• Aucun résultat trouvé

EFFECT OF FAST SOLIDIFICATION ON IMPURITY TRAPPING AND AMORPHOUS FORMATION IN Si

N/A
N/A
Protected

Academic year: 2021

Partager "EFFECT OF FAST SOLIDIFICATION ON IMPURITY TRAPPING AND AMORPHOUS FORMATION IN Si"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: jpa-00223106

https://hal.archives-ouvertes.fr/jpa-00223106

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EFFECT OF FAST SOLIDIFICATION ON IMPURITY TRAPPING AND AMORPHOUS FORMATION IN Si

P. Baeri

To cite this version:

P. Baeri. EFFECT OF FAST SOLIDIFICATION ON IMPURITY TRAPPING AND AMOR- PHOUS FORMATION IN Si. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-157-C5-170.

�10.1051/jphyscol:1983525�. �jpa-00223106�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplkment au nOIO, Tome 44, octobre 1983 page C5-157

EFFECT OF FAST S O L I D I F I C A T I O N ON IMPURITY TRAPPING AND AMORPHOUS FORMATION I N S i

P. Baeri

I s t i t u t o Dipartimentale d i F i s i c a , U n i v e r s i t d d i Catania, Corso I t a Z i u 57, I 95129 Catunia, I t a l y

Resume - Les aspects p r i n c i p a u x du modele thermique de l l " a n n e a l i n g " des semi- conducteurs par l a s e r o n t PtP e t u d i e s en regardant en p a r t i c u l i e r l e s parame- t r e s concernant l a v i t e s s e de l ' i n t e r f a c e l i q u i d e - s o l i d e pendant l a phase de s o l i d i f i c a t i o n . On a mis en evidence l e s c o n d i t i o n s experimentales sous l e s - q u e l l e s on peut c o n t r a l e r c e t t e v i t e s s e e n t r e quelque cm/s e t 100 m/s. En p a r t i c u l i e r on montre, comment l a segregation e t l e " t r a p p i n g " des impuretes dependent de c e t t e v i t e s s e 3 p a r t i r de mesures de c a n a l i s a t i o n e t backscatte- r i n g sur des c i b l e s de s i l i c i u m implantees e t i r r a d i e e s par l a s e r . On a mis en evidence l ' e f f e t de l a d i f f u s i v i t e dans l a phase s o l i d e sur l e c o e f f i c i e n t de segregation 2 des v i t e s s e s t r e s elevees, en conparant l e t r a p p i n g dans l e S i e t dans Gede l a m&me impurete. Les r e s u l t a t s concernant l ' a m o r p h i s a t i o n du Si par i r r a d i a t i o n breve (picoseconde) au l a s e r o n t e t @ mis en r e l a t i o n avec l e s c a l c u l s de v i t e s s e de l ' i n t e r f a c e l i q u i d e - s o l i d e . Dans c e t t e comparaison on a employe un modele p l u s complique dans l e q u e l on a i n t r o d u i t l ' e l a r g i s s e - ment de l a d i s t r i b u t i o n de l ' e n e r g i e deposee due 3 l a d i f f u s i o n des e l e c t r o n s - lacunes

.

A b s t r a c t

-

The main features o f t h e thermal model f o r t h e semiconductor l a - s e r annealing are reviewed w i t h t h e main emphasis t o t h e parameters which a f - f e c t t h e l i q u i d s o l i d i n t e r f a c e v e l o c i t y d u r i n g t h e s o l i d f i c a t i o n . The e x p e r i - mental c o n d i t i o n s c o n t r o l l i n g t h i s v e l o c i t y are p o i n t e d o u t and several exam- p l e s which cover a broad range o f values, from few cm/s up t o 100 m/s a r e shown.

The v e l o c i t y dependence o f t h e i l l l p u r i t y segregation and t r a p p i n g i s shown as e x p e r i m e n t a l l y determined by channeling b a c k s c a t t e r i n g measurements o f S i im- p l a n t e d and i r r a d i a t e d samples. The t r a p p i n g behaviour a t t h e l i m i t i n g condi- t i o n o f very h i g h and very low speed i s discussed a l s o i n con n e c t i o n w i t h t h e c e l l u l a r s t r u c t u r e a r i s i n g from i n t e r f a c e i n s t a b i l i t y . The r o l e of t h e s o l i d phase d i f f u s i v i t y on t h e segregation c o e f f i c i e n t a t very h i g h speed i s a l s o evidenced by means o f several examples i n c l udinq t h e comparison between t r a p p i n g i n S i and Ge o f t h e same i m p u r i t y . Results on t h e formation of amor- phous s i l i c o n l a y e r s by very f a s t s o l i d i f i c a t i o n a f t e r picosecond l a s e r i r r a - d i a t i o n a r e a l s o presented i n comparison w i t h c a l c u l a t i o n o f t h e s o l i d - l i q u i d i n t e r f a c e v e l o c i t y . I n t h i s case a more complex model, which take i n t o account t h e smearing o u t of t h e deposited energy d i s t r i b u t i o n by f r e e c a r r i e r genera- t i o n and d i f f u s i o n i s required.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983525

(3)

JOURNAL DE PHYSIQUE

INTRODUCTION

Most o f t h e phenomenq r e l a t i n g t h e l a s e r annealing o f S i l i c c n are s t r o n g l y a f f e c t e d by t h e r a t e o f c o o l i n g which f o l l o w s t h e m e l t i n g o f a t h i n l a y e r o f t h e sample a f - t e r t h e l a s e r i r r a d i a t i o n . Among t h i s phenomena, t h e t r a p p i n g o f i m p u r i t i e s a t c o n c e n t r a t i o n h i g h e r than t h e maximum e q u i l i b r i u m s o l u b i l i t y , t h e s u r f a c e segregation of these i m p u r i t i e s , t h e f o r m a t i o n o f p r e c i p i t a t e s i n c e l l u l a r s t r u c t u r e , t h e f o r - mation o f metastable compounds and t h e formation o f a metastable amorphous phase.

