• Aucun résultat trouvé

Proposition et modélisation ab initio de nouveaux matériaux ultra-durs dans le ternaire B C N.

N/A
N/A
Protected

Academic year: 2021

Partager "Proposition et modélisation ab initio de nouveaux matériaux ultra-durs dans le ternaire B C N."

Copied!
183
0
0

Texte intégral

(1)

HAL Id: tel-00003143

https://tel.archives-ouvertes.fr/tel-00003143

Submitted on 22 Jul 2003

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

matériaux ultra-durs dans le ternaire B C N.

Maurizio Mattesini

To cite this version:

Maurizio Mattesini. Proposition et modélisation ab initio de nouveaux matériaux ultra-durs dans le

ternaire B C N.. Other. Université Sciences et Technologies - Bordeaux I, 2001. English. �tel-00003143�

(2)

N d'ordre: 2429 TH  ESE PR  ESENT  EE  A L'UNIVERSIT  E DE BORDEAUX I

ECOLE DOCTORALE DES SCIENCES CHIMIQUES

Par

Maurizio MATTESINI

POUR OBTENIR LE GRADE DE

DOCTEUR

Spe ialite: PHYSICO-CHIMIE DE LA MATI

 ERECONDENS  EE PROPOSITION ET MOD 

ELISATION AB INITIO DE NOUVEAUX

MAT



ERIAUX ULTRA-DURS DANS LE TERNAIRE BCN

A soutenirle 23Novembre2001 apresavisde:

M. P. MOHN Professeur Rapporteurs

M. S.CSILLAG Professeur

Devant laCommissiond'examenformee de:

M. J.ETOURNEAU Professeur President

M. P. MOHN Professeur Rapporteurs

M. S.CSILLAG Professeur

M. H.DREYSSE Professeur Examinateurs

M. R.AHUJA Do teur

(3)

Due to the te hnologi al importan ebehind the possibility to dis over novel lasses of

hardmaterialsan enormousresear he orthasbeendire tedduringthelastde ades

to-wards the synthesis and hara terisationof promising arbon-based ompoundssu has

arbonnitridesand boron arbonnitrides. However, despitemanyattemptsofsynthesis

andtheindisputableprogressesmadeinthe eld,amorphous sampleswithun lear

rys-tallographi datahavebeenoftenobtainedinmanyresear h laboratories. In parti ular,

severalproblemsarisefrom thefa tthatmostofthesamplesareofpolymorphi nature,

thusleadingto a diÆ ultand un ertainspe tros opi hara terisation.

A general understanding of the relations between omposition and the ele troni

stru turepropertieshasthereforebeenprovidedtheoreti allyinthisThesistogetfurther

insightinto the hara teristi s of pure rystallineforms. Asone might expe tthiswork

hassuddenlybeenturnedoutintoa ompli ate and hallengingtaskbe ause ofthela k

ofreliableexperimental rystalstru turesto beusedasreferen esforthe omputational

inputs. Therefore itbe ame essentialto proposehypotheti albi- and three-dimensional

model phasesto obtain trendson the relative stability, ele troni and me hani al

prop-erties of arbon- and boron arbon-nitrides. So far as that is on erned, a systemati

study of pure rystalline CN x

(where x=0.36 and 1.33) and BC

2

N systems has been

proposed as an important omplement to the experimental knowledge. Thanks to the

progress in modern omputer te hnology it has also been possible to ompute su h an

investigationviaab-initio( rst-prin iples)methodsbytestingandprobingdi erentsolid

state al ulationalapproa hes. Infa t,one ofthe rstobje tivesofthisproje thasbeen

the sear h of a valid omputational density-fun tional-based s heme able to reprodu e

and/orpredi t thehardnessand stabilityof awide varietyofultra-hard materials.

Cal ulations of the ohesive properties and standard enthalpies of formation have

been arriedouttoaddressthethermodynami stabilityofdi erentisoele troni

ompo-sitions,namelyC 3 N 4 ,C 11 N 4 andBC 2

N.Thehardnesshasalsobeenstudiedbymeansof

theanalysisofthe al ulatedelasti andbulkmoduli. Theinvestigationoftheele troni

propertieshasbeena hievedwiththe al ulationofthedensityofstates,bandstru ture,

ele tron density maps and rystal orbital overlap population analysis. For some of the

studiedmole ular lusters,the 13

CNMRshiftshavebeenevaluatedtoprovidea

spe tro-s opi dis riminationbetweensystems withvery similarstru tural hara teristi s. This

is the ase of the hexagonal and orthorhombi modelsof the graphiti -like C 3

N 4

form.

Finally, the determination of the ele tron-energy loss near edge stru tures of C, B and

N K ionisation edges has been omputed in order to provide referen e spe tra of pure

rystallinematerials,likelyto allow adis riminationofpolymorphi samples.

Results are presented to demonstrate that arbon nitrides are ultra-hard systems

with outstanding me hani al properties. In parti ular, the arbon ri h omposition,

C 11

N 4

(4)

analogueC 3

N 4

. However,thepossibilitytodepositsinglephasesamplesshouldbehighly

hampered inbothstoi hiometriesbytheirlargepositiveenthalpiesof formation.

The introdu tion of boron atoms (boron arbon nitrides) has displayed a slight

de- reasing inthemagnitudes of theelasti and bulkmoduli,though the al ulated values

arestillhigherthanthatof ubi boronnitride(i.e. these ondhardestknownmaterial).

Nevertheless, three-dimensional BC 2

N phases have also shown exothermi enthalpiesof

formation whi h point to an easier deposition of the \BCN" materials with respe t to

arbonnitrides. Therefore,by onsideringthewholesetoftheinvestigatedmodelphases,

sp 3

-bondedboron arbon nitridesresult asthebest andidatesfornovel ultra-hard

ma-terialswhi h ould, inprin iple,be synthesisedwiththe a tualte hniques. Very re ent

(5)

Compte tenu des enjeux te hnologiques qui sous-tendent la de ouverte de nouvelles lasses

de materiaux ultra-durs, des e orts de re her he onsiderables ont ete destines durant les

deuxdernieres de ades ala synthese et a la ara terisation de omposes legers prometteurs

tels queles nitrures et boronitrures de arbone.

Cependant, malgre de nombreuses tentatives de synthese et les progres indis utables

realises dans e domaine, seuls des e hantillons amorphes (mal ara terises du point de la

ristallographie)ontpu^etreobtenusdansdi erentslaboratoiresdere her he.Enparti ulier,

plusieurs problemes sont souleves de par la nature polymorphe des e hantillons produits,

onduisantde e faitaune ara terisation spe tros opique peupre ise.

Par onsequent l'etablissement de relations entre omposition et proprietes destru ture

ele tronique est fourni sur une base theorique dans ette These a n d'approfondir les

a-ra teristiques des formes ristallines des materiaux. Comme on pouvait s'y attendre ette

t^a he omplexeest vitedevenueunde omptetenudu manquededonneesexperimentales

pourles stru tures ristallinessus eptiblesdeservir depoint dedepart aux al uls.

Il devintalors essentielde proposer des phasesmodeles (hypothetiques) auxe helles

bi-et tri-dimensionnelles pour etablir des tendan es omparatives sur les stabilites, proprietes

ele troniquesetme aniquesdesnitruresetboronitruresde arbone.Enparti ulier,lesetudes

systematiquesdessystemes ristallinsbinairesCN x

(o ux=0,36et1,33)d'unepartetternaires

BC 2

Nd'autrepartontetemeneesetpresentees ommeunefor edepropositionvisavisdes

experimentateurs.

