• Aucun résultat trouvé

A neutron diffraction study of Fe7Se8

N/A
N/A
Protected

Academic year: 2021

Partager "A neutron diffraction study of Fe7Se8"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00205832

https://hal.archives-ouvertes.fr/jpa-00205832

Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A neutron diffraction study of Fe7Se8

A.F. Andresen, J. Leciejewicz

To cite this version:

A.F. Andresen, J. Leciejewicz. A neutron diffraction study of Fe7Se8. Journal de Physique, 1964, 25

(5), pp.574-578. �10.1051/jphys:01964002505057401�. �jpa-00205832�

(2)

meeting of the Physical Society of Japan, 1957, p. 76.

[9] HIRONE (T.) and ADACHI (K.), J. Phys. Soc., Japan, 1957, 12, 156.

[10] DOROSHENKO (A. V.), KLYUSHIN (V. V.), LOSHMANOV (A. A.) and GOMAN’KOV (V. I.), The Physics of

Metals and Metallography, 1961, 12, 119.

[11] KUNITOMI (N.), HAMAGUCHI (Y.) and ANZAI (S.),

J. Phys. Soc., Japan, 1963, 18, 744.

[12] FURBERG (S.), Acta Chem. Scand., 1953, 7, 693.

[13] KUNITOMI (N.), KOMURA (S.) and ONDA (T.), JAERI-

Memo No. 1157, 1963, in Japanese.

[14] HIRONE (T.), MAEDA (S.) and TSUYA (N.), Rev. Sc.

Instr., 1954, 25, 516.

[15] KUNITOMI (N.), HAMAGUCHI (Y.), SAKAMOTO (M.)

and KOMURA (S.), J. Phys. Soc., Japan, 1962, 17 (Supplement B-II) 354.

[96] KELLEY (K. K.), J. Amer. Chem. Soc., 1939, 61, 203.

[17] HASTINGS (J. M.), ELLIOTT (N.) and CORLISS (L. M.), Phys Rev., 1959, 115, 13.

[18] WATSON (R. E.) and FREEMAN (A. J.). Acta Cryst., 1961, 14, 27.

[19] PEARSON (W. B.), Canad. J. Phys., 1957, 35, 886.

[20] TAKEI (W. J.), Cox (D. E.) and SHIRANE (G.), Phys.

Rev., 1963, 129, 2008.

[21] KOMATSUBARA (T.), MURAKAMI (M.) et HIRAHARA (E.), J. Phys. Soc. Japan, 1963, 18, 1106.

A NEUTRON DIFFRACTION STUDY OF Fe7Se8 By A. F. ANDRESEN and J. LECIEJEWICZ (1)

Institutt for Atomenergi, Kjeller, Norway.

Résumé. 2014 Une étude de Fe7Se8 a été entreprise afin de déterminer l’ordre magnétique et les

transitions de phase dans ce composé. Sur un échantillon refroidi lentement depuis 600 °C, une

surstructure correspondant à la structure 3c trouvée par Okazaki [4] a été mise en évidence. Celle- ci est obtenue à partir de la maille de NiAs en doublant l’axe a et en triplant l’axe c. Le diagramme neutronique a été fait à différentes températures entre 4,2 °K et 493 °K. Les dimensions de la maille sont :

Les groupes d’espace C46 2014P62 et C562014 P64 proposés par Okazaki et Hirakawa [3] ne sont pas

applicables. Un groupe possible serait P31, avec des lacunes en (1/2, 0), (1/2, 0, 1/3), (0, 1/2, 2/3).

Les moments magnétiques sont alignés ferromagnétiquement dans chaque plan (0001) et antiferromagnétiquement entre deux plans voisins. A basse température, la direction des moments est perpendiculaire à l’axe c, mais entre 120 °K et 130 °K, les moments tournent en se rapprochant

de l’axe c. L’intensité de la réflexion (0003) indique une inclinaison des spins par rapport à cet axe.

Aucune indication n’a pu être trouvée sur le changement progressif de l’axe de facile aimantation

qui avait été mesuré par Hirakawa [5].

Abstract.