B a s i c a l l y , from t h e p o i n t o f view o f simple thermal model /1,2,3/, a t h i n l a y e r o f t h e sample i s heated and melted f o l l o w i n g t h e i r r a d i a t i o n o f a l a s e r p u l s e o f s u i - t a b l e energy d e n s i t y and t i m e duration; a f t e r t h e s w i t c h o f f o f t h e l a s e r i t r e s o l i - d i f y w i t h a p l a n a r s o l i d - l i q u i d i n t e r f a c e which moves a t a given speed v toward t h e sample s u r f a c e (see f i g . 1 )

SOLIDIFICATION VELOCITY

From t h e energy conservation i t f o l l o w s t h a t

Fig.1. Schematic r e p r e s e n t a t i o n o f t h e

where J i s t h e heat f l u x a t t h e interface,Ki t h e thermal c o n d u c t i v i t y a t t h e i n t e r f a c e ,

g /

i s t h e temperature g r a d i e n t a t t h e i n t e r f a c e i n t h e s o l i d , H i s t h e m e l t i n g dx i

PULSE ON PULSE oFF

XTL

enthalpy, p i s t h e mass d e n s i t y and v t h e l i q u i d - s o l i d i n t e r f a c e v e l o c i t y . Another term t a k i n g i n t o account t h e temperature g r a d i e n t i n t h e l i q u i d l a y e r should be i n c l u d e d i n equation ( 1 ) b u t i t can be neglected due t o t h e much lower value

m e l t i n g and s o l i f i c a t i o n o f a surface l a y e r induced by a l a s e r pulse.

- dT i n the l i q u i d i n most p r a c t i c a l cases /4/.

dx

D e t a i l e d n u ~ e r i c a l c a l c u l a t i o n s which i n c l u d e a l s o t h e temperature g r s d i e n t i n t h e l i q u i d as w e l l as t h e temperature and sample s t r u c t u r e dependence o f a l l t h e t h e r - mal and o p t i c a l parameters o f t h e m a t e r i a l , can be e a s i l y performed and g i v e as r e s u l t t h e k i n e t i c o f s o l i d - l i q u i d i n t e r f a c e b o t h d u r i n g t h e m e l t i n g and t h e s o l i - d i f i c a t i o n . But,as a f i r s t approximation,from e q . ( l ) one f i n d t h a t t h e main para- meter which a f f e c t t h e value o f v i s t h e heat f l u x t h r o u g h t t h e temperature g r a d i e n t i n t h e s o l i d . T h i s l a s t , i n t v r n , can be approximated, e s p e c i a l l y f o r i r r a d i a t i o n w i t h energy d e n s i t y very close t o t h e m e l t i n g t h r e ~ h o l d ~ w i t h the temperature gra- d i e n t b u i l d e d up b ~ / t h e h e a t i n g pulse. T h i s temperature p r o f i l e i s detertnined by t h e c o m p e t i t i o n between t h e r a t e o f t h e energy d e p o s i t i o n and t h e r a t e o f heat d i f f u s i o n . At t h e end o f t h e pulse, whose d u r a t i o n i s T, t h e l a s e r energy i s deposited w i t h i n .

the absorption l e n g t h a-I o r t h e heat d i f f u s i o n l e n g t h JZD-r, D being t h e (average) thermal d i f f u s i v i t y , d e p e n d i n g on which o f these two parameters i s l a r g e r .

The s o l i d i f i c a t i o n v e l o c i t y i s thendetermined by t h e f o l l o w i n g parameters f o r d i f f e - r e n t regimes :

(4)

1) pulse duration: when J% >a-' i .e. long pulse o r highly absorbed l a s e r wave- length. In t h i s case the temperature gradierlt i s about T,/J% and so the velo- c i t y increases with the inverse of the square root of T .

U.) absorption c o e f f i c i e n t : when ~5 < C 1 i .e. short pulse or s l i g h t l y absorbed l a s e r wavelength In t h i s case t h e temperature gradient i s about Tm-ole and so the ve-

l o c i t y i s almost independent on T b u t increases with a.

m)

energy density: The cases I ) and U) a r e valid near the melting threshold, increa sing the energy density above t h i s value generally one obtain a reduction of the velocity which in most cases i s inversally proportional t o the energy density.

R) substrate temperature: In the s i l i c o n case t h e heat diffusion c o e f f i c i e n t D i s strongly dependent on temperature so t h e velocity can be controlled by varying the substrate temperature. This e f f e c t althought was the f i r s t one used the change the R-s i n t e r f a c e velocity, leads t o lower variation than the other three.

The l i g h t absorption c o e f f i c i n t f o r Si czn range from l o 6 cm-' i n the case of U . V .

i r r a d i a t i o n t o 10 cm-l i n the case of Neodimium 1.06 um wavelength, the time dura- tion of a l a s e r pulse can be varied from some hundred us in f r e e running mode down t o some ps. Due t o t h i s great range of variation of the parameterja and T , using d i f f e r e n t available l a s e r s , t h e heat flux J a t t h e i n t e r f a c e can be varied by three order of magnitude from 10' t o 10' watt/crnz leading t o a velocity ranging from a10-I up t o a 100 m/s

TABLE I

Fig.2. Melt f r o n t position vs. time f o r several d i f f e r e n t i r r a d i a t i o n s in Si as described in t a b l e I . As zero time has been taken the s t a r t of the s o l i d i f i c s t i o n in a l l cases.

In f i g . 2 and t a b l e I i s shown in the same scale t h e melt f r o n t position as function of the time f o r four d i f f e r e n t cases. Case a i s a f r e e running Neodimium l a s e r on amorphous s i l i c o n ; case b i s a Q-switched Nd l a s e r on c r y s t a l l i n e s i l i c o n pre-heated a t 300°C with an absorption length ranging from 100 urn ( a t 300°C) t o lpm near the melting pointand a diffusion length about 1.5 urn; case c i s the same of case b but on amorphous s i l i c o n with an absorption length of about 0.5 um;

case d i s an,ultraviolet (ruby 2" harmonic) 2.5 ns pulse with absorption length of few hundred A and a diffusion length of about 0.5 urn.