Gr^a e aux enormes progres de la te hnologie moderne des ordinateurs, il a ete possible

demener esetudes au moyende methodes ab initio (des le depart) en testantet sondant

di erentesappro hesdel'etudedusolide.Enfait,l'undespremiersobje tifsdemontravailde

Theseaetedevaliderlemeilleurs hema al ulationnelauseindelatheoriedelafon tionnelle

densite,DFT,sus eptibledereproduireet/oudepredireladurete etlastabilited'unegrande

variete demateriauxultra-durs.

Les al uls des proprietes de ohesion et les enthalpies standard de formation ont ete

entreprises a n d'expliquer la stabilite thermodynamique des di erentes ompositions

iso-ele troniques, nommement C 3 N 4 , C 11 N 4 et BC 2

N. La durete a ete egalement etudiee au

moyen de l'analyse des modules d'elasti ite et de ompressibilite. L'examen des proprietes

de stru ture ele tronique a ete realise par le al ul des densites d'etats, de la stru ture de

bandes d'energie, des artes de densite ele tronique et des populations de re ouvrement.

L'etude des depla ements himiques par RMNdu 13

C de lusters mole ulaires a permis de

fournir un moyen de dis rimination entre systemes ayant des ara teristiques stru turales

tres voisines. C'est notamment le asdes stru tures hexagonaleet orthorhombique deC 3

N 4

graphitique. En n, les seuils d'ionisation K de C, B et N ont ete al ules (spe tros opie

ele tronique par perte d'energie \EELS") pour les di erentes stru tures ristallines a n de

(6)

e hantillonspolymorphes.

Lesresultatsdemontrentquelesnitruresde arboneetudiessontdesmateriauxultra-durs

ayant desproprietes me aniques ex eptionnelles.En parti ulier,les phasesdela omposition

ri he en arbone, C 11

N 4

, montrent des energies de ohesion superieures et se presentent

omme plusduresque l'analogueiso-ele troniqueC 3

N 4

. Neanmoins lapossibilitededeposer

desstoe hiometriesmonophasiques seraitpenalisee pourles deux ompositions omptetenu

deleurs energies deformation fortement positives.

L'introdu tiond'atomesdebore(boronitruesde arbone) onduitaunelegerediminution

desamplitudesdesmodulesd'elasti iteetde ompressibilite.Maislesvaleurs al uleesrestent

superieures a elles de BN ubique, le se ond meilleur materiau ultra-dur onnu apres le

diamant.Neanmoinsles phasestri-dimensionnellesBC 2

Nanalyseespresententdesenthalpies

deformation nettementexothermiques, e quiestenfaveurd'une preparation (pardep^otde

ou hes min es par exemple) plus aisee de phases \BCN" par rapport aux nitrures binaires

CN x

pourlesquelsH 0

f

>0.Par onsequenten onsiderantl'ensembledessystemesmodeles,

lesphases\BCN"a liaisonshybridees essentiellementsp 3

(tri-dimensionnelles) se presentent

omme les meilleurs andidats pour de nouveaux materiaux ultra-durs a base d'elements

legers sus eptiblesd'^etresynthetises parles moyensa tuels. Ces observationssontappuyees

(7)

This Thesis illustrates the work that I arried out between 1998 and 2001 at the

In-stitut de Chimie de la Matiere Condensee de Bordeaux (ICMCB-CNRS), University of

Bordeaux I. The purposeof my resear h withintheEuropean Trainingand Mobilityof

Resear hers (TMR) Network

1

has been the hara terisation of the properties of

di er-ent arbon-andboron arbon-nitride ompoundsbyattested, highlya urateele troni

stru ture al ulations. Inparti ular,themodellingofnovelpotentialhardmaterialslike

binaryCN x and ternaryB x C y N z

have beenaddressed.

When I started my work in November 1998 there were already several published

s ienti papers(boththeoreti alandexperimental)dealingwiththedistin tfeaturesof

novel ompounds,quiteoften alledsuper-orultra-hardmaterials,that ouldinprin iple

ompete with the hardness of the onventional diamond. However, one of the greatest

attra tions of this subje t that has always appeared important to me is the lose link

existing between hardness and phase stability on the one hand and the bonding and

stru ture of the material on the other. The onne tion between these two aspe ts has

beento some degree proved inthisThesisto be one of theessentialprin ipleson whi h

thedevelopment of thenext generation's hardmaterialsshouldbebased.

Althoughmostoftheinvestigationswereperformedat thesolidstatelevel,thestudy

ofsome mole ular lustershasalso beensu essfullyintegratedfortheevaluationofthe

13

CNMR hemi alshifts. Thelargestpartofthe al ulationshavebeena hievedbyusing

the omputationalfa ilitiesof theintensive entre of al ulation \p^o leModelisation

Mi- ros opiqueetMesos opiqueenPhysique,dans l'EnvironnementetenChimie"(M3PEC)

of theUniversity of Bordeaux I. The resultsobtained have beenwell re eived in an

ex- hange ofinformationwiththe otherpartners of theEuropean ommission.

Thepresentmanus riptshowsanintrodu torypartintendedtoexplainsome spe i

on eptsabouthardmaterialsandto overthebasi ideasbehindtheemployed

theoret-i almethods. These ondpartisspe i allydedi atedtothethoroughdes riptionofthe

resultsobtainedduringthestudyof arbon nitrideand boron arbon nitridesystems.

Bordeaux,September2001

Maurizio Mattesini

1

(8)

Frequentlyused abbreviations:

APW Augmentedplane wave

ASA Atomi sphereapproximation

ASW Augmentedspheri al wave

b Body entered ubi

COOP Crystalorbitaloverlap population

CVD Chemi alvapordeposition

DFT Di erent densityfun tionaltheory

DOS Densityof states

EELS Ele tron energylossspe tros opy

E F Fermi energy E g Band gap

ELNES Energylossnear edgestru ture

f Fa e entered ubi

FFT Fast fouriestransforms

FP-LAPW Full-potentiallinearizedaugmentedplane wave

GGA Generalizedgradient approximation

h p Hexagonal losepa ked

ICOOP Integrated rystal orbitaloverlappopulation

KS orbitals Kohn-sham orbitals

LAPW Linearizedaugmented planewave

LDA Lo aldensityapproximation

LMTO LinearmuÆn tinorbital

NMR Nu lear magneti resonan e

PP Pseudo-potential

PVD Physi alvapordeposition

R mt MuÆn-tinradius sp 2 , sp 3

Ele tron orbitalhybridization

US-PP Ultra-soft pseudo-potential

,  Bondingtypes

(9)

1. Relative stabilities, bulk moduli and ele troni stru ture properties of

di erent ultra hard materials investigated within the lo al spin density

fun tionalapproximation,M. Mattesini, S.F.Matar,A.Snis,J.Etourneau,A.

Mavromaras, J.Mater. Chem., 9, 3151 (1999).

2. Stability and ele troni properties investigations of the graphiti C 3

N 4

systemshowingan orthorhombi unit ell, M. Mattesini,S.F.Matar andJ.

Etourneau, J.Mater. Chem., 10, 709-713 (2000).

3. First-prin iples hara terisation of new ternary heterodiamond BC

2 N

phases,M. MattesiniandS.F.Matar, Comput. Mat. S i.,20/1,107-119 (2001).

4. Abinitio sear h of arbon nitrides, isoele troni with diamond, likely to

lead to new ultra-hard materials, S.F. Matar and M. Mattesini, C.R. A ad.

S i. Paris, 4,255 (2001).

5. Sear h for ultra-hard materials: theoreti al hara terisation of novel

orthorhombi BC

2

N rystals, M. Mattesini and S. F. Matar, Int. Jour. of

Inorgani Materials, inpress (2001).