2014

An investigation of Fe7Se8 was undertaken to study the magnetic ordering and phase transitions in this compound. On a sample slowly cooled from 600 °C a superstructure was

identified corresponding to the 3c structure found by Okazaki [4]. This is derived from the small

Ni-As-type cell by doubling of the a-axis and tripling of the c-axis. Neutron diffraction diagrams

were made at several temperatures between 4.2 °K and 493 °K. The unit cell dimensions found

were :

The space groups C46

2014

P62 and C56

2014

P64 proposed by Okazaki and Hirakawa [3] are not appli-

cable. A possible space group is P31, with vacancies at (1/2, 1/2, 0) (1/2, 0, 1/3) (0, 1/2, 2/3).

The magnetic moments are ferromagnetically aligned within each (0001) sheet and antiferro-

magnetically aligned in neighbouring sheets. At low temperatures the moment direction is per-

pendicular to the c-axis, but between 120 °K and 130 °K the moments turn to a direction closer to

the c-axis. The intensity of the (0003) reflection indicates a tilt of the spin with respect to this

axis. No indication has been found of the gradual change in the axis of easy magnetization which

was measured by Hirakawa [5] on a torque magnetometer.

LE JOURNAL DE PHYSIQUE TOME 25, MAI 1964,

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01964002505057401

(3)

Introduction.

-

It has been shown by Harald- sen and Gr0l1 voId [1] that the stoichiometric compo- sition FeSe does not exist at low temperatures.

Hirone and Chiba [2] found that by annealing a sample of this composition at a temperature below 350 °C a mixture of two phases, « and ~, was

formed. The a.-phase, with a PbO-type structure,

exists up to 49 % Se, and the P-phase with a NiAs-type structure exists down to 53.5 % Se.

The last composition corresponds approximately

to the compound Fe7Se8. The deviation from

stoichiometry is connected with the formation of metal vacancies, and Okazaki and Hirakawa [3]

and Okazaki [4] have found that at low tempera-

tures ordering of these leads to the formation of several superstructures depending on the annealing temperature.

Fe7Se8 shows some interesting magnetic pro-

perties. Ferrimagnetism is associated with the

ordering of the vacancies and according to Hirone

and Chiba [2] the Curie point is 174 OC. While at

room temperature the easy axis of magnetization

is perpendicular to the c-axis, Hirakawa [5] finds

that this changes into the c-direction below about -120 °C. The change is spread over a large temperature interval. Such a gradual change

was also observed by Pauthenet [6] in pyrrhotite, Fe7S., and Néel [7] suggested this to be due to

local inhomogeneities in an impure specimen.

Hirakawa has, however, repeated his measure-

ments on a high purity sample and still finds a gradual transition.

The nature of this transition could easily be

checked by neutron diffraction. As part of a series of investigations on the crystallographic and magnetic ordering in NiAs-type compounds it

was therefore found worth-while to investigate

also this compound.

Preparation and X-ray examination.

-

Calcu- lated amounts of iron and selenium of spectros- copic purity (Johnson, Matthey et Co) were sealed

in double-walled evacuated quartz tubes. This

was necessary since the inner tube would often crack on cooling. The tubes were fired at 1050 °C

for 6 hours and then kept at 8000 for 3 days. The sample was then crushed and examined by X-rays.

As it was still found to contain unreacted iron, it

was again sealed in vacuum and heated to 900 aC

for 2 days. Finally it was kept at 600 °C for one

week and then cooled slowly down to 200 °C in

the course of 2 days.

The sample was found to be well crystallized

and the X-ray pattern could be indexed on the 3c-cell of Okazaki [4]. This cell is derived from the small NiAs-type cell by doubling of the a-axis and tripling of the c-axis (fag. 1). The unit

cell dimensions at room temperature are

a ~ 7.2~ A and c = 17.60 A. The appearance

FIG. 1.

-

Unit cell of Fe,Se,. Se-atoms not shown.

of a (0003) reflection indicates ordering of the

vacancies on every second Fe-layer as found by

Okazaki and Hirakawa [3]. However, the space groups P6, and P~4 given by them can not accom-

modate the Se-atoms and possible space groups

were found to be P3, and .P32.

TABLE 1

ATOMIC POSITIONS IN Fe7Ses

SPACE GROUP C3

-~

P31

(4)

Using P31, and assuming tlm vacancies to occupy the positions (1, 1, 0 ; 1, 0, 1; 0, 1, 2 2 0; 2 ’ 3 " 2 2) 3 the ato-

mic positions are as given in Table 1. There are

2’I Fe-atoms and 24 Se-atoms in the unit cell. For each metal vacancy introduced 2 of the ferrous ions will transfer to ferric ions. One formulae unit can therefore be written L See

where L denotes a vacancy. To obtain equal charge on every metal layer the ferric ions should be accommodated in the same layer as the va-

cancies. Such an arrangement was also found by

Hircne and Chiba [2] to explain their observed

magnetic moment. This assu.mption will therefore be used in the following calculations.