In the csse a , c and d the velocity i s mainly determined by the time duration of the pulse in case b t h e velocity i s determined by the l i g h t absorption length which in average i s about 10 urn. In the present example theoaverage velocity during s o l i f i - cation of a layer whose thickness ranges from 1000 A t o 1 urn i s 2 cm/s, 80 cm/s, 4 m/s, 15 m/s in t h e case a,b,c and d respectively.

(5)

C5-160 JOURNAL DE PHYSIQUE

Some limitations,however,to t h e p o s s i b i l i t y o f o b t a i n i n g extremely h i g h v e l o c i t i e s may a r i s e from t h e f o l l o w i n g c o n s i d e r a t i o n s . For several tens o f m/s t h e tem- p e r a t u r e g r a d i e n t should be some 10' K/cm which can be reached o n l y i f t h e energy i s deposited and converted i n t o heat w i t h i n l o w 5 cm from t h e sample surface. Even i f both t h e d i f f u s i o n l e n g t h and adsorption l e n g t h are s m a l l e r than t h i s value, one may ask i f t h e energy o f t h e l a s e r p u l s e which i s p r i m a r l y s t o r e d i n t h e e l e c t r o n i c e x c i t a t i o n i s converted i n t o heat before t h e generated f r e e c a r r i e r s d i f f u s e more than lo-' cm. Assuming an ambipolar d i f f u s i o n c o e f f i c i e n t f o r f r e c a r r i e r s o f about 20 cm2/s /5/ t h e corresponding average t i m e needed f o r t h e energy s t o r e d i n e l e c t r o - n i c e x c i t a t i o n t o be converted i n t o heat i s about 10 ps.

To e x p l a i n w i t h an example t h i s p o i n t , i n Fig.3 i s represented t h e R-s i n t e r f a c e

0

0 5 10 15

Time (ns) N d 1 ~ 0 . 5 3 pm on Si-XTL

20 ps pulse

Fig.3. M e l t f r o n t p o s i t i o n f o r a 20 ps green p u l s e on c r y s t a l S i computed assuming the simple thermal model (T,~=O) (0.25 J/cm2)and i n c l u d i n g f r e e c a r r i e r generation and d i f f u s i o n w i t h a r e l a x a t i o n time o f 10 ps.

(0.7 J/cm2)

p o s i t i o n versus t i m e f o r a Neodimium 2" harmonic 20 ps p u l s e on S i c r y s t a l . The a b s o r p t i o n c o e f f i c i e n t f o r t h i s wavelength ranges from %lo4 a t room temperature t o 10' a t t h e m e l t i n g p o i n t so t h e absorption l e n g t h h$s an average value o f some 10-5cm. The heat d i f f u s i o n l e n g t h i s o n l y few hundred A. The corresponding s o l i d i - f i c a t i o n v e l o c i t y c a l c u l a t e d by t h e simple thermal model i s about 15 m/s (see curve l a b e l l e d TeoZO). F o l l o w i n g t h e computer model o f L i e t o l a and Gibson/6/ one can t a k e i n t o account a l s o t h e d i f f u s i o n o f f r e e c a r r i e r s b e f o r e t h e r m a l i z a t i o n . Assuming-a -r r e l a x a t i o n time dependent on f r e e c a r r i e r c o n c e n t r a t i o n as i n ref./6/,the curve l a

b e l l e d -ce0=lOps i s t h e c a l c u l a t e d m e l t f r o n t p o s i t i o n vs t i m e w i t h T = T ~ ~ ( ~ + ~ / ~ ~ ~ where p i s t h e c a r r i e r d e n s i t y and p,=

-

2x102' c a r r i e r s / c m 3 . The r e s u l t i n g v e l o c i -

t y i s slowed down a t about 5 m/s.

However,recent experiments /7/ have shown t h a t t h e r e l a x a t i o n t i m e i s l e s s than 1 ps and i n most casesthe simple thermal model can be used w i t h confidence. Moreover r e - cent t i m e r e s o l v e d transmictance measurement/8/ w i t h a probe beam a t 1.64 pm on a sample i r r a d i a t e d w i t h anul t r a v i o l e t picosecond l a s e r , c r e a t e d t h e c o n d i t i o n s f o r an extremely h i g h regrowth v e l o c i t y . Eoth heat d i f f u s i o n l e n g t h and a b s o r p t i o n l e n g t h a r e o f t h e o r d e r o f few hundred A and thus t h e v e l o c i t y computed on t h e b a s i s o f t h e simple thermal model should be o f t h e o r d e r o f hundred m/s.The experimental m e l t f r o n t k i n e t i c s e x t r a c t e d from t h e t r a n s m i s s i v i t y data show; f o r a 32 mJ/cm2 pulse, a t t h e beginning o f t h e s o l i d i f i c a t i o n , a v e l o c i t y value v e r y c l o s e t o 100 m/s although t h e average v e l o c i t y r e s u l t s about 30 m/s. T h i s data, again support t h e i d e a t h a t t h e average t i m e needed f o r t h e energy t o be converted from e l e c t r o n e x c i t a t i o n t o l a t t i c e v i b r a t i o n i s l e s s than 1 ps.

(6)

Standard heat flow calculation describes t h e s o l i d i f i c a t i o n process a s occurring a t the equilibrium melting point. Moreover t o l e t t h e s o l i d i f i c a t i o n occur with a given r a t e , an interface undercooling must be included in order t o provide t h e required driving force. If t h i s undercooling i s taken into account the resulting calculated s o l i d i f i c a t i o n velocity will be smaller because the heat flux a t the in- t e r f a c e has t o balance t h e l a t e n t heat a r i s i n g from sol i d i f i c a t i o r ~ & has t o pro- vide t h e required undercooling.

Accurate estimates f o r Si undercool ing do not e x i s t on t h i s s o l i d i f i c a t i o n velocity range. Heat flow calculation can be done t o include t h i s undercooling term /4/, b u t in order t o simplify them, a l i n e a r relationship between v and t h e required undercooling AT must be assumed: AT=Bv.

Following d i f f e r e n t authors/9,10/ a value of 5-15 K sm-I can be chosen f o r the para meter 13.

