• Aucun résultat trouvé

Fire resistance of reinforced concrete columns

N/A
N/A
Protected

Academic year: 2021

Partager "Fire resistance of reinforced concrete columns"

Copied!
13
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Research Paper (National Research Council of Canada. Division of Building

Research); no. DBR-RP-622, 1974

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=5a42dfb4-01fa-4b9d-85cf-de28d5d4a4b9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5a42dfb4-01fa-4b9d-85cf-de28d5d4a4b9

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40001756

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Fire resistance of reinforced concrete columns

(2)
(3)
(4)

Fire Resistance of Reinforced Concrete Columns Resistance au feu des colonnes en beton arm6 Feuerwiderstand von Stahlbetonstiitzen

T.T. LIE D.E. A L L E N

Division of Building Research National Research Council of Canada

Ottawa, Canada

In the p a s t , the f i r e r e s i s t a n c e of s t r u c t u r a l m e m b e r s could only be d e t e r - mined by subjecting t h e m to s t a n d a r d f i r e t e s t s . Now i t i s possible to d e t e r m i n e the f i r e r e s i s t a n c e of v a r i o u s s t r u c t u r a l m e m b e r s by calculation.

A n u m e r i c a l p r o c e d u r e h a s been developed (1) to calculate the f i r e r e s i s - tance of s q u a r e r e i n f o r c e d c o n c r e t e columns and h a s b e e n checked w i t h the r e s u l t s of a c t u a l f i r e t e s t s . T h e p r o c e d u r e has b e e n u s e d to calculate f i r e r e s i s t a n c e under both s t a n d a r d AST M t e s t conditions (1) and under conditions

that m o r e c l o s e l y r e s e m b l e those e n c o u n t e r e d i n p r a c t i c e (2).

Under s t a n d a r d t e s t conditions, t h e f i r e r e s i s t a n c e , e x p r e s s e d i n time to f a i l u r e , i s calculated a s a function of type of a g g r e g a t e , column s i z e , cover thickness to s t e e l , amount of s t e e l , e c c e n t r i c i t y of loading, d e s i g n s a f e t y factor and equivalent buckling length.

T h e s t a n d a r d ASTM t e s t conditions ( 3 ) a s s u m e that the column i s f r e e t o expand, w h e r e a s i n f a c t a column i s often r e s t r a i n e d by t h e s u r r o u n d i n g s t r u c - t u r e and t h e r e b y a t t r a c t s m o r e load t h a n a s s u m e d . T o examine t h e influence of r e s t r a i n t on the behaviour of the c o l u m n s , calculations of f i r e r e s i s t a n c e have b e e n made f o r c o l u m n s under v a r i o u s d e g r e e s of a x i a l r e s t r a i n t .

Another condition i n which t e s t and p r a c t i c e d i f f e r i s the t e m p e r a t u r e c o u r s e of the f i r e to which the column i s exposed ( i n p r a c t i c e f i r e s e v e r i t i e s c a n v a r y o v e r a wide range). T o study t h i s , f i r e - r e s i s t a n c e c a l c u l a t i o n s have b e e n made f o r columns e x p o s e d to heating a c c o r d i n g to v a r i o u s t e m p e r a t u r e c u r v e s that a r e c h a r a c t e r i s t i c of those of a c t u a l f i r e s .

M a t e r i a l P r o p e r t i e s

T h e t e m p e r a t u r e r i s e i n a column i s d e t e r m i n e d f o r the h e a t flow equations a s a function of two p r o p e r t i e s of the c o n c r e t e , t h e r m a l conductivity a n d t h e r m a l capacity. T h e s e p r o p e r t i e s a r e s t r o n g l y dependent o n the type of aggregate. Q u a r t z a g g r e g a t e , which h a s the highest t h e r m a l diffusivity of a l l c o n c r e t e s , w a s s e l e c t e d f o r d e t e r m i n i n g t h e s e p r o p e r t i e s f o r n o r m a l weight; c r y s t a l l i n e

(5)

246 I V - F I R E RESISTANCE OF REINFORCED CONCRETE COLUMNS

expanded s h a l e a g g r e g a t e w a s chosen f o r lightweight c o n c r e t e . Values of the p r o p e r t i e s a r e given i n r e f e r e n c e ( 4 ) .

T h e m o s t i m p o r t a n t m e c h a n i c a l p r o p e r t i e s that d e t e r m i n e the s t r e n g t h of r e i n f o r c e d c o n c r e t e a r e the c o m p r e s s i v e s t r e n g t h and modulus of e l a s t i c i t y of the c o n c r e t e , and the yield s t r e n g t h and modulus of e l a s t i c i t y of the s t e e l r e i n - forcing. Approximate a n a l y t i c a l r e l a t i o n s , which give t h e s e p r o p e r t i e s as a function of t e m p e r a t u r e , have been d e r i v e d f o r nor ma1 weight c o n c r e t e , light- weight c o n c r e t e and s t e e l using existing d a t a ( 5 - 7 ) . T h e r e l a t i o n s h i p s a r e shown in F i g u r e 1. I I I / I [ C O I . I P % l T i l V L I r i i N G l W I I H O R r l * L ( Y i l G i 4 l C C l N C P l l I - Y I E L D 7 0 1 1 1 1 O r < ! i l l - - I I I l l In t h o s e p a r t s of t h e s t u d i e s that included a p e r i o d of decaying f i r e t e m -

,

,

p e r a t u r e , the following a s s u m p t i o n s

w e r e made r e g a r d i n g the change of 0. 8

m a t e r i a l p r o p e r t i e s a s they cool down.

