• Aucun résultat trouvé

Mixing in rivers under complex conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Mixing in rivers under complex conditions"

Copied!
22
0
0

Texte intégral

(1)

HAL Id: cea-02972469

https://hal-cea.archives-ouvertes.fr/cea-02972469

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mixing in rivers under complex conditions

L Gond, E Mignot, J Le Coz, L Kateb

To cite this version:

L Gond, E Mignot, J Le Coz, L Kateb. Mixing in rivers under complex conditions. Journée du GIS HED2 (Groupement d’Intérêt Scientifique “ Hydraulique pour l’Environnement et le Développement Durable ”), Société Hydrotechnique de France (SHF) / GIS-HED, Nov 2019, Marne la vallée, France. �cea-02972469�

(2)

Mixing in rivers

under complex conditions

L. Gond

123

, E. Mignot

1

, J. Le Coz

2

, L. Kateb

3

1

LMFA - INSA Lyon, France

2

Irstea, Lyon, France

3

CEA, Cadarache, France

(3)

Mixing in rivers

under complex conditions

1/ Goal

2/ Theoretical aspects

(4)

1. Goal

C > toxicity levels Unpolluted area Polluted area = Mixing zone Evaluate the variability of the transverse mixing coefficient in inhomogenous rivers

(5)

Simulation of a pollutant release in river

2. Theoretical aspects

(6)

Advection-diffusion in turbulent regime

• D = molecular diffusivity • ε𝑡𝑖 = turbulent diffusivity

• ഥ𝑢𝑖 = Time-averaged velocity vector • 𝑐= Concentration

• overbar = time-averaged • x= space, t=time, i=1,2,3

𝜕𝑐

𝜕𝑡

+ ഥ

𝑢

𝑖

𝜕𝑐

𝜕𝑥

𝑖

= 𝐷

𝜕²𝑐

𝜕𝑥

𝑖2

+

𝜕

ε

𝑡𝑖 𝜕𝑐 𝜕𝑥𝑖

𝜕𝑥

𝑖

Scalar dispersion in rivers is governed by: 1/ molecular diffusion

2/ turbulent diffusion

(7)

Simplification for a

1D flow

Hypotheses =

* Turbulentregime  D<< εt

* Uniform 1D horizontal flow  depth averaging: 𝑼𝒙 = 𝒖𝒅 (𝒛) and Uz=Uy=0 * Vertical mixing >> transverse mixing  vertical dispersion neglected

* Considering the averaged transverse mixing coefficient Ez

-> 𝑢𝑑 = local streamwise velocity – h = local depth -> 𝑐𝑑 = depth average concentration

-> z = transverse position

-> ε𝑧= transverse mixing coefficient 𝜕(ℎ𝑐𝑑) 𝜕𝑡 + 𝜕(𝑢𝑑ℎ𝑐𝑑) 𝜕𝑥 = 𝜕 𝜕𝑧 (ε𝑧ℎ 𝜕𝑐𝑑 𝜕𝑧 )

Yotsukura & Cobb (1972)

Simplified diffusion equation

𝑞 = ׬0𝑧 𝑢𝑑(𝛿)ℎ(𝛿)𝑑𝛿 = cumulative discharge

Streamtube model equation

1 𝑢𝑑 𝜕𝑐𝑑 𝜕𝑡 + 𝜕𝑐𝑑 𝜕𝑥 = 𝜕 𝜕𝑞 (ε𝑧𝑢𝑑ℎ 2 𝜕𝑐𝑑 𝜕𝑞 )

z

0

x

𝑢

𝑑 1 𝑢𝑑 𝜕𝑐𝑑 𝜕𝑡 + 𝜕𝑐𝑑 𝜕𝑥 ≈ 𝐸𝑧𝜓𝑈𝐻 2 𝜕 2 ҧ𝑐 𝑑 𝜕𝑞2 𝜓𝑈𝐻2 = 1 𝑄න 𝑄 𝑢𝑑(𝑞)ℎ(𝑞)2𝑑𝑞

-> Ez= averaged transverse mixing coefficient 1 𝑢𝑑 𝜕𝑐𝑑 𝜕𝑡 + 𝜕𝑐𝑑 𝜕𝑥 = 𝜕 𝜕𝑞 (ε𝑧𝑢𝑑ℎ 2 𝜕𝑐𝑑 𝜕𝑞 )