As an example in fig.4 i s reported a computed melt f r o n t positionas a function of

Using pulse l a s e r heating of semiconductor samples a new regime of crystal growth became open f o r experimental investigation. The process occurr f a r from thermodyna- mic equilibrium and a l l t h e physicalmodel of f a s t crystal growth can be rigorously tested also because of the large range of s o l i f i c a t i o n velocity t h a t can be explored as discussed i n the f i r s t part of t h i s work.

(7)

C5-162 JOURNAL DE PHYSIQUE

The f i r s t e f f e c t studied as function of the R-s i n t e r f a c e velocity was the impuri- t i e s surface accumulation. After the complete s o l i d i f i c a t i o n of the i r r a d i a t e d sam ple implanted with some dopant, part of the impurity i s rejected on t h e sample sur- face.

According t o t h e c l a s s i c a l theory of normal freezing t h i s has been explained a s f o l fows: whilst the melt f r o n t comstoward the surface, the impurity p r o f i l e i s broa- dened by the diffusion in t h e l i q u i d , a fraction of dopant i s rejected by the ad- vancing i n t e r f a c e i n the phase characterized by the higher s o l u b i l i t y , i . e . in the l i q u i d , and then accumulatesat t h e sample surface. A t the i n t e r f a c e t h e concentra- tions of impurities i n liquid c R a n d in the s o l i d cs will stay in a given r a t i o

C

K 2 K i s t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t defined as the r a t i o of the

0 CI' 0

concentration in the solid and t h e liquid phase determined by t h e phase diagram a t a fixed temperature close t o t h e melting point. B u t f a r from thermodynamic equi- librium, a t the very high speed reached i n t h e case of l a s e r i r r a d i a t i o n , the pro- cess of surface rejection of impurity can be described s t i l l in term of normal freezing but using instead of KO an interface d i s t r i b u t i o n c o e f f i c i e n t K1(v) which i s velocity dependent.

Usually KO i s much l e s s than unity and the very common r e s u l t a t high velocity rea- ched by l a s e r annealing i s t h a t K' i s several order of magnitude greater than KO and depend strongly on the velocity. Fixed a l l the other parameters,the amount of impurity rejected on t h e sample surface increaseswith decreasing t h e i n t e r f a c e se- gregation c o e f f i c i e n t K ' . The amount of impurity which i s retained i n t h e s o l i d i s located into the l a t t i c e s i t e s of the s i l i c o n crystal a t a concentration f a r above the s o l i d s o l u b i l i t y l i m i t thus forming a supersaturated s o l i d solution.

To determine K1(v) one has t o compare t h e measured dopant p r o f i l e a f t e r l a s e r i r r a - diation with the r e s u l t s of a model calculation f o r dopant redistribution /3,12/

using K' as a f i t t i n g parameter. The k i n e t i c of t h e melt frontremain fixed by the i r r a d i a t i o n condition throught t h e heat flow calculations. As an example,in Fig.5 /13/ a r e shown two d i s t r i b u t i o n obtained a f t e r i r r a d i a t i o n of a 120 keV B i implanted Si (111) sample i r r a d i a t e d w i t h ruby l a s e r a t 30 ns, 1.5 J/cm2(up) and 100 ns, 2.5 J/cm2 (down).

In t h i s case the velocity of t h e liquid-solid i n t e r f a c e has been varied from 2.5 t o 0.8 m/s and the whole Bi p r o f i l e can be f i t t e d following t h e previously discussed model with an i n t e r f a c i a l d i s t r i b u t i o n coefficient K1=0.25 and K1=0.08 in the f i r s t and i n second case respectively.

The equilibrium d i s t r i b u t i o n c o e f f i c i e n t f o r Bismuth in s i l i c o n i s b=7 lo-' and the large value of K' w i t h respect t o KO as well a s i t s strong variation with t h e velocity, ref1 e c t s t h e high non equilibrium nature of l a s e r induced epitaxial growth As second example, f i g . 6 , shows depth p r o f i l e s of 150 keV In implanted in Si <loo>

and i r r a d i a t e d with 5ns ruby l a s e r pulse of d i f f e r e n t energy density. With increa- sing energy density one observes a deeper penetration of In t a i l s and a more pro- nuncied surface accumulation. A thicker molten layer i s produced and t h e s o l i d i f i - cation velocity decreases. The penetration of In t a i l s i s then explained i n term of diffusion in t h e liquid. The difference of surface accumulation must be due t o the dependence of K ' on s o l i d i f i c a t i o n velocity.

The calculated v e l o c i t i e s a r e 8.5, 5.5 and 3.5 m/s and the corresponding K ' values a r e 0.45,0.2 and 0.07 f o r i r r a d i a t i o n a t 0.44, 0.66 and 0.86 J / G ~ ' respectively.

As a l a s t example of d i f f e r e n t r e d i s t r i b u t i o n s due t o d i f f e r e n t s o l i d i f i c a t i o n r a t e s

(8)

Fig.5. Bi depth profiles f o r ruby l a s e r i r r a d i a t i o n of Bi implanted (111) S i . Smooth curve are i n t e r f a c e segregation c o e f f i c i e n t ( K t ) f i t s .

Fia.6. Depth p r o f i l e s of 150 keV In im- planted i n S i a f t e r i r r a d i a t i o n with 5 ns ruby l a s e r pulse a t several energy density

.

Fig.7 reports t h e depth profiles of Te implanted in Si and i r r a d i a t e d with a Nd l a s e r pulse a t 1.06 um. The lower part shows t h e p r o f i l e s a f t e r i r r a d i a t i o n with 2.0 ~/cm' of the implanted sample. The amount of surface accumulation i s s 20%, the calculated s o l i d i f i c a t i o n velocity i s about 3 m/s. If the implanted sample i s f i r s t l y thermally annealed so t h a t a s i n g l e crystal i s obtained before the Nd l a s e r i r r a d i a t i o n , the Te p r o f i l e reported i n the upper part of t h e figure,shows a consi- derably l a r g e r surface accumulation.