0.6

F o r c o n c r e t e it w a s a s s u m e d that the

m a t e r i a l p r o p e r t i e s a r e unchanged 0.4

d u r i n g cooling and a r e e q u a l to those

c o r r e s p o n d i n g to the m a x i m u m t e m - g

-

0 . 2

p e r a t u r e r e a c h e d . F o r s t e e l i t was u

-

4

a s s u m e d that the s a m e r e l a t i o n s h i p s z

z

o

1 . 2 -

hold f o r cooling a s well a s f o r heating.

2

I I l l 1 I I

- D e f o r m a t i o n s of c o n c r e t e and s t e e l due to t e m p e r a t u r e change w e r e a s s u m e d ( 2 ) b a s e d on e x i s t i n g infor- 0 . 6 - mation. Q u a r t z a g g r e g a t e c o n c r e t e w a s c h o s e n b e c a u s e o t h e r a g g r e g a t e s , e s p e c i a l l y lightweight a g g r e g a t e s , ex- pand l e s s with i n c r e a s i n g t e m p e r a t u r e . o , 2 - - Calculation of F i r e R e s i s t a n c e 0 I I I I I I 0 I00 200 1 0 0 400 5 0 0 6 0 0 7 0 0 800 9 0 0 Column t e m p e r a t u r e s a r e cal- T E M P E R A T U R E , "C culated by a n u m e r i c a l method (8). F i g u r e 1: Effect of T e m p e r a t u r e T h e method a s s u m e s r a d i a t i v e heat on Material P r o p e r t i e s t r a n s f e r f r o m the f i r e to the s u r f a c e

of the column. In the column the

heat t r a n s f e r p r o c e e d s by conduction. T h e t e m p e r a t u r e dependence of the

t h e r m a l p r o p e r t i e s of the m a t e r i a l a r e taken into a c c o u n t in the calculation. During a f i r e , l a r g e t e m p e r a t u r e g r a d i e n t s , hence l a r g e s t r e s s g r a d i e n t s ,

o c c u r i n the column c r o s s - s e c t i o n . F i g u r e 2, b a s e d on a n a n a l y s i s of the

s t r e s s e s and s t r a i n s o c c u r r i n g in the c o l u m n d u r i n g f i r e ( 2 ) , s h o w s how s t r e s s d i s t r i b u t i o n changes i n a c o l u m n s e c t i o n d u r i n g a f i r e . E a r l y i n a f i r e , very high s t r e s s e s occur n e a r the outside of the s e c t i o n and c r a c k s a p p e a r i n the inner a r e a , which i s under t e n s i l e s t r a i n . As the f i r e p r o g r e s s e s , the outer c o n c r e t e l o s e s i t s s t r e n g t h , the t e m p e r a t u r e g r a d i e n t s become l e s s s t e e p , and the extent of c r a c k i n g i n the i n n e r a r e a i s reduced. As f a i l u r e i s approached, the c r a c k s i n the c e n t r a l a r e a d i s a p p e a r a s the r e d u c e d effective c r o s s -section b e c o m e s s t r e s s e d to capacity throughout. T h i s de m o n s t r a t e s t h a t f i r e r e s i s - t a n c e c a n be calculated o n the b a s i s of u l t i m a t e capacity of the c r o s s - s e c t i o n , which a s s u m e s full s t r e s s r e d i s t r i b u t i o n a t f a i l u r e .

(6)

T.T. LIE - D.E. ALLEN 247 F i g u r e 2: S t r e s s D i s t r i b u t i o n in C o n c r e t e Section During F i r e (20 c m S q u a r e , 4.970 S t e e l , 1. 25 c m Cover, Calculated F i r e R e s i s

-

tance 54 m i n . ) T h e s t r e n g t h of rein- f o r c e d c o n c r e t e columns a t e l e v a t e d t e m p e r a t u r e s has b e e n d e t e r m i n e d by the s a m e method as the ACI method ( 9 ) f o r room t e m p e r a t u r e , by r e p l a c i n g the r e l e v a n t mate- r i a l p r o p e r t i e s by t h e i r t e m - p e r a t u r e - d e p e n d e n t values given i n F i g u r e 1. T o do t h i s t h e c r o s s - s e c t i o n was divided into s m a l l e l e m e n t s , the p r o p e r t i e s f o r e a c h e l e m e n t d e t e r m i n e d for the c o r r e s p o n d i n g t e m p e r a t u r e , and t h e effects integrated

