ✏12 j = n 2, n 1, ✏ j = n. ˆ ✏j = 8 < : 1 j = 0 . . . n 3, ✏12 j = n 2, n 1, ✏ j = n, dist(h?, Vk) = ˆ✏j

(19)
(20)

PG projection can been carried out efficiently

with a complexity per iteration

O(n

2

)

ˆ hPG = arg min h2Vn n X j=1 (bj haj, hi)2

« Least square » problem: can be solved efficiently via gradient-based methods with a complexity per iteration.O(n2)

(21)

Our decoder can also be implemented with a

complexity per iteration

O(n

2

)

ˆ hMS = arg min h2Vn n X j=1 (bj haj, hi)2, subject to P ? Vk(h)  ˆ✏k, k = 0 . . . n 1.

Our problem can be rewritten as:

We use the « Alternating Directions Method of Multipliers » to solve this convex problem with a complexity per iterationO(n2)

(22)

Some results

(23)

We consider a parametric mass transfert problem

µ14h + b(µ2) · rh = s in ⌦

µ1rh · n = 0 in @⌦

where b(µ2) = [cos(µ2) sin(µ2)]T

s = exp kx mk 2 2 2 2 ! µ1 = [0.03, 0.05] µ2 = [0, 2⇡]

(24)

The multi-space decoder improves

the worst-case approximation error over PG

10 20 30 40 50 10 5 10 4 10 3 10 2 10 1 100 101 102 dim(Vn) sup h ? 2 M h ? ˆ h Orthogonal projection Galerkin projection Multi-space projection

(25)

Our contributions

We derive an instance optimal guarantee for our « multi-space » decoder

We propose an efficient implementation for the « multi-space » decoder

We exploit additional information in the Petrov-Galerkin projection

(26)

Appendix

(27)
(28)

ADMM (first step): problem reformulation

We add n new variables and n new constraints.

ˆ hMS = arg min hn2Vn n X j=1 (bj haj, hni)2, subject to ⇢ PV? k(hk)  ˆ✏k, k = 0 . . . n 1, h0 = h1 = . . . = hn.

(29)

ADMM (second step): main recursions h(l+1)n = arg min hn2Vn n X j=1 (bj haj, hni)2 + ⇢ 2 n 1X k=1 hn h(l)k + u(l)k 2 , h(l+1)k = arg min hk hk h(l+1)n + u(l)k 2subject to PV?k(hk)  ˆ✏k, u(l+1)k =u(l)k + h(l+1)n h(l+1)k h(l)k 2 Vn and u(l)k 2 Vn 8k, l

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,