The small absorption c o e f f i c i e n t of the 1.06 pm wavelength in Si crystal gives r i s e

(9)

C5-164 JOURNAL DE PHYSIQUE

Fig.8. Measured i n t e r f a c i a l segregation c o e f f i c i e n t f o r B i and I n i n Si(100) as f u n c t i o n o f t h e s o l i d i f i c a t i o n v e l o c i t y .

DEPTH (pm)

Fig.7. The depth p r o f i l e o f a Si(100) sample implanted w i t h 150 keV Te a f t e r i r r a d i a t i o n w i t h 30 ns Nd l a s e r p u l s e f o r a s i n g l e c r y s t a l (up) and w i t h 1500 A amorphous l a y e r (down).

t o a small temperature g r a d i e n t and t h e c a l c u l a t e d s o l i d i f i c a t i o n v e l o c i t y i s about 0.8 m/s. The corresponding K' f i t t i n g value a r e 20.5 and 0.03 f o r t h e h i g h e r and t h e lower v e l o c i t y r e s p e c t i v e l y . The experimental dependence o f K' on v has been measured f o r some dopants and r e s u l t s f o r In and B i a r e r e p o r t e d i n Fig.8.

I n p a r t i c u l a r f o r b o t h i m p u r i t i e s K' seems t o s a t u r a t e a t a value <1. From these and o t h e r /14/ a v a i l a b l e l i t e r a t u r e data one can argue t h a t K1 depends on v e l o c i t y as s c h e m a t i c a l l y i l l u s t r a t e d i n Fig.9. A c r i t i c a l v a l u e separates t h e low v e l o c i - t y range, where Ki%Ko and t h e h i g h v e l o c i t y range where Ki>YKo and i t s value s a t u r a - t e s a t a K' v e r y c l o s e t o u n i t y . The determination o f vcrit and K1 a r e c r u c i a l p o i n t s which any t h e o r y has t o deal w i t h . s a t

A t t h e present any determination o f K' through t h e i m p u r i t y p r o f i l e has been done by means o f t h e b a c k s c a t t e r i n g technique. Due t o t h e l i m i t a t i o n i n t h e s e n s i t i v i t y t o v e r y low i m p u r i t y c o n c e n t r a t i o n r e t a i n e d i n t h e sample and i n t h e depth r e s o l u t i o n of t h e a n a l y s i s , t h e determination o f v e r y low value o f K'(<10-2) o r v e r y c l o s e t o t h e u n i t y (>0.6) i s prevented and o t h e r techniques w i t h h i g h e r s e n s i t i v i t y and b e t - t e r depth r e s o l u t i o n should be used f o r these purposes.

(10)

Fig.10. C e l l s t r u c t u r e a r i s i n g a f t e r

V c r ~ t

r I L . -

log v ( a u sample ruby l a s e r implanted i r r a d i a t i o n w i t h I n i n (Courtesy a S i (100) o f A.G.Cullisl

Fig.9.Schematic r e p r e s e n t a t i o n o f t h e v e l o c i t y dependence o f t h e i n t e r f a c i a l d i s t r i b u t i o n c o e f f i c i e n t .

At t h e present i t i s s t i l l an open question i f t h e K' value r e a l l y s a t u r a t e t o a value l e s s t h e u n i t y o r t o 1 i . e . i f a l l t h e implanted i m p u r i t i e s can be r e t a i n e d i n t h e sample a f t e r l a s e r annealing. On t h e o t h e r hand, l a c k o f measurementrpre- vent t o understand t h e exact behaviour o f K' a t v e r y low v e l o c i t y i . e . when K ' s t a r t s t o d e v i a t e from Ko,because f o r K1<O.O1 more than 95% o f implanted irnpuritie, = a r e r e j e c t e d o u t o f t h e sample and i t i s hard, by b a c k s c a t t e r i n u measurement,to d i s t i n - guish between d i f f e r e n t values o f K' through t h e few percent o f r e t a i n e d dopant.

The increase o f s o l i d i f i c a t i o n v e l o c i t y gives r i s e s t o an i n c r e a s e o f dopant concen- t r a t i o n r e t a i n e d i n s u b s t i t u t i o n a l l a t t i c e s i t e s . However t h e maximum s o l u b i l i t y seems t o be l i m i t e d by t h r e e mechanism: i n t e r f a c e s t a b i l i t y , mechanical s t r a i n and thermodynamic l i m i t . The f i r s t one i s t h e most common l i m i t t o s u p e r s a t u r a t i o n and we w e l l discuss i t b r i e f l y . The c o n d i t i o n under which a f l a t R-s can proceed

t h e t e r m on l e f t i s t h e temperature g r a d i e n t i n t h e l i q u i d c l o s e t o t h e i n t e r f a c e and t h a t on t h e r i g h t i s t h e g r a d i e n t o f s o l i d i f i c a t i o n temperature t a k i n g i n t o account t h e dopant c o n c e n t r a t i o n i n t h e l i q u i d near t h e i n t e r f a c e and t h e l i q u i d u s curve o f t h e phase diagram. Experiments /16/ have been performed i n I n implanted i n S i by changing e i t h e r t h e t o t a l f l u e n c e o r t h e R-s i n t e r f a c e v e t o c i t y . It has been shown t h a t c e l l s t r u c t u r e s o f I n p r e c i p a t e s (Fig.10) a r e formed when t h e c o n d i t i o n given by ( 2 ) i s reached. The s i z e o f t h e c e l l can be a l s o described w i t h i n t h e c l a r s i c a l model.