o v e r t h e section. F i g u r e 3,

a t y p i c a l i n t e r a c t i o n d i a g r a m of a x i a l and bending strength, shows how f i r e r e d u c e s the s e c t i o n s t r e n g t h with time. In the c a s e of long c o l u m n s , the r e s i s t a n c e a l s o depends o n the buckling

load, which i s a function of the s t i f f n e s s . T h e s t i f f n e s s i s likewise d e t e r m i n e d

by i n t e g r a t i n g the t e m p e r a t u r e - d e p e n d e n t stiffness of e l e m e n t s . T h e stiffness of the c o n c r e t e , however, i s reduced d u e

to c r a c k i n g and this i s approximated by ? O D I I I

means of a reduction f a c t o r . F i g u r e 3

-

-

S H O P , C O L U M N

shows how buckling effects d u r i n g f i r e r e d u c e the s t r e n g t h of a n i n t e r m e d i a t e column and that of a s h o r t column.

In T a b l e I the calculation method i s c o m p a r e d to a c t u a l t e s t r e s u l t s of axially loaded q u a r t z a g g r e g a t e columns ( 1 0 ) ; t h e s e t e s t s w e r e c a r r i e d out under well defined heating and loading con-

ditions. It i s s e e n that the calculation 0 . 5

1 . 0 1 . 5 2 . 0 2 . 5

p r o c e d u r e gives a c o n s i s t e n t , although 4 L I I O I N G M O M E N , A T F A , L U P I , Lrr . A,

somewhat c o n s e r v a t i v e , e s t i m a t e of the f i r e r e s i s t a n c e s of r e i n f o r c e d c o n c r e t e

columns under known load conditions

$

2 0 6

:

h

A X I A L LoAD O N L Y . 5 H o I . r C O L U M N

r

i

o v e r a c o n s i d e r a b l e r a n g e of s l e n d e r n e s s f o , e 2 5 cu - ~ r r i i a r . * c a ~ , < r r \ C O L U h l N r a t i o s . T h e d i f f e r e n c e s , which a r e in 'IENDIIIC E - 0 2 o,,,, \ the o r d e r of 10 to 20 p e r c e n t , a r e p r o b - z

-

\.

0

----

__

ably mainly due to c o n s e r v a t i v e n e s s i n : o 20 1 0 d o 80 1 0 0

T I M I . M I N U T E 5

the m a t e r i a l p r o p e r t i e s used and in the

calculation a s s u m p t i o n s . F i g u r e 3: Effect of F i r e o n Column

Standard F i r e R e s i s t a n c e of S q u a r e Columns Strength ( 1 5 c m x 15 c m ,

N o r m a l Weight Concrete

F i g u r e 4 shows the calculated f i r e 3. 570 R e i n f o r c i n g , 1. 25

r e s i s t a n c e of s q u a r e columns under ASTM c m Cover)

(7)

I V - FIRE RESISTANCE OF REINFORCED CONCRETE COLUMNS

T A B L E I

-

COMPARISON O F CALCULATED F I R E RESISTANCES

WITH TEST RESULTS

c a s e d e s c r i b e d a s follows. T h e column, designed a c c o r d i n g to ACI 318-63 (adopted f o r the National Building Code of Canada), w a s pin-ended, 3 m long, and subjected to full d e s i g n dead load plus l i v e load. It w a s a l s o subjected to the minimum e c c e n t r i c i t y specified i n ACI-318 (0. 1 of the s i z e of the column o r 2. 5 c m , whichever i s the g r e a t e r ) ; t h i s c o r r e s p o n d s t o a typical i n t e r i o r lower s t o r e y column.

T h e m a i n p a r a m e t e r s affecting f i r e r e s i s t a n c e a r e column s i z e , cover and type of a g g r e g a t e . F i g u r e 4 shows that a n i n c r e a s e of cover i n c r e a s e s the f i r e r e s i s t a n c e , a s expected, owing to t h e r m a l protection. This i n c r e a s e , however, l e v e l s off when the cover r e a c h e s 1/4 of c o l u m n s i z e ( t ) . It i s fol- lowed by a d e c r e a s e , c a u s e d by a d e c r e a s e i n the m o m e n t - r e s i s t i n g l e v e r a r m due to a weakening of the o u t e r l a y e r s of c o n c r e t e . F o r l a r g e , lightly r e i n - f o r c e d s e c t i o n s and s m a l l c o v e r , the influence of the c o v e r i s negligible b e c a u s e the c o n c r e t e c a r r i e s the e n t i r e load at f a i l u r e .