6. DFTinvestigationofhardness,stabilityandele tron-energy-lossspe tra

of arbonnitridesintheC 11

N 4

Stoi hiometry,M. MattesiniandS.F.Matar,

(10)

TitlePage . . . i

Abstra t . . . ii

Resume . . . iv

Prefa e . . . vi

Nomen lature . . . vii

PublishedPapers . . . viii

Tableof Contents. . . xi

Listof Figures . . . xv

Listof Tables . . . xix

1 Introdu tion 1 1.1 The interestinnovel ultra-hardmaterials . . . 1

1.2 Aimsof theThesis . . . 2

1.3 Outlineof theThesis . . . 3

2 The Hardness and Covalen y 5 2.1 Firsttheoreti al propositionof CarbonNitrides asnovelhardmaterials . 5 2.2 Ele tron ount onsiderations . . . 6

3 The on ept of Hardness 9 3.1 Introdu tion. . . 9

3.1.1 Measure oftheresistan e uponvolume hange insolids . . . 10

3.1.2 Resistan e to reversible deformationuponshape hange . . . 11

4 Density Fun tional Theory 13 4.1 Introdu tion. . . 13

4.2 The basi prin iplesof themethod . . . 14

4.3 Singleparti leKohn-Shamequations . . . 16

4.3.1 The basissets . . . 19

(11)

5 Planewave Pseudo-Potential methods 21

5.1 Introdu tion. . . 21

5.2 Blo h's Theoremand Planewaves . . . 22

5.3 GeneralApproximations . . . 23

5.4 Pseudo-Potentials. . . 23

5.4.1 Norm onserving pseudo-potentials . . . 23

5.4.2 Ultrasoft Pseudo-Potentials (US-PP) . . . 24

5.4.3 Generation of theUS-PP . . . 26

6 The Full Potential LAPW method 29 6.1 Introdu tion. . . 29

6.2 The LAPWbasis . . . 31

7 The ASW method 33 7.1 Aboutlinearmethods . . . 33

7.1.1 ASW and LMTOmethods . . . 33

7.1.2 The ASAand its impli ations . . . 34

7.1.3 Solution of thewave fun tion . . . 34

7.2 Furtherformalismwith theASWmethod . . . 34

7.2.1 The augmentationpro ess . . . 35

7.2.2 The variationalmethod of Rayleigh-Ritz . . . 38

8 Carbon Nitrides 40 8.1 Introdu tion. . . 40 8.2 Study ofthe C 3 N 4 stoi hiometry . . . 42

8.2.1 Methodsand omputationaldetails. . . 42

8.2.2 Stru tural modelsfortheC 3 N 4 stoi hiometry . . . 43

8.2.3 Relativestabilityof variuos C 3 N 4 phases. . . 44

8.2.4 Hardness . . . 51

8.2.5 Hexagonal and Orthorhombi graphiti -C 3 N 4 . . . 55 8.2.6 Cal ulation ofthe 13 CNMR hemi alshifts . . . 66 8.2.7 Con lusions . . . 70 8.3 The isoele troni C 11 N 4 model system . . . 72 8.3.1 Introdu tion . . . 72

8.3.2 Methodsand omputationaldetails. . . 73

8.3.3 The analysed rystallinestru tures . . . 73

8.3.4 Relativestabilityand phasetransitions . . . 76

8.3.5 Cal ulationsof theelasti and bulkmoduli . . . 83

8.3.6 Ele troni stru ture . . . 89

(12)

9 Boron Carbon Nitrides 98

9.1 Ternary BCN ompounds . . . 98

9.2 Settingup novelthree-dimensionalBC 2 Nphases . . . 100

9.2.1 Cubi andhexagonal diamond . . . 100

9.2.2 Carbonsubstitution . . . 101

9.3 Computational details . . . 105

9.4 BC 2 N phasesand theirrelativestability . . . 106

9.4.1 Enthalpyof formation . . . 108

9.4.2 Dis ussionof theresults . . . 111

9.5 Theoreti alestimation ofhardness . . . 114

9.5.1 Me hani al stability . . . 118

9.6 Ele troni densityof statesand bandstru ture . . . 120

9.6.1 The orthorhombi phases(I and II) . . . 120

9.6.2 The trigonalmodel stru ture(III-BC 2 N) . . . 127

9.7 Theoreti alELNES forBC 2 N model systems . . . 127 9.7.1 The layered BC 2 N model system . . . 131 9.8 Con lusions . . . 135

10Summary and Outlook 141 10.1 Carbon Nitrides. . . 141

10.2 Boron CarbonNitrides . . . 142

10.3 Prospe tive studies and \what'sleft" . . . 143

11Con lusions 144 11.1 Nitruresde Carbone . . . 144

11.2 Boronitruresde Carbone . . . 145

11.3 Prospe tives et \ e qui reste a faire" . . . 146

Bibliography 158

(13)

2.1 S hemati ternary omposition diagram indi ating di erent "hard"

stoi- hiometries. . . 8

4.1 S hemati representationofvariousDFT-based methodsof al ulation. . 17

4.2 Flow- hartforself- onsistentdensityfun tional al ulations.. . . 18

5.1 Illustrationdiagramof therepla ementof the"all-ele tron"wavefun tion

and orepotential bya pseudo-wavefun tionand pseudo-potential. . . 24

6.1 Adaptation of the basis set by dividing the unit ell into atomi spheres

and interstitialregions.. . . 30

7.1 Comparison between the augmented plane (APW) and spheri al (ASW)

waves.ThisFigurehasbeentakenfromtheoriginalworkofA.R.Williams,

J.Kublerand C. D.Jr. Gelatt [74 ℄.. . . 36

8.1 -C

3 N

4

model system. Carbon and Nitrogen are depi ted in grey and

white,respe tively. This olors heme iskept throughoutall theThesis. . 45

8.2 One layerof thehexagonal graphiti -C 3

N 4

model.. . . 45

8.3 One layerof theorthorhombi graphiti -C 3

N 4

phase. . . 46

8.4 Relativestabilitybetweendi erentC 3

N 4

phasesbyusingdi erentmethod

of al ulations. . . 46

8.5 Energy dependen e of the unit ell volume for ubi -C 3

N 4

as a fun tion

of threedi erent al ulationalmethods. Datapoint have been tted with

theBir h type EOS. . . 53

8.6 FigurefromR.Riedel[149℄ showingthes atteringoftheVi kershardness

forhardmaterialswhen ompared withbulkand shearmoduli. . . 54

8.7 Ele tron ir ulationinthehexagonal graphiti -C 3

N 4

model. . . 57

8.8 Ele tron ir ulationintheorthorhombi graphiti -C 3

N 4

model. . . 57

8.9 The above gure shows the general di eren es in the ring's geometry for

(14)