Neutron diffraction examination.

-

Neutron diffraction diagrams were run at 4.2 °K, 90 °K,

293 °K, and 493 using neutrons of wavelength

1.146 A from the reactor JEEP I. The low tem-

perature diagrams were obtained with a Hoffman

FIG. 2.

-

Neutron diffraction diagrams of Fe7Se8 at

4.2 oK, 293 OK, and 493 OK, instrumental background

subtracted. X= t .146 A,

liquid helium research dewar and the high tempe-

rature diagram using a quartz furnace. Room temperature diagrams were run in both c ases to put the intensities on a comparable scale. The diagrams run at 4.2 oK, 293 OK, and 493 OK are

shown in figure 2.

A change in the unit cell dimensions is imme-

diately apparent and the changes above room temperature are in agreement with those observed

by Okazaki [4]. The a-axis decreases from 7.33 A

at 493 OK to 7.21 A at 293 oK and continues to decrease until 7 .17 A at liquid helium temperature.

The c-axis increases from 17.43 Å at 493 ° K to 17.60 A at 293 -K but then decreases again to 17.46 A at 4.2 OK.

At 493 OK no magnetic contribution is found and the observed intensities agree well with those calculated for the atomic arrangement of Table 1.

In all the diagrams some intensity disagreement,

in particular a rather strong (1125) super-reflection

seemed to require atomic displacements. Impro-

vement was brought about by displacing in the

c-direction the Fe-atoms adjacent to a vacancy

(see Table 1).

Suitable temperature factors for 493 oK,

BFe = 2 . 7 A2, Bse = 1. 9 A2, and for room

temperature, Bye = 1.6 A2 and Bse = 1.1 A2,

were calculated using a Debye temperature of

194 This is lower than the Debye tempera-

ture 225 ~K derivable from specific heat data (Gronvold [8]).

In the rom ternperature diagram the appea-

rance of a strong (0003) reflection indicates a

ferrimagnetic ordering with spins parallel in each Fe-layer and antiparallel in neighbouring layers,

the spin direction being perpendicular to the

c-axis. By normalizing the observed intensities

matching reflections with no magnetic contribu- tion, the magnetic intensities were found to be smaller than those corresponding to 4 and 5 unpaired electrons in Fe2+ and Fe3+ considering spin only contributions. Assuming the same de-

crease in moments for both ions magnetic moments

of 3.6 ~B and 4.5 yB were deduced.

At liquid helium temperature the (0003) peak

has decreased considerably, which can be ascribed

to a turning of the magnetic moments in the

direction of the c-axis. The fact that the inten-

sity has not decreased to its value in the para-

magnetic state indicates that the moments are not pointing in the c-axis direction but have stopped

in an intermediate position. Again normalizing

the observed intensities for the purely nuclear

reflections and assuming the same values for the moments as at room temperature a tilt of 180 with respect to the c-axis was deduced. It is impossible

to say from our low intensity powder data whether

this is connected with a spiral spin arrangement or

just a canted arrangement. In the calculations

(5)

temperature factors with BF,.~ z:-- 0.7 -I 2 and B’6e = 0.5 A 2were used. The magneto form-

f actor used was that of Nathans et al. [9].

The magnetic transitions.

-

In order to inves-

tigate more closely the magnetic transitions the

temperature dependence of the (0003) reflection

was measured from 4.2 ~K to 510 OK. Below

room temperature was used a liquid nitrogen cryostat with a heating coil surrounding the sample,

and above room temperature a quartz furnace.

During measurements the temperature was con- trolled to £ 20. The observed integrated inten- sity is plotted in figure 3 as a function of tempera-

FIG. 3.

-

Integrated intensity of the (0003) reflection as a function of temperature, fully drawn curve representing B2(2).

ture. As can be seen the change in the easy axis of magnetization is rather abrupt and taking place

in the temperature interval 120 oK - 130 oK.

This is contrary to the results obtained by Hira-

kawa with a torque magnetometer. No hyste-

resis in this transition was found.

The decrease in intensity up to the Curie point

could be well approximated by the square of the Brillouin function for S = 2. This is shown as the

fully drawn curve in figure 3. The Curie point according to this curve is 210 ~C which is higher

than the Curie point previously obtained by suscep-

tibility measurements [2].