Specimen

O t h e r f a c t o r s that affect the f i r e r e s i s t a n c e of a column a r e the length of the column, e c c e n t r i c i t y ( o r moment) and the safety f a c t o r . Studies ( 1 ) showed that a n i n c r e a s e of s a f e t y f a c t o r o r a l i v e load l e s s than the full d e s i g n live

load, may significantly i n c r e a s e the f i r e r e s i s t a n c e . T h e r e s u l t s a l s o show

that a n i n c r e a s e i n e c c e n t r i c i t y d e c r e a s e s the f i r e r e s i s t a n c e , e s p e c i a l l y when the p e r c e n t a g e of s t e e l i s s m a l l ( 1 to 2%). T h e d e c r e a s e , however, i s generally not of p r a c t i c a l i m p o r t a n c e b e c a u s e e c c e n t r i c i t y i n a c o l u m n under f i r e will b e

C o m p r e s s i v e s t r e n g t h of c o n c r e t e , ~ / m m

"

R a t i o time to f a i l u r e , ~ e s t / ~ a l c . T e s t load, kN ( i ) 15 c m x 15 c m

-

4 c o r n e r b a r s 2 c m d i a . , c o v e r 1 . 2 c m T i m e to f a i l u r e , minutes 2 3 4 5 T e s t 38 3 1 3 1 3 1 273 273 273 27 3 Calculated ( i i ) 20 c m x 20 c m

-

4 c o r n e r b a r s 2 c m d i a . , c o v e r 2.9 c m 6 4 69 63 6 6 3 4 5 6 57 5 5 55 55 3 2 32 43 43 1 . 1 2 1. 25 1. 1 5 1 . 2 0 ( i i i ) 30 c m x 30 c m - 4 c o r n e r b a r s 2.1 c m dia. , 4 mid-face b a r s 2. 2 c m dia.

,

c o v e r 3 c m 464 464 59 8 598 107 105 107 107 89 89 8 8 88 147 11 1 . 2 0 1. 18 1. 22 1. 22 1708 1. 12 4 6 165

(8)

T.T. LIE - D.E. ALLEN C O Y t Y C I , L O i [ l i l L O \ i i C t , F i g u r e 4: F i r e R e s i s t a n c e of Reinforced C o n c r e t e Columns a s a Function of Cover T h i c k n e s s to S t e e l for V a r i o u s Column and S t e e l Slzes ( C o l u m n Length: 3 m; Min E c c e n t r i c i t y : 2. 5 c m o r 0. I t ; Full L i v e Load) g r e a t l y r e d u c e d f r o m the design e c c e n t r i c i t y a s s u m e d f o r calculation ( 1 ) . It w a s a l s o found that the f i r e r e s i s t a n c e d e c r e a s e s with i n c r e a s e of s l e n d e r n e s s r a t i o ; t h i s generally affects only t a l l s l e n d e r columns

A d 1 with a s m a l l p e r c e n t a g e of steel. 2 4 ' 8 C O V L R C h L O V I P C M T h e r e s u l t s given i n F i g u r e 4 P S I C E L A R C , C O L U M N i R L i l l * i I - - - L I G l l l l l t l r H l C ~ I I C ~ ~ I ~ and in R e f e r e n c e 1 f o r s q u a r e - 11OPtI L I I I G I I I C O 1 I C P I I I columns c a n b e e x p r e s s e d i n the

following s i m p l e d e s i g n r u l e s f o r m i n i m u m column s i z e ( t c m ) a n d cover

*

min' ( C m i n , c m ) i n t e r m s of r e q u i r e d f i r e r e s i s t a n c e ( R , h r ) : t . = 10f(R t 1) f o r n o r m a l weight c o n c r e t e min t . = 7 . 5 f ( R t 1) f o r lightweight c o n c r e t e min C . = 2 . 5 R f o r R

<

2 h r min C . = 1 . 2 5 R t 2 . 5 f o r R

>

2 h r min

w h e r e f , a f a c t o r that t a k e s into account o v e r - d e s i g n , equivalent buckling length ( k h ) and p e r c e n t a g e of s t e e l ( p ) , i s given a s follows:

*

W i r e m e s h i n c o v e r i s r e c o m m e n d e d i f c o v e r i s g r e a t e r than 3 . 7 5 c m O v e r - d e s i g n f a c t o r 1.00 1 . 2 5 1. 50 Values of f k h

5

3 m 1 . 0 0 . 9 0 . 8 k h = 6 m t

5

30 c m P

<

370 1 . 2 1 . 1 1 . 0 All o t h e r c a s e s 1.0 0 . 9 0. 8

(9)

I V - F I R E RESISTANCE O F R E I N F O R C E D C O N C R E T E C O L U M N S

T h e s e r e s u l t s indicate l o w e r r a t i n g s o n d i m e n s i o n s f o r n o r m a l weight c o n c r e t e s than existing r a t i n g s cited i n the National Building Code of Canada, and about the s a m e f o r lightweight c o n c r e t e s . The lower r a t i n g s a r e attributed to a d e c r e a s e i n d e s i g n s a f e t y factor ( e x i s t i n g r a t i n g s w e r e based on t e s t s

c a r r i e d out i n 1920

-

1921), a c o n s i d e r a t i o n of m i n i m u m e c c e n t r i c i t y that o c c u r s

i n p r a c t i c e , and a m o r e a c c u r a t e s i m u l a t i o n of the h e a t t r a n s f e r conditions i n a f i r e .

