• Aucun résultat trouvé

THEORY OF THE ATTENUATION OF ELASTIC WAVES IN INHOMOGENEOUS SOLIDS

N/A
N/A
Protected

Academic year: 2021

Partager "THEORY OF THE ATTENUATION OF ELASTIC WAVES IN INHOMOGENEOUS SOLIDS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221568

https://hal.archives-ouvertes.fr/jpa-00221568

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THEORY OF THE ATTENUATION OF ELASTIC WAVES IN INHOMOGENEOUS SOLIDS

P. Klemens

To cite this version:

P. Klemens. THEORY OF THE ATTENUATION OF ELASTIC WAVES IN INHO- MOGENEOUS SOLIDS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-102-C6-104.

�10.1051/jphyscol:1981632�. �jpa-00221568�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, suppZ6ment au n012, Tome 42, de'cembre 1981 page C6-102

THEORY OF THE ATTENUATION OF E L A S T I C WAVES I N INHOMOGENEOUS S O L I D S

P.G. Klemens

Dept. o f P h y s i c s and I n s t . o f M a t e r i a l s S c i e n c e , ~ n i v . o f C o n n e c t i c u t , S t o r r s , CT 06268, U.S.A.

Abstract.- Temperature variations accompanying elastic waves cause heat conduction, entropy generation and thus attenuation of the waves. In homogeneous solids the temperature variations over half a wave-length and those between different phonon groups cause comparable attenuation. In inhomogeneous solids the temperature gradients are enhanced. The resulting attenu- ation exceeds that due to Rayleigh scattering except at very high frequencies or at low temperatures. Small inclusions and fiber-matrix composites are discussed.

1. Introduction.- In homogeneous single crystals the attenuation of elastic waves arises from the cubic anharmonicities. Kirchhoff first proposed a heat conduction mechanism for gases,") which can also be applied to solids. Attenuation due to the smooihing out of temperature differences between different groups of phonons was treated by

Akhie~er.'~) In both cases do the elastic waves set up temperature differences, and the irreversible heat transfer generates entropy so that elastic energy is converted into heat,

There are two additional attenuation processes in inhomogeneous solids. One is Rayleigh scattering, owing to variations in the local value of the wave velocity. The other is an enhancement of the heat conduction mechanism, because temperature differences are set up be- tween neighboring regions of different thermal expansivity, so that temperature gradients are increased. This was discussed by Zener. ( 3 ) It will be seen that the latter mechanism is more important than Rayleigh scattering except at very high frequencies or at low tem- peratures.

2. Homogeneous Solids.- The adiabatic temperature change due to a dilatation A is given by

dTs= -yTA (1)

where y is the ~rcneisen constant. If either A or y varies with position, T will likewise vary and obey

a ~ / a t = ~ v 2 T + a ~ ~ / a t (2) where D is the thermal diffusivity. If y is independent of position,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981632

(3)

one c a n w r i t e f o r a wave

A=Aoexp i ( k . g + w t ) and aT=T1 exp i(&.g+wt) ( 3

and from ( 2 )

iwT1= -k DT' 2 - iwyAo ( 4 )

P e r u n i t volume, t h e r a t e of e n e r g y l o s s from t h e wave i s r e - l a t e d t o t h e r a t e o f e n t r o p y p r o d u c t i o n by

-dE/dt=T d S / d t = ( K / T )

1

g r a d T

1

( 5

where K = D C i s t h e t h e r m a l c o n d u c t i v i t y , and C i s t h e s p e c i f i c h e a t p e r u n i t volume. The e n e r g y c o n t e n t p e r u n i t volume o f t h e wave i s E=&xA,, 2 where X i s t h e b u l k modulus. Thus one f i n d s f o r t h e r a t e o f e n e r g y l o s s