ORGR

versus v /17/. The step shape o f t h i s I n Fig.11 i s r e p o r t e d t h e f u n c t i o n - m c 1-K'

-

curve i s mainly determined by t h e v e l o z i t y dependence o f K' assuming t h a t K' satura- t e s a t a value l e s s than u n i t y a t l a r g e v e l o c i t i e s . This s t e p l i k e curve i n t e r s e c t s t h e slope 1 l i n e i n t h r e e p o i n t s evidencing f o u r regicns:region I where r e j e c t e d im- p u r i t i e s have a t i m e l o n g enough t o d i f f u s e i n t h e l i q u i d , g e n e r a t i n g a small s o l i d i - f i c a t i o n temperature g r a d i e n t and then a f l a t i n t e r f a c e can propagate. I n c r e a s i n g t h e s o l i d i f i c a t i o n v e l o c i t y t h e r e j e c t e d i m o u r i t i e s form a narrow r e g i o n w i t h l a r g e

(11)

C5-166 JOURNAL DE PHYSIQUE

4

Fig.11. Schematic r e p r e s e n t a t i o n o f the f o u r d i f f e r e n t v e l o c i t y regions a l t e r n a - t i n g t h e c o n d i t i o n s f o r t h e growth o f a XTL CELLS

- ' "

x L S good s i n g l e c r y s t a l t o those f o r c o n s t i - t u t i o n a l supercooling t o occur.

/

log v

c o n c e n t r a t i o n g r a d i e n t f u l f i l 1 in g c o n d i t i o n s f o r c o n s t i t u t i o n a l supercooling and a c e l l s t r u c t u r e s t a r t s t o develope. The t r a n s i t i o n from r e g i o n I t o r e g i o n I1 occurs a t low v e l o c i t i e s and has been i n v e s t i g a t e d i n d e t a i l s i n c l a s s i c a l metal l u r - g i c a l works. The c e l l s i z e i s o f t h e o r d e r o f t h e coherence l e n g t h i .e. t0-'+10-~cm.

A f u r t h e r increase i n t h e v e l o c i t y changes d r a s t i c a l l y t h e i n t e r f a c i a l segregation c o e f f i c i e n t thus r e j e c t i n g i n t h e l i q u i d a l e s s amount o f i m p u r i t i e s . I n r e g i o n 111 then a f l a t i n t e r f a c e can propagate and due t o t h e l a r g e value o f K1 a l a r g e amount o f i m p u r i t i e s w i l l be i n c o r p o r a t e d i n t h e growing s o l i d , p h a s e . I f t h e v e l o c i t y i s increased t o h i g h e r values and K t < l , t h e c o n c e n t r a t i o n g r a d i e n t s t a r t s t o b u i l d up again i n a narrower coherence l e n g t h . C o n s t i t u t i o n supercooling can then occur again and t h e developed c e l l s t r u c t u r e w i l l be r a t h e r small. T.E.M. observation i n I n implanted S i i n d i c a t e d a c e l l s i z e o f t h e order o f 10-100 nm.

Several t h e o r i e s /18,19,20,21/ have been developed t o describe non e q u i l i b r i u m do- pant segregation a t a f a s t moving t - s i n t e r f a c e . It i s f a r from t h e purpose o f t h i s work t o review them and t h e reader i s r e f e r r e d t o t h e o r i g i n a l papers o r t o r e c e n t review /17/.

The common f e a t u r e t o these models i s a q u a n t i t y Di d e f i n e d as t h e i m p u r i t y d i f f u - s i o n c o e f f i c i e n t i n t h e near i n t e r f a c e region. I t has been shown /22/ t h a t assuming D ~ = ( D ~ D & ) ) being Ds and DQ t h e d i f f u s i o n c o e f f i c i e n t s i n t h e s o l i d and l i q u i d phase r e s p e c t i v e l y , b o t h a t t h e m e l t i n g p o i n t , i t i s p o s s i b l e t o p r e d i c t i f a given impu- r i t y w i l l be trapped o r r e j e c t e d on t h e surface. I f v =Di/X,v,being X t h e i n t e r f a - ce thickness,(i.e. few monolayers) t h e i m p u r i t y i s fas-fer than t h e i n t e r f a c e and w i l l accumulate i n t h e h i g h s o l u b i l i t y phase, i .e. t h e l i q u i d , t h e f i n a l r e s u l t w i l l be a K' value very c l o s e t o t h e e q u i l i b r i u m KO value. I f vc=Di/Xsv then t h e impu- r i t y w i l l be frozen by t h e f a s t advancing s o l i d phase and K' w i l l reach a value v e r y c l o s e t o u n i t y

.

F o l l o w i n g t h i s simple i d e a i t i s e a s i l y understood t h a t f a s t d i f f u s e r s ( l i k e Zn,Fe,Cu) i n s i l i c o n which have a d i f f u s i o n c o e f f i c i e n t i n t h e s o l i d phase a t temperature c l o - se t o t h e m e l t i n g p o i n t o f t h e o r d e r o f 10-640-4 cm2/s cannot be trapped because t h e i r c r i t i c a l v e l o c i t y v w i l l be o f t h e o r d e r o f 10-100 m/s, w h i l s t slow d i f f u - sers (1 i ke B i ,In ,Te) w h i t 6 a d i f f u s i o n c o e f f i c i e n t ' o f t h e o r d e r o f 1 0 - ~ ~ + 1 0 - ~ 0 ~ m 2 / ~ , have a c r i t i c a l v e l o c i t y v o f t h e o r d e r o f I t 1 0 cm/s,so we a r e e a s i l y i n c o n d i t i o n o f having a K t value much g r e a t e r then t h e e q u i l i b r i u m C K value.

0

The d i f f u s i o n mechanism i n S i and Ge o f almost a l l t h e dopants i s t h e same, t h e S i

(12)

and Ge c r y s t a l a r e c h a r a c t e r i z e d by t h e same l a t t i c e s t r u c t u r e so t h e dopant t r a p - ped i n S i w i l l be trapped i n Ge. A n o t i c e a b l e exception i s Zn which i s a f a s t i n - t e r s t i t i a l d i f f u s e r i n S i ( ~ ~ = 8 ~ 1 0 - ~ c m ' / s a t 1690K) and a slow s u b s t i t u t i o n a l d i f f u - s e r i n Ge (Ds=lO-l2 cm2/s a t 1210).

I n f i g . 1 2 /13/ i s r e p o r t e d t h e depth p r o f i l e o f Zn i n S i measured by b a c k s c a t t e r i n g technique b e f o r e and a f t e r t h e i r r a d i a t i o n o f an implanted sample by means o f a 30 ns Nd l a s e r a t 2.10 J/cm2. The pulsed annealing causes t h e accumulation o f a l l

Fig.12. Depth p r o f i l e s o f 80 keV Zn implanted i n S i b e f o r e ( 0 ) and a f t e r (0) l a s e r i r r a d i a t i o n .