I n t e r a c t i o n With Building S t r u c t u r e

D e t e r m i n a t i o n of f i r e r e s i s t a n c e , w h e t h e r by s t a n d a r d f i r e t e s t o r by t h e above c a l c u l a t i o n s , i s b a s e d o n the a s s u m p t i o n of a pin-ended column with no i n t e r a c t i o n with the s u r r o u n d i n g building s t r u c t u r e . Actually, a c o l u m n expands during f i r e and, b e c a u s e of the r e s i s t a n c e of the s u r r o u n d i n g s t r u c t u r e to this expansion, m o r e than t h e a s s u m e d dead load plus l i v e load i s a t t r a c t e d to the column. It t h e r e f o r e a p p e a r s , f o r the s i n g l e column exposed to f i r e , t h a t the s t a n d a r d p r o c e d u r e e r r s o n the unsafe side.

F i g u r e 5 shows the r e s u l t s of

a n i n t e r a c t i o n study of a column with a typical r e i n f o r c e d c o n c r e t e build- ing s t r u c t u r e . T h e c u r v e s i n the top g r a p h show how the applied l o a d , in- cluding the effect of i n t e r a c t i o n , c o m p a r e s with the calculated column

s t r e n g t h . T h e different c u r v e s label-

led "n s l a b s " r e f e r to t h e n u m b e r of floor s l a b s above the column that r e s i s t expansion of the column; "0 s l a b " c o r r e s p o n d s to no interaction. Curves in the bottom g r a p h show the c o r r e s p o n d i n g column lengthening and l a t e r a l deflection of the column a t mid-height.

As the v e r t i c a l s t i f f n e s s of the s u r r o u n d i n g s t r u c t u r e i n c r e a s e s f r o m 0 to 3 s t o r e y s ( o r s l a b s ) , the applied load i n c r e a s e s and the f i r e r e s i s t a n c e i s d e c r e a s e d , a s s e e n by c o m p a r i n g

column movements. T h e d e c r e a s e ,

however, i s not l a r g e and the r e - sulting f i r e r e s i s t a n c e i s n e v e r much l e s s than that calculated f r o m

Equation ( 1 ) . T h i s i s b e c a u s e a r e d u c t i o n i n end moments due to i n c r e a s e d column flexibility c o m - p e n s a t e s f o r the i n c r e a s e d column load due to i n t e r a c t i o n . As the v e r t i c a l s t i f f n e s s i s i n c r e a s e d f u r t h e r to 5 s t o r e y s , h o w e v e r , a change t a k e s place. What happens i s that the i n c r e a s e d

TIME, hllNUTES F i g u r e 5: C o l u m n - S t r u c t u r e I n t e r - a c t i o n During F i r e (30 c m x 30 c m S q u a r e Column, 4. 370 S t e e l , 3. 7 5 c m Cover, 3 m long.)

(10)

T.T. LIE - D.E. ALLEN 25 1

applied load c a u s e s l a t e r a l bending to take place, followed by c h o r d s h o r t e n i n g between the column ends and relief of the applied load, s o that f a i l u r e does not take place. Eventually, the column b e c o m e s s h o r t e r than it w a s i n i t i a l l y and, owing to load t r a n s f e r to adjacent s u p p o r t s , the f i r e r e s i s t a n c e i s i n c r e a s e d beyond that f o r an isolated column. F o r v e r y s t i f f r e s i s t a n c e ( 1 5 s t o r e y s ) , the column bends o r buckles quite e a r l y , but the column d o e s not fail. If the s t r u c - t u r e c a n t r a n s f e r the total load to o t h e r s u p p o r t s , the column w i l l n e v e r fail.

T h e r e s u l t s in F i g u r e 5, t h e r e f o r e , indicate that i n t e r a c t i o n effects with

the s u r r o u n d i n g s t r u c t u r e due to column expansion a r e not likely to reduce the f i r e r e s i s t a n c e of i s o l a t e d columns, and i n s o m e c a s e s may i n c r e a s e i t sub- stantially. Another m o r e c r i t i c a l i n t e r a c t i o n effect, r e v e a l e d i n the r e c e n t St. Louis f i r e , however, i s the effect of l a r g e l a t e r a l expansion of t h e slab above the f i r e floor causing s h e a r f a i l u r e of columns. T h i s r e q u i r e s f u r t h e r investigation.

F i r e R e s i s t a n c e Under Actual F i r e Conditions

T h e s t a n d a r d f i r e t e m p e r a t u r e c u r v e initially r i s e s a t a p r e s c r i b e d r a t e and then d r o p s suddenly to ambient t e m p e r a t u r e ( 3 ) . In actual f i r e s the t e m - p e r a t u r e r e a c h e d i n the p e r i o d of t e m p e r a t u r e r i s e c a n be much h i g h e r or l o w e r than the s t a n d a r d t e m p e r a t u r e s . In addition, i n s t e a d of a sudden d r o p to a m - bient t e m p e r a t u r e , t h e r e i s , i n actual p r a c t i c e , a g r a d u a l d e c r e a s e of the f i r e t e m p e r a t u r e a f t e r the p e r i o d of t e m p e r a t u r e r i s e .

A wide v a r i e t y of t e m p e r a t u r e c o u r s e s a r e p o s s i b l e , depending on the f i r e load, ventilation and o t h e r c h a r a c t e r i s t i c s of t h e e n c l o s u r e ( 1 ) . The m o s t

s e v e r e a r e the ventilation controlled f i r e s , i. e.