Conclusions.

-

According to our neutron dif-

fraction measurements the change in the easy axis of magnetization is rather abrupt, and is not spread out over a large temperature interval as reported by Hirakawa [5]. ~ The transition tempe-

rature 120 130 OK is lower than reported by him, but the Curie point 210 ~C is higher than previously reported [2]. The moments do not

turn to point along the hexagonal axis, but stop

in an intermediate position approximately 180

from this. Intensity disagreements indicate a slight displacement in the c-direction of the Fe- atoms adjacent to a vacancy. A more exact

determination of the atomic displacements and

details about the magnetic structure, i.e. whether

a canted spin arrangement or a spiral, will require single crystal data.

Discussion

Dr WEIK. - Avez-vous mesuré la densité de la substance et si oui, est-elle en accord avec la struc-

ture lacunaire suggérée ?

Dr ANDRESEN. - Nous n’avons pas fait de telles mesures, mais il a été établi par d’autres recherches que 1’ecart a la composition stoechio- metrique est lie a la formation de lacunes.

Pr BERTAUT. - Que pensez-vous d’un d6sordre de spins comme cause possible de la diminution du spin de Fe ? Un tel d6sordre peut 6tre eaus6 tr6s indirectement par un certain d6sordre des lacunes.

Dr ANDRESEN. - C’est possible.

Pr WALLACE Y-a-t-il un effet d’ordre-d6s- ordre pour les ions Fe3’, Fe2+, dans

semblable a celui dans FegO 4 a basse temp6rature ?

Dr ANDRESEN. - Dans notre cas, nous avons une couche occup6e par les ions Fe2+ seuls et 1’autre par deux ions Fe3+, un ion Fe2+ et une

lacune. On ne peut donc avoir une transition d’or- dre-d6sordre que pour les trois derniers ions. Cet effet est trop f aible pour 6tre observe.

Pr UEDA. - Ma question se rapporte aux difl/-

rences entre les donn6es de rayons X et neutrons.

Est-ce que la variation quelque peu 6trange le long de I’axe c a 293 °K est 1]6e a la distribution des lacunes.

Avez-vous fait une analyse chimique apr6s I’ [la-

boration du cristal ?

Dr ANDRESEN. - 11 n’y a aucun d6saccord entre

les donn6es de rayons X et neutrons. Je suppose que la raison pour laquelle Okazaki et Hirakawa

donnent pour groupe d’espace P62 est qu’ils n’ont

pas tenu compte des atomes de Se.

11 n’y a aucun changement dans la distribution des lacunes pendant les mesures reportees ici.

Nous n’avons pas fait d’analyse chimique.

La composition des 6chantillons est voisine de

53,5 % Se. Pour des concentrations ini£rieures en

Se, la phase « serait visible et avec des concentra-

tions superieures , une deformation monoclinique

apparaîtrait.

(6)

REFERENCES [1] HARALDSEN (H.) and GRØNVOLD (F.), Tidsskr. Kjemi,

Bergvesen, Met., 1944, 10, 98.

[2] HIRONE (T.) and CHIBA (S.), J. Phys. Soc., Japan, 1956, 11, 666.

[3] OKAZAKI (A.) and HIRAKAWA (K.), J. Phys. Soc., Japan,1956, 11, 930.

[4] OKAZAKI (A.), J. Phys. Soc., Japan, 1961, 16, 1162.

[5] HIRAKAWA (K.), J. Phys. Soc., Japan, 1957, 12, 929.

[6] PAUTHENET (R.), C. R. Acad. Sc., 1952, 234, 2261.

[7] NÉEL (L.), Rev. Mod. Physics, 1953, 25, 58.

[8] GRØNVOLD (F.), Private communication.

[9] NATHANS (R.), SHULL (C. G.), SHIRANE (G.) and

ANDRESEN (A.), J. Phys. Chem. Solids, 1959, 10, 138.

L’INTERACTION MAGNÉTIQUE DANS LES STRUCTURES DE K2NiF4

Par E. LEGRAND et M. VERSCHUEREN,

Département Physique, État Solide, C. E. N.-S. C. K., Mol, Belgique.