8.10 Total COOPforthehexagonal and theorthorhombi phases(ASW). . . . 63

8.11 IntegratedCOOPforthehexagonal and theorthorhombi systems (ASW). 63

8.12 TotalCOOPfortheorthorhombi phase(ASW).For larityea h

nitrogen- arbonintera tionshavebeenshiftedalongtheverti alaxis.ThelabelsB

and ABde nethebonding andthe antibondingregion, respe tively. . . . 64

8.13 Siteproje tedDOSplotfortheAAAorthorhombi graphiti phase(ASW).

The energy referen e along the x-axis is taken with respe t to the Fermi

level;the y-axisgives theDOSperatom and unitenergy. . . 65

8.14 Site proje ted DOS forthehexagonal graphiti model system(ASW). . . 66

8.15 Valen eele tron densitymap fortheorthorhombi graphiti -C 3

N 4

model

system(FP-LAPW). . . 67

8.16 Total DOS for the orthorhombi phase (FP-LAPW). Noti e the absen e

of energygap at thetopof theVB. . . 68

8.17 Total DOS forthehexagonal phase (FP-LAPW). . . 68

8.18 Mole ular lusterrelative to thehexagonal graphiti -C 3

N 4

. . . 69

8.19 Mole ular lusterrelative to theorthorhombi graphiti -C 3

N 4

.. . . 70

8.20 Ballandsti kmodelofthebl-C 3

N 4

stru ture.Figureshowstheproje tion

of theatomsalong the[001℄ plane. . . 75

8.21 One layerof thegraphiti -C 11

N 4

model phase.. . . 75

8.22 Crystalstru tureof thetetragonal C 11

N 4

. Proje tion along the[100℄

plane exhibitingthe \nitrogen-hole". . . 77

8.23 Proje tionoftheorthorhombi C 11

N 4

rystalstru turealongthe[010℄

plane. . . 77

8.24 Free energies (eV/atom) versus atomi volumes (  A 3

/atom) for various

C 3 N 4 and C 11 N 4 phases(US-PP). . . 80

8.25 Front view of the\ arbon-hole" in -C 11

N 4

. . . 81

8.26 The al ulatedDOS forthebl-C 3

N 4

phase(FP-LAPW). . . 90

8.27 The al ulatedtotal DOS forthebl-C 3 N 4 and -, C 11 N 4 (FP-LAPW). 92

8.28 Theoreti alC KELNESof diamondand graphite(FP-LAPW). . . 94

8.29 Theoreti al C K ELNES of various phases (FP-LAPW). The spe tra for

theinequivalentatomspositionshavebeen al ulatedseparatelyand

weigh-tedinthepresentFigure. . . 95

8.30 Theoreti al N K ELNES of various phases (FP-LAPW). As in Fig. 8.29

inequivalent atoms have been al ulated separately and weighted in the

present spe tra. . . 96

9.1 Unit ell of ubi diamond. This stru ture was rst determined in 1913

by W. H. and W. L. Bragg [195 ℄. That was also the rst time that the

stru tureofanelementwasdeterminedbytheuseofX-raydi ra tion[196℄.100

(15)

9.3 Crystalstru tureoftheorthorhombi I-BC 2

N.Carbon,nitrogenandboron

atomsare depi tedinbla k,white and grey, respe tively. . . 104

9.4 Crystalstru tureof theorthorhombi II-BC 2

N. . . 105

9.5 Crystalstru tureof thetrigonalIII-BC 2

N phase. . . 106

9.6 Cohesiveenergies(eV/atom)asafun tionoftheatomi volume(  A 3

/atom)

forthestartingmaterialsandBC 2

Nstru tures.The urvesweregenerated

withtheUS-PP/LDA method. . . 109

9.7 Crystalstru tureof theorthorhombi graphiti -BC 2

N modelphase.. . . . 110

9.8 Crystalstru tureof theh-BN.. . . 112

9.9 Unit ellofthe -BN. . . 113

9.10 Energyversus pressurefordi erent BC 2

N phases(US-PP). . . 114

9.11 Idealised hemi alenvironment around theB/N sitein -BN and various

BC 2

N phases.Part(a)ofthes heme referstotheorthorhombi phases(I

and II)while,part (b) on ernsthelo al hemi albondingofthephase III.115

9.12 Valen e ele tron densitymap showingthe polarisation of the C-C bonds

inI-BC 2

N.. . . 117

9.13 The al ulatedpartialdensityof statesof I-BC 2

N. . . 121

9.14 Band stru ture of I-BC 2

N along the symmetry linesof theorthorhombi

Brillouinzone:X=(0 1 2 0)! =(000)!Z=(00 1 2 )!U=(0 1 2 1 2 )!R=( 1 2 1 2 1 2 ) ! S=( 1 2 1 2 0) ! Y=( 1 2 00) ! =(000). . . 122

9.15 The al ulatedpartialdensityof statesof II-BC 2

N. . . 124

9.16 Bandstru tureof II-BC 2

N alongthesymmetry linesoftheorthorhombi

Brillouinzone:X=(0 1 2 0)! =(000)!Z=(00 1 2 )!U=(0 1 2 1 2 )!R=( 1 2 1 2 1 2 ) ! S=( 1 2 1 2 0) ! Y=( 1 2 00) ! =(000). . . 125

9.17 Total DOS fortheorthorhombi phasesIand IIin arbitraryunits. . . 126

9.18 The al ulatedpartialdensityof statesof III-BC 2

N. . . 128

9.19 Band stru ture of III-BC 2

N along the symmetry lines of the hexagonal

Brillouinzone: =(000)!M=(0 1 2 0)!K=( 1 3 2 3 0)! =(000)!A=(00 1 2 ) ! L=(0 1 2 1 2 ) ! H=( 1 3 2 3 1 2 ) ! A=(00 1 2 ). . . 129

9.20 Theoreti alCKELNESofvariousphases(FP-LAPW).Theexperimental

CVDdiamondspe tra[204℄hasbeenshiftedby+1.05eValongtheenergy

axisinorder to alignits rst  

peakwith theone ofthe theoreti al urve.132

9.21 Theoreti al N K ELNES of various phases (FP-LAPW). The spe tra of

thehigh pressuresynthesised -BN[205℄ hasbeenmovedby+2.05 eV to

mat h the rsttheoreti al  

peak. . . 133

9.22 Theoreti alBKELNESofvariousphases(FP-LAPW).Thehighpressure

synthesised -BN spe tra [205 ℄ has beenshifted by +3.15 eV inorder to

alignthe rst  

peakwith thetheoreti al urve. . . 134

(16)

9.24 Theoreti alN KELNESof graphiti -BC 2

N in omparisonto h-BN. . . 138

9.25 Theoreti alBK ELNESofgraphiti -BC 2 N in omparisonto h-BN. . . 139 10.1 The three-dimensionalC 7 N 4

model system.Ongoing al ulationsseemto

indi ate the same general tenden y found for the C 3 N 4 and C 11 N 4 om-positions. . . 143

(17)

2.1 Hardness of minerals and some syntheti erami s a ording to F. Mohs.

Forsyntheti materialsmi ro-hardnessvaluesaregiven inunitsof Knoop

s ale. Valuesareshown as ompiledbyR. RiedelinRef.[25 ℄. . . 7

5.1 Parametersdeterminingtheultra-softpseudo-potentialusedinthisThesis.

ARCrepresentstheatomi referen e on gurationand r ;l

(where l=s, p,

d) the ut-o radii inatomi units. . . 27

8.1 Total energiesand densities fordi erent C 3

N 4

phases. Energy valuesare

expressed in eV/C 3

N 4

unit and are s aled with respe t to the stable

graphiti -C 3

N 4

form. Pseudo-potential al ulations refer to the work of

D. M. Teter and R.J.Hemley[29 ℄. . . 47

8.2 Cohesiveenergies(eV/atom) ofdi erent C 3

N 4

modelsystems.Valuesare

onfronted with those of the starting materials : diamond/graphite and

N 2

. For the al ulations of the nitrogen dimer it has been used a simple

ubi ell (a=10 

A) with atoms displa ed along the diagonal dire tion.