,

t h e r a t e of burning of the

combustible m a t e r i a l s i n the e n c l o s u r e i s d e t e r m i n e d by the d i m e n s i o n s of the openings through which the a i r n e c e s s a r y f o r combustion can be supplied. F o r m u l a e d e s c r i b i n g the t e m p e r a t u r e c o u r s e of ventilation-controlled f i r e s ( 1 1 ) have b e e n adopted to calculate f i r e r e s i s t a n c e of r e i n f o r c e d c o n c r e t e columns ( 2 ) .

As shown i n F i g u r e 6 , two major p a r a m e t e r s d e t e r m i n e the t e m p e r a t u r e

c o u r s e of ventilation-controlled f i r e s

- -

t h e window opening and the f i r e load

( Q ) , a s defined in F i g u r e

6. T h e l a r g e r the open-

ing f a c t o r ( F ) the g r e a t e r

the t e m p e r a t u r e r i s e and the s h o r t e r the duration. T h e f i r e load affects only

the d u r a t i o n of the f i r e

- -

the h i g h e r the f i r e load the longer the d u r a t i o n of

the f i r e . In s t u d i e s a t D B R / N R C ( 2 ) , t h r e e c h a r a c t e r i s t i c t e m p e r a - t u r e c u r v e s , c o r r e s p o n - ding to F = 0 . 0 2 , F = 0 . 0 5 ( s t a n d a r d c a s e ) , TlhlE. H O U R S and F = 0 . 1 , w e r e F i g u r e 6: C h a r a c t e r i s t i c T e m p e r a t u r e Curves chosen.

F o r Various F i r e Loads Q and Opening

(11)

252 I V - F I R E RESISTANCE O F R E I N F O R C E D CONCRETE COLUMNS when Q

>

Q c r i t , the t i m e to F i g u r e 7: S t r e n g t h - T i m e C u r v e s f o r 30 c m f a i l u r e v e r y quickly a p p r o a c h e s x 30 c m Column ( 2 . 27'0 S t e e l a c o n s t a n t value, R , obtained 3.75 c m Cover) by a s s u m i n g a n unlimited f i r e 2400 I I I I I 1 - S T A N D A R D i l l € Tr?AllPAIUI'I - - - - - - C H i r s * C I E I I 5 T I C F l X t I t l , ~ L L * T U R l S - 0 I N L G M' - - - - D [ s I G N L C , D - - \ - - a

---

3 0

-

- * 400 - - - - I load. T h e time to f a i l u r e , R , i s a function of the opening f a c t o r : the g r e a t e r the openings, the g r e a t e r the r a t e of h e a t r i s e , and the s h o r t e r the t i m e to f a i l u r e . On the o t h e r hand, Qcrit i n c r e a s e s with a n i n c r e a s e of opening f a c t o r s i n c e m o r e of the h e a t e s c a p e s the f i r e c o m p a r t m e n t .

F i g u r e 7 c o m p a r e s , f o r a t y p i c a l c a s e , c o l u m n s t r e n g t h vs t i m e f o r different c h a r a c t e r i s t i c t e m p e r a t u r e c u r v e s with that f o r the stan- d a r d c u r v e . T h e c u r v e s show that f o r a f i r e l o a d l e s s than a c r l t i c a l value, Q c r i t , no f a i l u r e of the column takes p l a c e ; i n other w o r d s below a c e r t a i n c r i t i c a l v a l u e of the f i r e load t h e r e i s insufficient c o m b u s t i b l e content t o heat

F i g u r e 8 shows the r e l a t i o n s h i p between Qcrit, R , and d i m e n s i o n s for a cover of 3 . 7 5 c m . T h e m a j o r v a r i a b l e s affecting c r i t i c a l f i r e load w e r e found ( 2 ) to be column s i z e , c o v e r and opening f a c t o r ; p e r c e n t a g e of s t e e l h a s only a

minor effect. T h e following a p p r o x i m a t e r e l a t i o n s h i p between c r i t i c a l f i r e

load, Q c r i t , and f i r e r e s i s t a n c e based o n the s t a n d a r d f i r e t e s t ( t i m e to failure f o r F = 0. 0 5 ) , R s , w a s d e t e r m i n e d f r o m the r e s u l t s f o r n o r m a l weight s q u a r e

c o n c r e t e columns: Q c r i t = 4

+

10 Rs ( s m a l l , m e d i u m openings)

= 4

+

16 Rs ( l a r g e openings) ( 2 )

I 5 o loo 150 200 250 '0° the column to f a i l u r e . Above

11\16 M I N U T E S the c r i t i c a l f l r e load, i. e . , T h i s r e l a t i o n s h i p i s helpful i n a s s e s s i n g Code 60 I I I I I I 6 I I I j l l - C R I I I C A L rlltc L O A D oCll, - - I ~ M E TO F , \ I L U R E F O R a=.ocR,,- f i r e r e s i s t a n c e r e q u i r e - ,.? / ments s i n c e Q c r i t c a n be 5 50 - /- / r e l a t e d to m e a n f i r e load / - f o r a given occupancy, a m , a s follows: ( 3 ) Q c r i t = k Qm w h e r e k i s a d e s i g n s a f e t y f a c t o r . T h e d e s i g n f i r e s a f e t y f a c t o r i s r e l a t e d to the r i s k of f a i l u r e which - c a n be d e t e r mined a s a O I O