Streamtube model equation

Constant coefficient equation

B

q

Q

(8)

𝜃 𝑥, 𝑞 = න 0 ∞ 𝐶 𝑥, 𝑞, 𝑡 𝑑𝑡 Local dosage : 𝜕𝜃 𝜕𝑥 = 𝐸𝑧𝜓𝑈𝐻 2 𝜕 2𝜃 𝜕𝑞2

Instantaneous injection at q=q

0

1 𝑢𝑑 𝜕𝑐𝑑 𝜕𝑡 + 𝜕𝑐𝑑 𝜕𝑥 ≈ 𝐸𝑧𝜓𝑈𝐻 2 𝜕 2 ҧ𝑐 𝑑 𝜕𝑞2 Time-dependent equation : න 𝑑𝑡 𝑐𝑑 𝑥, 𝑞, 𝑡 = 0 = 𝑐𝑑 𝑥, 𝑞, 𝑡 = +∞ = 0 x  0 Q q C ( kg /m3) time (s) C ( kg /m3) time (s) General solution : 𝜃𝑢 𝑥, 𝑞 = 𝑀 4𝜋𝐸𝑧𝜓𝑈𝐻2𝑥𝑒𝑥𝑝 𝑞2 4𝐸𝑧𝜓𝑈𝐻2𝑥

Solution with mirror : θ 𝑥, 𝑦 = 𝜃𝑢 𝑥, 𝑞 + 𝑞0 + 𝜃𝑢 𝑥, 𝑞 − 𝑞0 + σ𝑛=1𝑁 𝜃𝑢 𝑥, 2𝑛Q ± 𝑞 ± 𝑞0 + 𝜃𝑢 𝑥, 2𝑛Q ± 𝑞 ± 𝑞0

(Seo & al. (2016))

(Beltaos, 1980)

(9)

3.1 Field procedure : Application to the Drac River

(10)

Step 1 : Determine segments to study

Segments studied must : • Have an easy access

• Have a homogenous geometry (roughness, width, depth, slope) • Be long enough (too short -> no mixing measurable)

(11)

Fluorescence probes :

- probes = Albillia GGNU-FL30 series 500 & 900 *6

- probes = TQ-tracer *2

Albillia

Calibration with several controled Rhodamine concentration + Temperature corrections y = 0.3138x + 0.3881 R² = 0.9999 0 20 40 60 80 100 120 140 0 100 200 300 400 500 mV ppb

Calibration Albillia probe

Concentration

V

ol

tag

e

Step 2 : Calibrate probes

(12)

Step 3 : Measure bathymetry + velocity field at each survey cross sections

ADCP Electronics

Battery

Video camera

ADCP (Acoustic Doppler Current Profiler)

ADCP installed on a River-Drone

(13)

Step 4 : Install sensors along 2 cross sections (near-bed)

Example of line of TQ-Tracer probes (EDF)

(14)

Step 5 : Sudden Rhodamine injection upstream

(15)

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0 200 400 600 800 1000 C ( kg/m 3 ) time (s) 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 V ( V) time (s)

Step 6 : Measure C(t) on each probe, evaluate , =f(q)

Using Calibration + temperature correction 0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0 100 200 300 400 500 600 700 800 900 C ( kg /m3)

Integrate to get: 𝜃 = ׬

𝑡=0𝑡=∞

𝑐𝑑𝑡

0 0.002 0.004 0.006 0.008 0.01 0 0.2 0.4 0.6 0.8 1 d os ag e (kg ,s /m 3)

dosage Section 1 dosage Section 2

Voltage = f(time)

Aggregate all data

(16)