It should be noted that an overbinding of more than 1 eV/atom is not

unusualinlo al-density al ulationsforse ond-periodelementalsolids,as

forexamplediamond[136 , 137 ℄. . . 49

8.3 Cal ulatedenthalpyofformation,H o

f;0

(kJ/mol),fordi erent

ex hange- orrelation fun tionals.Theabovetable showsonlyvaluesrepresentatives

forthelayeredgraphiti -C3

4

Nandthethree-dimensionalbl-C3

4

N.The

om-pletelistof enthalpiesisgiven inTab.8.18of Se tion8.3, p.72. . . 50

8.4 Equilibriumlatti e onstants(a o

)fortheinvestigatedmodelsystems.The

energyvs. volumedata were tted witha thirdorder Bir h equation.. . . 51

8.5 Bulkmodulus,B (GPa) and its pressurederivatives, B 0

(valuesin

paren-thesis)forvariousC 3

N 4

phasesand diamond. . . 52

8.6 Cal ulatedelasti onstants( ij

inGPa),atomi densities(ing/ m 3

)and

isotropi shear moduli(G in GPa) for ve di erent C 3

N 4

phases. Values

(18)

8.7 Cal ulated elasti onstants (GPa) and bulk moduli (GPa) for diamond

as a fun tion of di erent ex hange- orrelation methods : Perdew-Wang

91 (PW91) [47 ℄, Perdew-Be ke (PB) [46 ℄, Perdew-Wang 86 (PW86) [57 ℄,

Langreth-Mehl-Hu (LM) [45 ℄. The subs ript \relaxed" and \frozen"

de-notes values al ulated withorwithouttherelaxation of theatomi

posi-tions.. . . 56

8.8 Cal ulated elasti onstants(GPa) and bulkmoduli(GPa)forbl-C 3

N 4

as

a fun tionofdi erent ex hange- orrelation fun tionals.. . . 56

8.9 Stru turalparameters fortheorthorhombi stru turewithAAAsta king

order. . . 59

8.10 Bondlengthsbeforeandaftertheoptimisationoftheorthorhombi stru ture. 60

8.11 Angles before and after the optimisation of the orthorhombi stru ture.

The notationprimerefers to atomsbelongingtheadia ent unit ell. . . . 60

8.12 FP-LAPWand US-PP ohesive energies(eV/atom) fortheorthorhombi

and hexagonal latti es. . . 62

8.13 Cal ulationsof the 13

CNMR hemi alshift(ppm)for thetwo

graphiti -like phases. For thereferen e TMS it hasbeenestimated, with the same

omputationalapproa h,a hemi al shiftof184.4 ppm. . . 71

8.14 Optimised parameters for the bl-C 3 N 4 and the -, -C 11 N 4 phases. The

tableshows rystalsystem,spa egroup,atomsunit ell 1

andtheatomi

positions. Cell onstants areexpressed in unitof 

A and theangles , ,

indegrees.. . . 76

8.15 Optimisedparameters forthegraphiti -C 11

N 4

phase. . . 78

8.16 Cohesiveenergy, E(eV/atom), forvariousCN x

phases. Free energy

va-lues are s aled with respe t to the stable graphiti -C 11

N 4

stru ture. The

ratio of the numberof hemi al bondsperunit ell, R

(C C=C N)

, is also

shown. . . 79

8.17 Cal ulatedFP-LAPW ohesiveenergiesofgraphiti - and -C 11

N 4

.Values

aregiven ineV/atom. . . 82

8.18 Computedstandardmolarenthalpyofformation(H o

f;0

)forthetwoCN x

stoi hiometries (x=1.33 and 0.36) by usingthe ohesive energies seen in

Tabs. 8.2, 8.12 and 8.17. Values in parenthesis orrespond to the use of

graphite asastartingmaterial. . . 82

8.19 Strains andelasti moduliforthe orthorhombi phase. . . 84

8.20 Strains andelasti moduliforthe tetragonalphase. . . 85

8.21 Strains and elasti moduli for a ubi system. By al ulating the

tetra-gonal shear onstant, C 0 = 1 2 ( 11 12

) , and the bulk modulus, B =

1 ( 11 +2 12 ), itispossibleto extra t 11 and 12 . . . 86

(19)

8.22 Theoreti al values of the elasti onstants ( ij

in GPa), isotropi shear

modulus (G in GPa), bulk modulus (B in GPa), its pressure derivative

(B 0 ), atomi volume (V o in  A 3

/atom), ohesive energy (E o

in eV/atom)

and atomi densities ( ing/ m 3 ) of bl-C 3 N 4 and -, -C 11 N 4 . Values in

roundbra ketsrefertotheworkofA.Y.LiuandR.M.Wentz ovit h[114 ℄

whereasthose insquarebra kets on ernthebulkmodulus al ulatedby

ombining theelasti onstants. . . 87

8.23 Table shows the al ulated B/G ratio, Young'smodulus(GPa) and

Pois-son'sratio(dimensionless)ofbl-C 3 N 4 and -, -C 11 N 4

. Diamondhasalso

beenlistedas a referen e material.Values inround bra kets on ern the

propertiesof CVDdiamondas ompiledinRef. [178 ℄. . . 89

8.24 Positions of peaks I-V in the spe tra of Fig. 8.28. All the positions are

s aledwith respe tto the main 

peak II. Values areinunits of eV.(y)

Valuesas ompiledinRef.[181℄. . . 93

9.1 Crystal stru ture data for ubi and hexagonal diamond. Cell onstants

valuesareexpressedin unitof 

A. . . 102

9.2 Substitutionofthe arbon atomsinthef diamond.. . . 102

9.3 OptimisedparametersforheterodiamondBC 2

Nstru tures.Cell onstants

and bonddistan esare giveninunit of 

A. . . 103

9.4 Substitutionofthe arbon atomsinthehexagonal diamond.. . . 104

9.5 Stru tural and ohesive properties of various phases : atomi volume V o

(  A 3

),bulkmodulusB(GPa), pressurederivativesB 0

and ohesiveenergy

E oh:

(eV/atom).Thelattervalueshavebeenobtainedbytakingthe

di e-ren ebetweenthetotal energyofthesolidsand theground-stateenergies

of the spheri al non spin-polarised atoms. No orre tion for zero-point

motionhas beenmade.. . . 107

9.6 Cal ulated energy di eren e, E (eV/atom), for various phases relative

to thegraphiti -BC 2

Nform. . . 108

9.7 Optimisedparameters forthegraphiti -BC 2

Nmodelphase. . . 111

9.8 Cal ulated ohesive energies(E oh:

ineV/atom) forvariousBC 2

N phases

and some of the starting materials as a fun tion of di erent

ex hange- orrelation fun tionals. . . 116

9.9 Cal ulated standard enthalpyof formation. Values in parenthesis

orres-pondtotheformationenergyofgraphiti -BC 2

Nwhengraphiteistaken as

a startingmaterial. . . 116

9.10 Cal ulatedenthalpyofformationfortherea tion: -BN ( ) +2C ( ) !BC 2 N ( ) .

Valuesinparenthesis orrespondtotheformationenthalpyofthe

(20)

9.11 Strainsandelasti moduliforthetrigonalphase.UnlistedÆ ij

aresetequal

to zero. . . 118

9.12 Independent elasti onstants, ij

, and isotropi shear modulifor BC 2

N,

diamond,lonsdaleiteand -BN. Valuesare expressedinunitsof GPa. . . 119

9.13 Theabove tableshows the al ulatedB/G ratio,Young'smodulus(GPa)

and Poisson's ratioofthestudiedBC 2

Nphases. Diamondand -BNhave

also been listed as referen e materials. Numbers given within bra kets

orrespondtotheuseoftheexperimentalBand GvaluesofTabs.9.5and

9.12. y

Bulkmodulusfromthe ombinationofthevariouselasti onstants.