'

I

3b

I

4b

50 O I O

j0

j0

4b

50 function of the b a s i c r e - C O L U ~ ~ N S I Z ~ C M q u i r e m e n t s of life s a f e t y and economic l o s s ( 5 ) ; f o r F i g u r e 8: F i r e R e s i s t a n c e P a r a m e t e r s F o r

(12)

T.T. L I E - D.E. ALLEN 253

of k i s r e q u i r e d f o r t a l l buildings f o r r e a s o n s of l i f e s a f e t y and e c o n o m i c l o s s

t h a n f o r low buildings. T h u s , by u s i n g E q u a t i o n s ( 2 ) and ( 3 ) t h e r e q u i r e d f i r e

r e s i s t a n c e , R s , c a n b e r e l a t e d to the b a s i c r e q u i r e m e n t s of l i f e s a f e t y and e c o n o m i c l o s s .

S u m m a r v and Conclusions

T h e f i r e r e s i s t a n c e of s q u a r e , r e i n f o r c e d c o n c r e t e columns h a s been s t u d i e d u n d e r both s t a n d a r d ASTM t e s t conditions and u n d e r c o n d i t i o n s that m o r e c l o s e l y r e s e m b l e t h o s e m e t i n p r a c t i c e . F i r e r e s i s t a n c e s a r e d e t e r m i n e d by n u m e r i c a l c a l c u l a t i o n b a s e d on the t h e r m a l and s t r u c t u r a l p r o p e r t i e s of

m a t e r i a l s a t high t e m p e r a t u r e s . C o m p a r i s o n s w i t h f u r n a c e t e s t s of columns

show t h a t the c a l c u l a t e d f i r e r e s i s t a n c e s a r e c o n s i s t e n t with t h o s e m e a s u r e d but a r e about 10 to 20 m i n u t e s l e s s , the d i f f e r e n c e being a t t r i b u t a b l e mainly to c o n s e r v a t i v e n e s s i n the m a t e r i a l p r o p e r t i e s used.

U n d e r s t a n d a r d ASTM t e s t c o n d i t i o n s , the f i r e r e s i s t a n c e i n t i m e to f a i l - u r e i s c a l c u l a t e d a s a function of type of a g g r e g a t e , c o l u m n s i z e , c o v e r , p e r - c e n t a g e of s t e e l , e c c e n t r i c i t y of load, d e s i g n s a f e t y f a c t o r and b u c k l i n g length. B a s e d on c a l c u l a t e d r e s u l t s , s i m p l e d e s i g n r u l e s a r e given ( E q u a t i o n ( 1 ) ) .

T h e s t a n d a r d ASTM t e s t conditions a s s u m e t h a t a column i s f r e e to e x p a n d , w h e r e a s i n f a c t a column i s r e s t r a i n e d by the s u r r o u n d i n g s t r u c t u r e and t h e r e b y a t t r a c t s m o r e load t h a n a s s u m e d . A n u m e r i c a l s t u d y of a r e s t r a i n e d column d u r i n g f i r e ( F i g . 5) i n d i c a t e s , h o w e v e r , t h a t the a s s u m p t i o n of no r e s t r a i n t i s g e n e r a l l y c o n s e r v a t i v e .

B a s e d on the u s e of m o r e r e a l i s t i c f i r e t e m p e r a t u r e c u r v e s t h a n the s t a n - d a r d ASTM c u r v e , f i r e r e s i s t a n c e w a g c a l c u l a t e d i n t e r m s of c r i t i c a l f i r e l o a d ( a m o u n t of c o m b u s t i b l e s ) below which no f a i l u r e t a k e s p l a c e , and t i m e to f a i l u r e if the f i r e load i s g r e a t e r than c r i t i c a l . Although the c r i t i c a l f i r e l o a d i n c r e a s e s with i n c r e a s e d ventilation, the t i m e to f a i l u r e d e c r e a s e s c o n s i d e r a b l y with i n c r e a s e d ventilation. E q u a t i o n s ( 2 ) and ( 3 ) p r o v i d e a n a p p r o x i m a t e r e l a t i o n - s h i p b e t w e e n s t a n d a r d f i r e r e s i s t a n c e of c o n c r e t e c o l u m n s and c r i t i c a l f i r e l o a d ; t h i s i s useful in r e l a t i n g Code f i r e r e s i s t a n c e r e q u i r e m e n t s to t h e fun- d a m e n t a l r e q u i r e m e n t s of life s a f e t y a n d e c o n o m i c l o s s .

T h i s p a p e r i s a contribution f r o m t h e Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada and i s published w i t h the a p p r o v a l of the D i r e c t o r of the Division.