Fig.13. Ge and Zn K, l i n e s induced by 2.0 MeV He+ f o r random ( a ) and a l i g n e d ( 0 ) incidence on t h e implanted and l a - s e r i r r a d i a t e d c r y s t a l .

ENERGY (keV)

t h e implanted Zn a t t h e sample s u r f a c e and t h e r e d i s t r i b u t j o n can be described by any K1<lO-'. Q u i t e d i f f e r e n t r e s u l t s a r e obtained i n Ge a f t e r i r r a d i a t i o n a t 1.15 J/cmZ. The Zn depth p r o f i l e cannot be measured by b a c k s c a t t e r i n g technique due

(13)

C5-168 JOURNAL DE PHYSIQUE

t o t h e presence o f t h e heavier Ge s u b s t r a t e . Fig.13 shows t h e X r a y K l i n e s o f both Ge and Zn induced by 2.0 MeV ~ e + f o r a l i g n e d and random incidence? The y i e l d are 8% and 40% f o r Ge and Zn r e s p e c t i v e l y . T h i s i n d i c a t e a good r e c r y s t a l l i z a t i o n o f t h e Ge and t h a t a p a r t o f o f Zn i s n o t l o c a t e d and probably i t i s r e i e r + o A t h e surface, b u t about 60% o f t h e implanted dose has been r e t a i n e d i n s u b s t i t u t i o n a l l a t t i c e s i t e s o f t h e r e c r y s t a l l i z e d Ge.

For t h e c a l c u l a t e d v e l o c i t y which i s about 3 m/s i n b o t h S i and Ge case,one can e s t i - mate a segregation c o e f f i c i e n t K1d.3+0.5 b u t w i t h l a r g e uncertanhies. Although t h e KO value o f Zn i n S i and Ge i s t h e same (4.10-') i t s i n t e r f a c e segregation coef- f i c i e n t i n t h e m/s, d i f f e r n o t i c e a b l e i n t h e two substrates according t o t h e d i f f e - r e n t i s o l i d phase d i f f u s i v i t i e s .

SII-ICON AMORPHIZATION

Although f o r f a s t d i f f u s e r s measurements o f K t a t much h i g h e r v e l c o i t y would be of g r e a t i n t e r e s t , t h e y cannot be performed, It has been shown i n f a c t ; t h a t f o r so- l i f i c a t i o n v e l o c i t i e s approaching 15 m/s amorphous m a t e r i a l i s obtained. Under t h i s c o n d i t i o n t h e usual d e f i n i t i o n o f K' loses i t s s i g n i f i c a n c e .

Amorphous l a y e r have been produced i n f a c t by i r r a d i a t i o n o f c r y s t a l s i l i c o n e i t h e r u s i n g extremely s h o r t p u l s e o r v e r y t h i n absorption length,both c o n d i t i o n s l e a d i n g t o f a s t v e l o c i t y (see f o r example f i g . 3 and 4 ) .

I n a r e c e n t work, amorphitation was observed and t h e s o l i d f i c a t i o n v e l o c i t y was a l - so measured by means o f t r a n s i e n t conductance measurement /11/ an S i l i c o n s i n g l e c r y s t a l ( 1 0 0 ) and (111) o r i e n t e d i r r a d i a t e by 2.5 ns p u l s e a t 0.347 um wavelength.

The m e l t f r o n t k i n e t i c s c l o s e l y agree w i t h t h e one computed on t h e b a s i s of t h e thermal model, t h e v e l o c i t y does n o t show any appreciable r e d u c t i o n i n p r o x i m i t y o f t h e maximum m e l t f r o n t p e n e t r a t i o n as showed i n t h e dashed curve o f Fig.4,sup- p o r t i n g t h e idea t h a t t h e undercooling should be much l e s s than t h e 15 K/ms used i n t h e previous c a l c u l a t i o n s .

I n f i g u r e 14 t h e measured regrowth v e l o c i t y i s shown as f u n c t i o n o f t h e maximum m e l t

25

F i g . 14. Regrowth v e l o c i t y versus me1 t

2 20 depth f o r pulses U.V. i r r a d i a t i o n mea-

C E

-

sured by t r a n s i e n t conductance measure-

2 - 15 ments. S o l i d data p o i n t s i n d i c a t e t h a t

0

- 0 a

amorphous S i forms from t h e melt.

>

f 10 ( f r o m Ref.11)

e I

: 0, 5

1 I I I I

50 100 150 200 250

Melt depth (nm)

depth. The black dots r e f e r t o samplesin which i t has been produced theamorphouslay er. Amaximum R-s i n t e r f a c e v e l o c i t y o f 15 m/s then e x i s t s f o r t h e regrowth of a s i n g l e S i c r y s t a l from t h e m e l t i n t h e (100) d i r e c t i o n .

A even lower l i m i t i n g value has been found i n t h e case o f (111) o r i e n t e d substrate.

A maximum allowed v e l o c i t y f o r t h e c r y s t a l regrowth o f 10 m/s was found,moreover

(14)

ENERGY (MeV)

I

the (1 11) oriented regrown crystal contains microtwins lamel l a e u n t i l t h e velocity of the R-s interface i s slowed down to 6 m/s/24/. There i s s t i l l an open question r e l a t i n g t o the amorphous layer formation. In the present cases /11,24/ the amor- phous layer thickness was much l e s s then the molten thickness suggesting t h a t there a r e some kinetics limitations on t h e nucleation of t h e amorphous phase. Further informationscan be obtained from a comparison between the amorphous formation in a B i doped and i n an updoped Si crystal following t h e i r r a d i a t i o n with a ps Wd(X/2) l a s e r . The impurities i n t h e liquid should a c t as heterogeneous nucleation centers f o r the amorphous phase.