z

Measuredelasti modulusfrom nanoindentationsofpoly rystalline -BN

bulksamples[203 ℄. . . 120

9.14 PositionsofthepeaksA-Erelativetothespe trashowninFigs.9.20,9.21

and 9.22. All the positions are s aled with respe t to the main  

peak

Aand refer to thebroadenedspe tra.Valuesareexpressed inunitsof eV

withan estimated errorof 0.25eV. . . 130

9.15 PositionsofthepeaksA-Grelativetothespe trashowninFigs.9.23,9.24

and 9.25. All the energies are s aled with respe t to the rst  

peak B

and refer to thebroadenedspe tra. Theestimated erroris 0.25eV. . . 135

9.16 Valuesoftheseparationbetween the rst  

and  

peaks (0.5 eV)for

theKedges of graphiti -BC 2

(21)
(22)

Introdu tion

1.1 The interest in novel ultra-hard materials

The possibility to synthesise new materials with hardness 1

similar or even larger than

diamond has be ome of fundamental and te hnologi al interest for hemists, physi ists

and in parti ular for the whole materials s ientists ommunity. It was in the middle

of the last entury when most of the known ultra-hard materials (i.e. diamond and

ubi boron nitride) were synthesised and manufa tured with high pressure and high

temperaturepro esses[1 ,2,3℄. The ontinueresear honthe eldhasre entlypermitted

tosynthesiseorredis oversuperhard ompoundssu hasSiO 2 -stishovite[4 ℄, ubi -Si 3 N 4 [5 ℄ and ubi -BC 2

N [6 ℄. The onstant growing interest inthisdomain isalso dueto the

development(1980's)ofnewvapordepositionte hniques(CVD,PVDandlaserablation),

whi h allow thedepositionof hardmaterials lmsat lowtemperature and pressures on

di erentsubstrates [7 , 8 ,9 ,10 ,11 ℄.

Diamond exhibits ex ellent me hani al, hemi aland physi al properties and

nowa-days remains thehardest known material. However, it is wellknown that it annot be

used in utting tools for steel owing to a ertain instabilityat high temperatures. As

a matter of fa t, its stability drasti ally de reases in the presen e of oxygen at even

moderate temperature (873 K). Itis also nota very suitableabrasive for utting and

polishing ferrous alloys sin eit tends to rea t and form iron arbides. Furthermore, its

super abrasive performan e is somehow limited. For these reasons and be ause of the

needtosubstituteexpensivediamondinmanyotherappli ations,newhardmaterialsare

required. Itismostlythestrongindustrialdemandsofwearresistant oatingsfor utting

and forming tools whi h has driven the sear h of novel hard materials. Common hard

1

hardness(h ard 0

n 

is), n. [AS.heardness.℄ 1. The qualityorstateof beinghard, literallyor

gura-tively. Sour e: The Ameri anHeritage Di tionaryofthe EnglishLanguage, Fourth EditionCopyright

(23)

solids are usually lassi ed into ompounds with metalli (TiN or WC), ioni (Al 2

O 3

)

or ovalentbonding(diamond,Si 3

N 4

et ..). Transitionmetalnitridesand arbides(TiN

and TiC)have beenlargelyused as oatings forwear prote tive appli ationsinthelast

de ades. However, arbon based materials su h as arti ially grown diamond and

hy-drogenated arbon ompoundshavebe ome avalidalternative. These materialspossess

good prote tive properties and low fri tion oeÆ ient, thus open the possibilityto use

the oatings as solid lubri ants. Another important lass of materials is represented

by arbon nitrides ompounds with general formula CN x

. The growing resear h

inter-est arose from the theoreti al work of A. Y. Liuand M. L. Cohen [12 ℄ whi h predi ted

for -C 3

N 4

a hardness omparable to that of diamond. Despite the synthesis of pure

rystalline and stoi hiometri C 3

N 4

has been found extremely diÆ ult, some non

stoi- hiometri arbon nitrides have eviden ed interesting properties su h as high hardness

and elasti ity, and lowfri tion. These ompounds arethuspromising andidatesforthe

nextgeneration's wearprote tive oating. However, thefundamentalproblem withsu h

materialsremains theextreme diÆ ultyfoundin growing pure rystalline nitrogen-ri h

samples. Espe iallywith thin lmte hnology various depositionte hniquesand growth

onditionshave beentestedwithoutgreatsu ess: non- rystallineandnitrogen-de ient

lmsarealways obtained.

Theintrodu tionofboronatomsinto arbonnitridesleadstothepossibilitytoobtain

new hardmaterialswith general formula B x

C y

N z

. Withsu ha boron-based ompound

thelowoxidationresistan eofdiamondmightbeimprovedthusremovingtheproblemof

usinghardmaterialsathightemperaturesinair. There entinterestinboron arbon

ni-trideshasbeenmostlyfo ussedontheBC 2

Nstoi hiometry,whi hisaphaseisoele troni

with thewellknown C 3

N 4

. The rst eviden e of the graphiti BC 2

N dates ba k to the

synthesisofKouvetakisetal. [13 ,14 ℄,where hemi alvapordepositionmethodwasused

withBCl 3

and CH

3

CNasstartingmaterials. Several e ortshave beenmadeinorder to

modifythesegraphiti BC 2

Nsystemsintohighlydensethree-dimensionalphasesbut

un-fortunately,despitetheuseofhigh-pressureandhigh-temperaturemethods,no ommon

results were found in the last de ade. Some resear hers foundproblems witha ertain

limited solubility [15 , 16 ℄, while others laimed a segregation in a mixture of diamond

and ubi boron nitride( -BN) [17 , 18, 19℄. Nevertheless, early theoreti al al ulations

[20 ,21 ,22 ℄havesuggestedthatthese ompoundsshouldpossessanintermediatehardness

betweendiamondand -BN.

1.2 Aims of the Thesis

It is ertain that despite the initial s ienti enthusiasm, the synthesis of arbon

ni-tridesand boron arbonnitrides hassuddenlyturnedoutina very diÆ ulttask. Many

(24)

hara terise polymorphi samples. The sear h of a pure rystalline material and its

subsequent spe tros opi hara terisation remains nowadays the main topi for all the

resear hers workingon CN x and B x C y N z ompounds.

Giventhe ostand the omplexityofthesynthesis/ hara terisationpro edure,

om-puter modelling investigation has here been used to dis over new possible rystalline

models and to predi t theirmaterial properties in a faster and heaper way. The

om-putationalmethodshave already beenappliedto diamondand ubi boronnitride(i.e.

the hardest known solids) with great su ess, provoking a onsiderable interest in

in-vestigating other hypotheti al materials. The rst goal of my resear h has been the

determination of an eÆ ient omputational approa h for simulating the relative

stabil-ity and thehardness of some potentialphases thathave re ently beenproposed forthe

C 3

N 4

stoi hiometry. In parti ular, several Density Fun tional Theory (DFT) methods

have been tested, among the various simulation s hemes available inour laboratory, in

orderto inspe ttheirpe uliarreliabilityandusefulness. Subsequently, themost

promis-ing rst-prin iplesmethodshavebeenemployed intherestoftheThesisto al ulatethe

ohesiveproperties,bulkandelasti moduliofdi erentkindsof arbonnitrideandboron

arbonnitridemodelstru tures. Ele troni propertieshavealsobeenstudiedbymeansof

densityof statesand bandstru ture analysis. In addition,thein uen eofhybridisation

on the hemi al bonding and stability hasbeendis ussed interms of the siteproje ted

densities of states as well as the rystal orbital overlap population. Finally, sin e the

hara terisation of arbon nitridesand boron arbonnitridesis mostlyrestri ted bythe

problem of obtaining pure rystallinesamples, the al ulation of the theoreti al energy

lossnearedge stru turehasbeenshowninorder to providereferen e spe tra.

A large part of this work has also been oriented to the theoreti al proposition and

hara terisation of novel model systems isoele troni with diamond and ubi boron

nitride. I have in my resear h fo used most of the attention on the rystal engineering

ofthe C-B-N networksbyproposingvariousbinary (C 11 N 4 )and ternary (BC 2 N)model

ompounds. Theirele troni ,me hani alandspe tros opi hara terisationgiveninthis

Thesisshouldprovidea pre ioustool fortheinterpretation of theexperimental results.