Résumé. 2014 Dans la structure quadratique à couches K2NiF4, il y a de très fortes interactions entre atomes appartenant au même plan, alors que l’interaction entre deux plans est bien plus

faible. La diffraction neutronique démontre l’existence d’une interaction antiferromagnétique

dans les plans, la direction des moments étant celle de l’axe c. Les composés La0,5Sr1,5MnO4 et La2NiO4 ont la même structure cristalline. Aux basses températures, leur susceptibilité magnétique

dévie de la loi de Curie-Weiss. Néanmoins, aucun ordre magnétique n’a été trouvé par diffraction

neutronique du moins jusqu’aux températures de l’hydrogène liquide. Des résultats préliminaires

de Cs2MnCl4 sont présentés.

Abstract.

2014

In the tetragonal layer structure K2NiF4, strong magnetic interactions between atoms belonging to the same plane are present, while the interaction between two layers is much

weaker. Neutron diffraction work revealed an antiferromagnetic interaction in the planes, the

direction of the moments being that of the c-axis.

The compounds La0,5Sr1,5MnO4 and La2NiO4 have the same crystal structure. At low tempe-

ratures their magnetic susceptibility also deviates from the Curie-Weiss behaviour. Nevertheless

no magnetic long range order has been found with neutron diffraction, at least at temperatures

down to that of liquid hydrogen. Preliminary results on Cs2MnCl4 are presented.

LE JOURNAL DE PHYSIQUE TOME 25, MAI 1964,

1. Introduction.

-

Les propriétés magnétiques

des composés à structure perovskite ont été étu-

diées intensivement par diffraction des neutrons

[1] [2]. Il existe une structure fort similaire à la structure perovskite, que nous appellerons struc-

ture K2NiF 4. Cette structure quadratique, diffère

de la structure cubique perovskite KNiF, en ce

que les couches d’atomes de nickel, perpendi-

culaires à l’axe c, y sont séparées par deux couches d’atomes fluor-potassium ~ fig. 1). Les paramètres

de la maille sont : c = 13,07 A et a = 4,00 A [3].

Il était intéressant de voir comment les inte- ractions magnétiques, qui existent dans le KNiF 3

sont modifiées quand on passe à la structure

modifiée K2NiF4, et quelle est la structure magné- tique ordonnée dans des composées de ce type.

2. Expériences.

---

En premier lieu on a fait des

mesures de diffraction de neutrons sur le K2NiF4

lui-même [4]. Le spectre de diffraction d’une poudre

de ce composé montre des raies supplémentaires

de surstructure, aux températures d’azote et

d’hydrogène-liquide. Il est possible d’indicer ces

raies en supposant une structure antiferromagné- tique à deux sous-réseaux quadratiques, dans les plans de base 2). En plus on a fait une esti-

mation de la température de transition en mesu-

rant la variation du maximum de la raie magné- tique (100) en fonction de la température. La température de transition se trouve vers 190 OK.

De l’intensité des raies magnétiques, on déduit que les moments magnétiques sont orientés suivant l’axe c.

Des mesures de susceptibilités ont également été

effectuées sur une poudre et sur un monocristal [5].

L’inverse de la susceptibilité en fonction de la

température montre un large minimum vers

200 OK. Les mesures sur le monocristal montrent le même minimum, mais en plus on trouve que la

susceptibilité parallèle à l’axe c, et celle perpen- diculaire à cet axe diffèrent à partir d’environ

110 °K (fig. 3), ce qui montre un eff et d’aniso- tropie.

D’autres composés qui ont la structure K2NiF4

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

chemical short range order in this amorphous alloy, resulting in a sharp Zr-Hi pair correlation and poor Ni-Ni nearest neighbor correlation. For ferromagnetic Fe-B amorphous

- In the Mn-Pd system the long-period antiphase domain structure was found to exist up to 36 at % Mn- with increasing Mn concentrations the period increases while

No measurable dispersion was observed in the [00(] direction resulting in an upper limit for the interplanar exchange that is 270 times smaller than intraplanar

A phase transformation of the Pbnm polymorph into the denser structure of symmetry Cmcm was observed at 50 kbars, 500 OC.. - The sulfates and selenates of the

scattering of erbium and iron, and partly only on one member, we can deduce directly the separate magnetic behavior of the erbium and iron ions from

- Numerous investigations on the magnetic properties of binary alloys in the rare earth- cobalt and rare earth-nickel systems have shown a ferrimagnetic coupling

Once the magnetic modes fitting the strongest lines of the P a structure were found at 6 K, we carried an iterative simultaneous refinement of the two magnetic struc- tures