-

, 0-

-

3 U

In fig.15 a r e showii t h e aligned spectrum f o r 2 MeV He i incident on Si (111) samples i r r a d i a t e d w i t h a 0.2 J/cm2, 20ps pulse a t A=0.53 doped with 2 ~ 1 0 ~ ~ Bi atoms/cm3 (A) and undoped. The surface peak corresponds t o a highly disorder or amorphous material. The average thickness of the disordered layer i s 45 nm f o r the doped sam ple and 25 nm f o r the undoped sample respectively. In any case a thermal annealing a t 550" f o r 30 m i n causes t h e epitaxial recrystallization of the l a s e r quenched am01 phous layer both i n the B i doped and i n the undoped sample.

SI (111) ~.ld%N/cm'

Depth(nm) i

~d 30ps h-053prn Fig .IS. 2.0 MeV He backscattering spec-

60 40 29 ?

o 20 J / c ~ ~ trum obtained from Si crystal irradiated

CONCLUSION

In conclusion the p o s s i b i l i t y of controlling within a broad range of values the quenching r a t e t h a t can be obtained by means of t h e l a s e r i r r a d i a t i o n represents a powerful tcol t o investigate in detai 1 the non equi 1 i brium thermodynamics r e i a - t i n g the phase t r a n s i t i o n s induced i n a semiconductors with o r withcut impurities.

Much have been done b u t s t i l l more work i s needed t o investigate t h e solute trapping behaviour a t very high velocity close t o the amorphization threshold as well as in the range of lower velocity when the segregation coefficient s t a r t s t o deviate from i t s equilibrium value. Some important questions r e l a t i n g the nucleation of t h e amorphous phase from the melt a r e s t i l l not understood and will be surely c l a r i f y in the r e a r feature.

Re~olut~on with 0.2 J/cm2 30 ps Nd (X/2) pulse (A)

3

-

Bi doped, ( n ) undoped

S

W_ >

0 z 0 5 -

'2 5 i

(15)

C5-170 JOURNAL DE PHYSIQUE REFERENCES

1) P.Baeri,S.U.Campisano,G.Foti and E.Rimini, J.Appl.Phys. - 50,788(1979) 2) R.F.Wood and G.E.Giles: Phys.Rev.B 3,2923(1981)

3) P.Baeri,S.U.Campisano in "Laser annealing of semiconductors" ed. by J.W.Mayer and J.N.Poate (Academic Press, New York 1982) Chap.4

4) P.Baeri in "Laser and Electron Beam Interaction with Solids" ed by B.

.

Appleton and G.K.Ce1ler (North Holland Amsterdam 1982)p.151 5) P.J.Price, Phil .Mag. - 46,1252(1955)

6) A.Lietola and J.E.Gibbons, J.Appl.Phys. - 53,3207(1982)

7) R.Yen, J.M.Liu, M.Kurz, N.Bloemberger, Appl.Phys. A27,153(1982) -

8) P.M.Bucsbaum and J.Bokor, Phys.Rev.Lett. in press.

9) K.A.Jackson, referred as private comunication by W.L.Brown in "Laser and Electron-Beam Solid Interactions and Material Processing"

ed. by J.F.Gibbons, L.D.Mess and T.W.Sigmon (North Holland, Amsterdam 1981) p.1 10) R.F.Wood, Proceeding of MRS Boston meating 1982

1 1 ) M.O.Thompson,J.W.Mayer,A.G.Cullis,M.C.Webber, N.G.Chew and J.M.Poate, D.C.Jacobson, Phys.Rev.Lett. in press

12) C.W.Whi te,S.R.Wilson ,B.R.Appleton ,F.W.Young Jr. : J.Appl .Phys. - 51 738(1980) 13) P.Baeri,G.Foti,J.M.Poate,S.U.Campisano,A.G.Cullis~ Appl .Phys.Lett.

2

326(1980) 14) C.W.White,D.M.Zehener,S.U.Campisano,A.G.Cullis in "Surface Modification and

Alloying" ed by J.M.Poate and G.Foti (Plenum,N.Y. 1982)Chap.4 15) W.W.Mul1 ins ,R.F.Sekarka : J.App1 .Phys. - 35 444(1964)

16) A.G.Cullis,D.T.Hurle,H.C.Webber,N.G.Chew,J.M.Poate,P.Baeri and G.Foti:

Appl .Phys .Lett. - 38 642(1981)

17) S .U.Campisano , Appl

.

Phys

.

A30 - 195(1983)

18) R.F.Wood: Appl.Phys.Lett. 37,302 (1980) 19) M.J.Aziz, J.Appl.Phys. - 53 1158(1982) 20) R.N.Hal1: J.Phys.Chem.

-

57 836(1953)

21) J.C.Brice: "The growth of crystal from the melt1' (North Holland Amsterdam 1975) p.66

22) B.K.Jindall,W.A.Tiller: J.Chem. Phys. - 49 4632 (1968) 23) S.U.Campisano and P.Baeri, Appl.Phys.Lett. in press

24) A.G.Cullis, H.C.Webber,N.G.Chew,J.M.Poate and P.Baeri, Phys.Rev.Lett. - 49,219 (1982)

25) S.U.Campisano,P.Baeri,Zhang Jing-Ping,E.Rimini and A.M.Malvezzi: Appl.Phys.

Lett. in press.

Références

Documents relatifs

We previously defined the original cytotoxic mechanism of anticancerous N-phenyl-N’-(2-chloroethyl)ureas (CEUs) that involves their reactivity towards cellular proteins

Semiconducting SWCNT extraction efficiency plotted as a function of temperature for Pluronic F108 dispersed laser ablation, plasma torch, and arc discharge SWCNTs separated by DGU..

The results of our studies indicate that four factors must be considered when optimizing dye selection and loading to max- imize luminosity of a hybrid SNP dye : molecular

The following discussion will focus on the short to medium term impacts that could be realized within three areas of focus “ feedstock optimization, utilization of microorganisms

(a) Demand-driven (the default model in OpenMusic): The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in order to provide C

The current densities obtained here in the “physicochemical” synthetic seawater show the interest of going ahead with the design of a “biological” synthetic seawater, which would

The political and economic interconnections between the choice elements in long term planning are illustrated by the relations between the choice of