1.3 Outline of the Thesis

The rst Chaptersare mostly on erning a generalintrodu tionto thedomainof

ultra-hard materials (Chapters 2 and 3) and to the employed omputational methods. In

parti ular,Chapter4resumesthebasi ideasbehindtheDFT,whileChapters5,6and7

ontainabriefdes riptionofthevariousmethodof al ulations. InChapter8adetailed

investigation of the CN x

systems is presented by paying most of the attention to the

di eren es between the C 3 N 4 and C 11 N 4

stoi hiometries. The study of boron arbon

(25)

intheirme hani al and ele troni properties. The on lusions are drawnin Chapter 10

(26)

The Hardness and Covalen y

2.1 Firsttheoreti al propositionof CarbonNitrides as novel

hard materials

It was in 1985 that M. L. Cohen[23 ℄ proposed an empiri alrelation between the bulk

modulus, B (volumetri ompressibilityor bulk modulus), and the rystalline solids of

elementsoftheIII,IVandV olumnoftheperiodi table. Inthefree-ele trongasmodel,

the ase of metals, the expressionof the B modulus (GPa) s ales as the Fermi energy,

E F

, andtheele tron on entration,n,

B= 2 3 nE F : (2.1)

StartingfromthemodelofPhillips-VanVe hten[24 ℄itispossibletoextendtheexpression

of B to semi ondu tors. The bond geometry of ovalent bonds is roughly represented

with a ylindri alshape with volumes (2a B

) 2

d, where a B

is theBohr radiusand d

( 

A)thelengthof the ylinder. Usingthisapproximation we obtain,

B=45:6E h d 1 (2.2) where E h

(eV) representsthe homopolar ontribution of theopti gap, E g (E 2 g =E 2 h + E 2 ioni

). Using the s aling of Phillips (E h

/ d

2:5

) for the dependen e of E h

on d for

tetrahedral ompoundssharing eight valen eele tronsperatom pair,we obtain

B=1761d

3:5

; (2.3)

wherethenearest-neighbordisagainin 

AandBinGPa. Theintrodu tionoftheioni ity

parameter, ,permitsto onsider theioni hara terof thebonding:

B =(1971 220)d

3:5

(27)

Thisempiri alrelationresultsappropriateforthegroup-IV(=0),III-V(=1)and

II-VI(=2) semi ondu tors. Furthermore,inordertoa ount foradi erent oordination

number (di erent from 4 of the tetrahedral site), M. L. Cohenintrodu edthe variables

N

, whi h represents the mean oordination number. The nal version of the equation

takes thefollowingform:

B = N 4 (1971 220)d 3:5 : (2.5)

Theaboveequationgivesana urateB valuefordiamondandforsemi ondu torswitha

zin -blendestru ture. Thevolumetri ompressibilityBin reases withtheloweringof d

and. Thehardestmaterialsarethusthosethatshowlowerioni ityandstrongerbonds.

Diamond responds to these hara teristi s; indeedit shows N

=4, =0 and d=1.54

 A.

The bulk modulus al ulated for diamond with the Eq. 2.5 is 435 GPa, whi h is very

lose to the experimental one of 443 GPa. In the ase of arbon nitrides with formula

C 3

N 4

themean oordinationnumber(N

)is 24

7 1

whi hislowerthanthatofdiamond,4.

Takinginto a ount thesmallele tronegativitydi eren ebetween arbon andnitrogen,

we assumetheC-N bond to be slightlyioni with= 1

2

. From thevaluesofthe ovalent

radius(r C =0.77  Aandr N =0.75 

A)wede neaC-Nbondlengthof1.52 

A.Theinsertion

oftheseparametersinEq. 2.5providesaB valueof430 GPa. Therefore, arbonnitrides

withformulaC 3

N 4

shouldexhibitabulkmodulus omparable to thatof diamond.

Thiswasthe rsttheoreti alindi ationofthepossibilityto ndnewpromising lasses

of arbonbasedhardmaterials. Inparti ular,thelargebulkmodulus al ulatedfromthe

simpleempiri alrelationofM. L. CohenwassuÆ ient enoughto provoke inthemiddle

ofthe1980's anoutstandings ienti enthusiasmwhi his,nowadays,stillnotvanished.

2.2 Ele tron ount onsiderations

Thede nitionof"ultra-hard" materialsisusuallyemployedtodes ribeallthe ompounds

that have shown hardness values omparable to that of diamond. Generally speaking,

thesematerialsaresolidswithanhardnessinbetween8-10Mohss ale(Tab. 2.2). Sin e

diamond, ubi boronnitride( -BN) and boron arbides (B 13 C 2 -B 12 C 3

)arethehardest

materialsknown,it anreasonablybeexpe tedthatnovelultra-hardsolidswillbefound

inthe same B-C-N ternary ompositiondiagram (see Fig. 2.1). However, asone might

anti ipate many ombination of C, B and N atoms are, in prin iple, possible and an

huge amount ofdi erentstoi hiometriesandstru tures anrapidlybeimaginedforboth

binary and ternary ompounds. Therefore, the proposition of novel hard phases has

1

Carbonhasfourvalen eele trons([He℄2s 2

2p 2

)and anformone ovalentbondwithfournitrogen

atoms,whereasnitrogenpossesses vevalen eele trons ([He℄ 2s 2

2p 3

) and anonlyhave one ovalent

bondwiththreeatomsof arbon. ForthisreasonN =

(34) +(34)

(28)

Mineralsor Formula Mohs Knoop100

Syntheti Materials (GPa)

Tal um Mg 3 [( OH) 2 =Si 4 O 10 ℄ 1

Hexagonal Boron Nitride y h BN 0.15-0.30 Gypsum CaSO 4 2H 2 O 2 Cal ite CaCO 3 3 Fluorite CaF 2 4 Apatite Ca 5 [( F;OH)=( PO 4 )℄ 5 Feldspar K[AlSi 3 O 8 ℄ 6 Quartz SiO 2 7 Topaz Al 2 [F 2 =SiO 4 ℄ 8 -Sili onNitride y -Si 3 N 4 17 Corundum x -TitaniumNitride y Al 2 O 3 TiN 9 21 Sili onCarbide y SiC 26 -Sili onNitride y -Si 3 N 4 26-35 TitaniumCrabide y TiC 28 Boron Carbide y -TitaniumDiboride y B 4 C TiB 2 30 Boron suboxides B n O 30-59 Stishovite y SiO 2 33

Cubi Boron Nitride y

BN 45

Diamond x

C 10 75-100

[ y℄ Syntheti material. [x℄ Syntheti materialornatural mineral.

Table 2.1: Hardness ofminerals andsome syntheti erami s a ordingto F. Mohs. For

syntheti materials mi ro-hardnessvaluesare given inunits of Knoop s ale. Valuesare

shownas ompiledbyR.Riedel inRef. [25 ℄.

generallybeenrestri tedinthisThesisbytheadoptionoftheso- alledele tron ounting

rule. A systemati investigation of the various stoi hiometries be omes thus possible

thanksto thelimited numberof allowed atomi ombinations.

If we look, for example, at the building up of the two-dimensional arbon nitride

ompounds,one ould rstlyenvisagearandomrepla ementofCbyN withinthelayers

ofgraphite. However, thisresultsinanunstable ele troni stru ture on guration. This

isdueto theadditionalele tronsofthenitrogenatomswhi hhave tobea ommodated

in energeti ally unfavourable ele troni bands. But if ompounds are designed to be

isoele troni to diamond and graphite the stability and the ele troni stru tures are

(29)

Figure 2.1: S hemati ternary omposition diagram indi ating di erent "hard"

stoi- hiometries.