1 2

I / T = -E- d ~ / d t = y ( ~ / ~ ~ ) u ~ w ~ ( u 2 + w2)-'

where To i s d e f i n e d e q u a l t o X / C , and t h e c h a r a c t e r i s t i c f r e q u e n c y wo i s d e f i n e d a s

w = k D . 2

0

NOW wo depends on t h e wave f r e q u e n c y w , s i n c e k = w / v , . w h e r e v i s t h e wave v e l o c i t y . A t a l l b u t t h e h i g h e s t f r e q u e n c i e s w o < < w , s o t h a t t h e K i r c h h o f f a t t e n u a t i o n becomes

2 2 2

1 / = ~y (T/To)(D/v ~ ) w (8)

The A k h i e s e r mechanism c a n a l s o be d e s c r i b e d by ( 6 ) , e x c e p t t h a t i n p l a c e o f y 2 one must now u s e

y 2 ,

a weighted mean s q u a r e v a r i - a b i l i t y o f y f o r t h e d i f f e r e n t g r o u p s o f l a t t i c e modes, w h i l e wo d e s c r i b e s t h e r a t e a t which t h e i r t e m p e r a t u r e i s e q u a l i z e d by phonon i n t e r a c t i o n s . The l a t t i c e component of t h e t h e r m a l d i f f u s i v i t y i s D = v /3wo, i f we d i s r e g a r d t h e d i f f e r e n c e between three-phonon N and 2 U-processes. One g i s always i n t h e l i m i t w < < w o , s o t h a t t h e A k h i e s e r a t t e n u a t i o n becomes

-2 2 2

1 / = ~y (T/To)(3Dg/v ~ ) w ( 9

While f o r m a l l y 1 / ~ * e x c e e d s 1 /by a f a c t o r 3 , ~ ~ it may w e l l be t h e s m a l l e r o f t h e two, s i n c e y2 must be l e s s t h a n y 2 and s i n c e D i s

g o n l y t h e l a t t i c e component, n o t t h e t o t a l D . A f u r t h e r r e d u c t i o n i n l / ~ p e r h a p s by a f a c t o r 2, r e s u l t s from t h e i n c l u s i o n o f N-proces- ~ , s e s i n t h e d e f i n i t i o n of wo.

3. Inhomogeneous S o l i d s . - Temperature g r a d i e n t s and e n t r o p y g e n e r a - t i o n a r e enhanced i f t h e t h e r m a l e x p a n s i v i t y o r y depend on p o s i t i o n . I f t h e F o u r i e r components o f y ( g ) have p r i r l c i p a l components o f wave- number q and i f t h e i n h o m o g e n e i t i e s a r e o f s m a l l s c a l e s o t h a t q > > k , A c a n be t r e a t e d a s i n d e p e n d e n t o f p o s i t i o n , s o t h a t q 2 r e p l a c e s k 2 i n ( 4 ) and ( 7 ) , and ( 6 ) s t i l l h o l d s w i t h wo r e d e f i n e d . However, i n

(4)

JOURNAL DE PHYSIQUE

p l a c e o f y 2 one must u s e -2

y - - C viyi 2 - ( C v . y . 1 2

1 1 ( 1 0 )

where vi i s t h e f r a c t i o n a l volume o f t h e component o f Griineisen con- s t a n t yi. I f t h e s m a l l e s t d i a m e t e r o f t h e i n h o m o g e n e i t i e s i s L, wo=a 2 D/L, where D i s t h e s m a l l e r o f t h e t h e r m a l d i f f u s i v i t i e s . 4 . Some Numerical C a s e s . - C o n s i d e r s m a l l c o l l o i d i n c l u s i o n s s u c h a s p r o d u c e d by n e u t r o n i r r a d i a t i o n i n c r y s t a l s , w i t h ~ = 1 x 1 0 - ~ cm. Take T0=25,000 K , T.300 K , and D=vL/3, s o t h a t u 0 = 3 x l 0 l 1 s e c - l . Now

y 2 = n ~ o ~ y 2 , where Ay i s t h e d i f f e r e n c e between y o f t h e i n c l u s i o n a n d m a t r i x , n t h e i n c l u s i o n d e n s i t y , Vo t h e volume o f e a c h i n c l u s i o n . L e t A y = l , t h e n f r o m ( 1 0 ) a n d f r o m ( 6 ) w i t h w < < w o

l / r = 3 n 1 . 0 - ~ ~ n ~ ~ w ~ = 1 . 5 x 1 . 0 - ~ ~ w ~

i n i n v e r s e s e c o n d u n i t s , t h e second v a l u e b e i n g f o r nVo=0.005. T h i s may be compared w i t h R a y l e i g h s c a t t e r i n g by t h e s e i n c l u s i o n s w i t h