R e f e r e n c e s

( 1 ) L i e , T . T . and D. E . Allen. C a l c u l a t i o n of t h e F i r e R e s i s t a n c e of Rein-

f o r c e d C o n c r e t e C o l u m n s . National R e s e a r c h Council of C a n a d a ,

D i v i s i o n of Building R e s e a r c h , T e c h . P a p e r No. 378 (NRCC 12797), 1972.

( 2 ) Allen, D. E . and T . T . L i e . F u r t h e r Studies of t h e F i r e Resistance of

R e i n f o r c e d C o n c r e t e Columns. In p r e s s .

( 3 ) S t a n d a r d Methods of F i r e T e s t s of Building C o n s t r u c t i o n and M a t e r i a l s .

ASTM D e s i g n a t i o n E l 1 0 - 7 1 , 1971 Book of ASTM S t a n d a r d s , P a r t 14, p. 431-448.

( 4 ) H a r m a t h y , T . Z . T h e r m a l P r o p e r t i e s of C o n c r e t e a t E l e v a t e d T e m p e r -

a t u r e s . ASTM J o u r n a l of M a t e r i a l s , Vol. 5, No. 1 , M a r c h 1 9 7 0 , p. 4 7 - 7 4 ( N R C 11266).

(13)

254 I V - F I R E RESISTANCE O F R E I N F O R C E D CONCRETE COLUMNS

( 5 ) L i e , T . T . F i r e and Buildings. London, Applied S c i e n c e P u b , L t d . , 1972.

( 6 ) A b r a m s , M. S. C o m p r e s s i v e S t r e n g t h of C o n c r e t e a t T e m p e r a t u r e s to

1000 F. T e m p e r a t u r e and C o n c r e t e , ACI P u b l i c a t i o n Sp 25, 1968, p. 33-58.

( 7 ) H a r m a t h y , T . Z . and J. E . B e r n d t . Hydrated P o r t l a n d Cement a n d Light-

weight C o n c r e t e a t E l e v a t e d T e m p e r a t u r e s . J o u r n a l , A m e r i c a n C o n c r e t e I n s t i t u t e , Vol. 63, No. 1 , 1966, p. 93-112. ( N R C 8847) ( 8 ) L i e , T . T . and T. Z . H a r m a t h y . A N u m e r i c a l P r o c e d u r e to C a l c u l a t e t h e T e m p e r a t u r e of P r o t e c t e d S t e e l C o l u m n s E x p o s e d to F i r e . N a t i o n a l R e s e a r c h Council of C a n a d a , D i v i s i o n of Building R e s e a r c h , (NR C 12535), 1972.

(9) ACI Building Code R e q u i r e m e n t s f o r R e i n f o r c e d C o n c r e t e . A m e r i c a n

C o n c r e t e I n s t i t u t e , ACI S t a n d a r d 31 8-7 1 , 1971.

( 1 0 ) B e c k e r , W. and J.. Stanke. B r a n d v e r s u c h e a n Stahlbetonfertigstutzen.

D e u t s c h e r A u s s c h u s s f u r S t a h l b e t o n , Heft 215, B e r l i n , 1970. ( 1 1 ) L i e , T . T . C h a r a c t e r i s t i c T e m p e r a t u r e C u r v e s f o r V a r i o u s F i r e

S e v e r i t i e s . In p r e s s .

The fire resistance of square, reinforced concrete columns

has been studied under both standard fire test conditions and

under conditions that more closely resemble those encountered in

practice, including column-structure interaction effects and

realistic fire conditions. Based on calculated results, simple

design rules are given for the fire resistance as a function of

type of aggregate, column size, cover thickness to steel, amount

of steel, design safety factor and equivalent buckling strength.

On a proc6d6

2 1'6tud.e de la r6sistance au feu des colonnes en

b6ton arm6 sownises d'une part aux conditions g6n6ralement d6finies

par les normes, d'autre part

2 des conditions qui correspondent

mieux

2 celles rencontrges dans la pratique, en tenant compte des

effets d'interaction entre la colonne et la structure, et des

conditions d'incendie r6alistes. En se basant sur les rksultats

du calcul, on indique des rBgles de dimensionnement simples donnant

la r6sistance au feu en fonction du type dtagr6gats,

de la taille

de la colonne, du recouvrement des aciers d'armature, du pourcentage

d'armature, du facteur de s6curitd et de la rgsistance gquivalente

au f

lambement

.

ZUS

AMMENFAS

SUNG

Der Feuerwiderst

and quadratischer Stahlbetonstutzen wurde

sowohl fiir normierten Brandverlauf, als auch fiir praxisnahe Be-

dingungen unter Einschluss der Wechselwirkung zwischen Stutzen

und Tragwerk und realistischer Brandbedingungen untersucht. Ge-

stutzt auf die Berechnungsergebnisse werden einf

ache Bemessungs-

regeln gegeben fiir den Feuerwiderstand in Abhangigkeit der Zu-

schlagstoff

e, der Stutzengrosse, der Stahluberdeckung, des

Bewehrungsgehalts, des rechnerischen Sicherheit

sf

aktors und der

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in