• Aucun résultat trouvé

On the symmetric group S

N/A
N/A
Protected

Academic year: 2022

Partager "On the symmetric group S"

Copied!
2
0
0

Texte intégral

(1)

University of Zurich (UZH) Fall 2012 MAT532 – Representation theory

Sheet 2

Warm up

Exercise 1. [(2.5)in [1]]

LetGbe a finite group acting on a set X and consider V the associated permutation representation.

Prove that forg∈Gthe characterχV(g) is given by the number of fixed points ofg acting on X.

Application: Give the character of the (left-)regular representation ofG.

Solution of exercise 1. Letg∈G. In the basis{ex, x∈X}, the matrixρV(g)has a one on the diagonal only wheng·x=x, which corresponds to a fixed point. Therefore, the character χV(g) =T r(ρV(g)) is exactly the number of fixed points for the action ofg.

In the case of the regular representation, no element has fixed points except the identitye∈G, which fixes the entire group. Therefore:

χR(g) =

|G| if g=e

0 otherwise

On the symmetric group S

3

Recall thatS3, the symmetric group acting on3elements, has three irreducible representations known as:

a) V(triv): The trivial representation.

b) V(alt): The alternate representation.

c) V(st): The standard representation.

Exercise 2. [(2.7)in [1]]

Decompose the representationV(st)⊗ninto irreducibles.

Solution of exercise 2. For shorter notations, write V =V(st)⊗n. If:

V =a1V(triv)⊕a2V(alt)⊕a3V(st)

Then, the character on the different conjugation classes (of the identity, transpositions and three-cycles) is given by:

χV = (2n,0,(−1)n) And:

a1= 1

3 2n−1+ (−1)n a2= 1

3 2n−1+ (−1)n a3 = 1

3(2n−(−1)n)

Exercise 3.

Decompose the following representations into irreducibles:

1

(2)

• V1 =Sym2(V(st))

• V2 = Λ2(V(st))

• V3 = Sym2(V(st))⊕V(triv)

⊗V(alt)

• V4 = Sym2(V(st))⊕V(triv)

⊗V(st)

Solution of exercise 3. The characters are:

• χV1 = (3,1,0)

• χV2 = (1,−1,1)

• χV3 = (4,−2,1)

• χV4 = (8,0,−1) Hence, up to isomorphism:

• V1 ≈V(triv)⊕V(st)

• V2 ≈V(alt)

• V3 ≈2V(alt)⊕V(st)

• V4 ≈V(triv)⊕V(alt)⊕3V(st)

References

[1] Fulton, Harris. Representation theory: A first course. Springer 1991.

2

Références

Documents relatifs

University of Zurich (UZH) Fall 2012 MAT532 – Representation theory..

University of Zurich (UZH) Fall 2012 MAT532 – Representation theory..

University of Zurich (UZH) Fall 2012 MAT532 – Representation theory..

University of Zurich (UZH) Fall 2012 MAT532 – Representation theory..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

To compare with the proof of [HMV, Theorem 14.1] which deals with minimal linear description (for symmetric non-commutative polynomials) although they are not given by

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

From the knowledge of the representation theory of G 4 , it is easy to determine from the infinites- imal data whether the corresponding monodromy representation factorize through