Gv/v=$ and v=3x105 cm/sec :-

3 4

l / = ~~ V ~ ( V ~ / V V ~ )w = 2 x 1 0 - ~ ~ n ~ ~ w ~ ( 1 2 ) s o t h a t R a y l e i g h s c a t t e r i n g i s r e l a t i v e l y weak below 6 GHz. A t low t e m p e r a t u r e s a t t e n u a t i o n by h e a t c o n d u c t i o n d e c r e a s e s a s TC.

A s a n o t h e r example c o n s i d e r a c o m p o s i t e o f f i b e r s embedded i n a c o n t i n u o u s m a t r i x , e a c h component o c c u p y i n g h a l f t h e volume, w i t h f i b e r d i a m e t e r 1 x 1 0 ~ ~ cm and D = 1 cm l s e c , s o t h a t 2 s e c - l . With t h e same m a t e r i a l p a r a m e t e r s ~ / T = ~ X ~ O - ~ ~ U ~ S ~ C - ~ d u e t o h e a t con- d u c t i o n , w h i l e f o r R a y l e i g h s c a t t e r i n g 1 / ~ ~ = 8 x 1 0 - 1 9 w 3 . The a t t e n u a - t i o n by enhanced h e a t c o n d u c t i o n i s much s t r o n g e r t h a n i n t r i n s i c a t t e n u a t i o n i n e i t h e r component, and e x c e e d s R a y l e i g h s c a t t e r i n g below a b o u t 1 0 MHz.

T h i s work was done i n c o l l a b o r a t i o n w i t h t h e E n g i n e e r i n g M a t e r i a l s D i v i s i o n o f t h e Naval R e s e a r c h L a b o r a t o r y .

R e f e r e n c e s

( 1 ) G . K i r c h h o f f , P o g g e n d o r f f ' s Ann. 1 3 4 , 177 ( 1 8 6 8 ) . ( 2 ) A. A k h i e s e r , J . Phys. (USSR)

1,

2 7 7 ( 1 9 3 9 ) .

( 3 ) C . Zener " E l a s t i c i t y a n d A n e l a s t i c i t y o f M e t a l s " Univ. o f Chicago P r e s s , C h i c a g o , 1948.

Références

Documents relatifs

Assuming that CDW defects are present in zero field for this type of contact geometry, no barrier opposes the nucleation of new defects on CDW motion, for the

- The probe hydro- phone used for measuring peak shock pressures in the liquid consisted of a thin PZT4 (Lead Zirconate Titanate) crystal mounted in such a way

multiple folded paths. the surface wave energy where needed to compensate for propagation losses by the method suggested in figure 13. Here some of the surface wave

Elastic wave propagation inside helical waveguides has been analyzed through a SAFE method based on a non-orthogonal curvilinear coordinate system that is

Introduction.- The method of multiple scales /l/ is used to analyse the propagation of finite- amplitude longitudinal and shear waves in a half space whose material properties

To fill the gap between flexural and torsional waves velocities, probably for the first time,rectangular cross section bars have been tested in torsion with the purpose of

The main result of the proposed boundary integral approach is a formula for topological derivative, explicit in terms of the elastodynamic fundamental solution, obtained by

6 CPHT, Ecole Polytechnique, CNRS, Universit´e Paris-Saclay, Route de Saclay, 91128 Palaiseau, France We describe here the methods (i) to extract the scattering time from