𝐸

𝑧2

= 0.35 m²/s

𝐸

𝑧1

= 0.11 m²/s

Impervious emerging bloc strongly increase

the transverse mixing coefficient

240m

40m

From injection to S1 : 𝐸

𝑧1

= 0.11 m²/s

From

S1 to S2: 𝐸

𝑧2

= 0.35 m²/s

𝑬𝒛𝟏 = 𝟎. 𝟏𝟏 m²/s 𝑬𝒛𝟐 = 𝟎. 𝟑𝟓 m²/s 𝜕𝜃 𝜕𝑥 = 𝐸𝑧𝜓𝑈𝐻 2 𝜕2𝜃 𝜕𝑞2

(17)

Comparison of 𝐸

𝑧1

with literature data

𝑢∗ = 0.106 𝑚/𝑠 𝑄 = 15 𝑚3/𝑠 𝐵 = 24 𝑚 H = 0.6 𝑚 𝑈 = 0.95 𝑚/𝑠 𝐵 𝐻 = 40 𝑈/𝑢∗ = 9 =0.097

𝐸

𝑧1

𝐻𝑢 ∗

= 0.8

B/H = channel aspect ratio

= Darcy friction coefficient

𝐸

𝑧

𝐻𝑢 ∗

= f(

B

H

, )

in rivers

from the literature

𝐸

𝑧

𝐻𝑢 ∗

(18)

3.2 Application to the Durance river

Step 2 Step 3

(19)

La Saulce, 05110

18 transverse sections, 4 injection points :

100 m

N E

(20)

Channel with boulders

Deep and slow waters Boulders Shallow waters with rocks

Many different bed conditions on a small area :

(21)

Perspectives :

- Reproduce hydraulic conditions in laboratory (LMFA – INSA Lyon)

- Presentation of the results at RiverFlow 2020

Study of different flows with rough beds

Effect of roughness height on the mixing coefficient

(22)

References

Beltaos, S. (1980), Transverse mixing tests in natural streams. Journal of the Hydraulics Division, 106(10), 1607-1625.

Fischer, H.B, List, J.E., Koh, C.R., Imberger, J. (1979), Mixing in inland and coastal waters, Elsevier, New York

Gualtieri, C., Mucherino, C. (2007), Transverse turbulent diffusion in straight rectangular channels. 5thinternational symposium on environmental hydraulics

(ISEH 2007), Tempe, USA.

Rutherford, J.C. (1994), River mixing, Wiley, Chichester, U.K.

Yotsukura, N., Cobb, E. D., 1972. Transverse diffusion of solutes in natural streams. Geological Survey Professional Paper 582-C.

Il Won Seo, A.M.ASCE, Hwang Jeong Choi, Young Do Kim, and Eun Jin Han (2016), Analysis of Two-Dimensional Mixing in Natural Streams Based on Transient Tracer Tests

Références

Documents relatifs

geological trend crosses the cooling curve at the high end, which would suggest that mixing operates in almost all circumstances, with the implication that large volumes of

Details on the spatio-temporal variability of the mixing patterns due to the shoaling ISWs, inferred from vertical density overturns using the Thorpe scale method to get

Geleitet von der Erklärung des Begriffs Phonetik im Duden-Wörterbuch ist unter dem Terminus Phonetik Folgendes zu verstehen: „Die Wissenschaft von den

The proofs lead to a moderate deviation principle for sums of bounded random variables with exponential decay of the strong mixing coefficients that complements the large

This note proves the Bahadur representation of sample quantiles for strongly mixing random variables (including ρ-mixing and φ- mixing) under very weak mixing coefficients..

Using a counterexample based on a flow exhibiting chaotic advection, we have shown that the decay of scalar energy is independent on the sign of the intermediate Lyapunov exponent,

Intensity (I) and linear polarization (Q/I) theoretical spectrum of the Na i D lines as observed 4.1 arcsec inside the solar limb.. CRD: Assum- ing complete redistribution of

In the case of DLA in curved geometries (discussed below), this means that the angles on the unit disk in the complex plane (the pre-image of the cluster in curved space,