2s states are in luded. Distributing the ele trons on eight sites gives four ele trons on

ea hsite whi his isoele troni withdiamondand graphite. Theeighth siteisa va an y

(C 3 2 1 N 4

)andthelonepairsofthree ofthenitrogenatomsarepointingtowardthishole.

From this, graphiti C 3

N 4

should have a similar band stru ture at the Fermi level as

graphite, and C 3

N 4

with a three-dimensional network is also expe ted to have a band

gap similarto diamond. Consequentlya seriesof di erent ombinations of C, B and N

an be investigatedfor the sear h of new hard ompounds, provided that thefollowing

simple onditionisrespe ted:

pZ V ( B)+mZ V (C)+lZ V (N)=4n (2.6)

The values p, m, l and n are integers and Z V

(B), Z V

(C) and Z

V

(N) are the atomi

valen e states (2s and 2p) for boron, arbon and nitrogen, respe tively. Examples are

representedbythesystemsC 3 N 4 , C 11 N 4 , BN, B 4 C, BC 2 N et ...

The attention has therefore beenrestri ted onlyto those ompositions that are

iso-ele troni to arbon,i.e.,diamond. Thisparti ular hoi e alsoderivesfromthefa tthat

all the substan es obeying this ruleshould likely posses the same attra ting properties

(30)

The on ept of Hardness

3.1 Introdu tion

From the me hani al point of view we usually de ne the hardness as the resistan e

of the material to deformations. This property strongly depends on many parameters

like pressure, temperature, porosity, impurities, dislo ations and defe ts. It is usually

orrelatedtovariousotherphysi alproperties(ioni ity,meltingpoint,bandgap, ohesive

energy, et ...) and an thus be studied indire tly. The hardness for a given sample

is usually determined by empiri al methods su h as the s rat h test (Mohs s ale) or

indentationbydroppingaweightonthesample. Theresultsarevery usefulbutdiÆ ult

to interpret and they often dependent on the sample and its state of purity. In the

Vi kers test the hardness is estimated by measuring the indentation left by a diamond

stylusundera xedload. Thistest and thes rat h test (irreversiblemethods)arequite

oftenemployed experimentallyto lassify thehardness ofthevarious ompounds.

Many theoreti al predi tions on the hard materials have been made in the last two

de ades by looking at the magnitude of the bulk modulus, B, [26 , 27 , 23 , 28 , 12 , 29 ℄.

However, in1977A.P.Gerk[30 ℄hasalreadysuggestedthattheshearmodulus,G,whi h

de nes the resistan e to reversible deformation upon shape hange, might be a better

predi torofthehardness. Morere ently, D.M.Teter[22 ℄showedthatforawidevariety

of materials the shear modulus is really more orrelated to the Vi kers hardness than

the bulk modulus (further details are given in Se tion 8.2.4, p. 53). The hardness of

rystallinematerialsthusbe omesbetter de ned bytaking into a ount thedislo ation

theory, i.e., by measuringhow readilya largenumberof dislo ationsare generated and

areable to move throughoutthe solidinresponseto theshear stresses.

In thefollowingsubse tions weshowhowto des ribethehardness ofsolidswiththe

(31)

3.1.1 Measure of the resistan e upon volume hange in solids

The bulkmodulusmeasuresthe resistan e to thevolume hange insolids and provides

anestimationof theelasti response ofthematerialto an externalhydrostati pressure.

TheB(V) valueis relatedto the urvature ofE(V),

B(V)= V P V =V  2 E V 2 (3.1)

whereV isthevolumeoftheunit ell,E(V) istheenergyperunit ellatvolumeV, and

P(V) is the pressurerequired to keep the unit ell at volumeV. Sin e the al ulations

an only providea restri ted set of energiesE(V i

), the se ond derivative,  2 E V 2 , must be

approximated. The least squares t of the urves E vs. V has been performed in this

Thesisbyusingthe rstthree terms of theBir h equation[31 ℄:

E(V)=E(V o )+ 9 8 V o B "  V o V 2 3 1 # 2 + 9 16 B  B 0 4  V o "  V o V  2 3 1 # 3 + N X n=4 n "  V o V  2 3 1 # n ; (3.2) whereE o , V o , B and B 0

aretheequilibriumenergy, volume, bulkmodulusand pressure

derivatives of the bulk modulus, respe tively. In the above summation the n

symbol

representsthe total ontra tion terms [32 ℄, whilstthe maximumorder of the t is

sym-bolised by the N index. The Eq. 3.2 is normally employed by assuming the following

trend: the larger the value of B, the harder is the material. The magnitude of B 0

is

generallyutilisedtodes ribethevariationofthehardnesswithrespe tto agiven hange

ofthe pressure(P).

Di erent semiempiri al relations su h as nite stress-strain have been proposed to

des ribetheso- alledEquation ofState(EOS)(seeRef. [33℄and Refs. therein). S aling

experimental ompression data for measured isotherms of di erent sorts of solids the

EOS is known. The above Bir h type equation of state is a well tested tting form

able to des ribe the P, V, T data for a wide variety of solids. The main assumption

made in its utilisation is that no phase transition o urs duringthe ompressionof the

material. Despitetheexisten e ofdi erent varietiesof EOS,the al ulationsof thebulk

modulus have mostly been performed in this Thesis by using the Bir h type equation.

Sin e su h a tting form provides good results for systems like diamond and -BN I

thought worthwhileto use the same equation for the investigation of new hypotheti al

phasesforwhi htheexperimentaldataarenotyetavailable. Furthermore,bydoingthis

a homogeneous analysis of the results be omes possible with respe t to the previously

(32)

3.1.2 Resistan e to reversible deformation upon shape hange

Inthestudyofme hani alstrengththeelasti ityofsolids,i.e.,theresponseofamaterial

toappliedfor es, mustbetaken into a ount. Thefor esaredes ribedbytensors alled

stresses whi h determine thedire tion of thefor e and the plane to whi h it is applied.

Theresponses intermsof relative hanges indimensionsorshapeare alledstrainsand

theyarealsogivenbytensors. Theratiostress/strainis alledelasti modulus. Forsmall

stressesthemodulusis onstantandthematerialbehaveselasti allysothatitreturnsto

theoriginal onditionwhenthestress isremoved. Forlargestress thesample undergoes

apermanentorplasti deformation. Whenthefor ea tsonlyinonedimensionthestress

is alled ompressional,andwhenita tsinalldire tionsthestressishydrostati . Inthe

shearingstress, for es a tto move parallel planesofthesolid sothatat themi ros opi

levelthesestresses ausetheglidingofplanesofatomsoverea hother. Thisistheeasiest

wayfor asolid to hange its shape and the for e needed (hardness)depends very mu h

on the presen e of rystaldefe ts. Edge and s rew dislo ationsare the mostimportant

defe tsforglidingmotion. Anappliedshearingstress will ausethedislo ationstomove

throughoutthe rystal.

A ording to the nding of A. P. Gerk and D. M. Teter, the hardness of the solids

has mostly been investigated in this Thesis by omputing the value of the isotropi

shear modulus. This magnitude an be expressed as a linear ombination of a set of

elasti onstants, ij

, and is onsidered nowadays as the best hardness predi tor for

solids. The ij

onstants determine the response of the rystal to external for es and

providesinformationaboutthebonding hara teristi sbetweenadja ent atomi planes,

anisotropi hara terofthebondingandstru turalstability. Ea hoftheelasti onstants

isa measure ofhardness foraparti ular kindofunit elldeformation.

Cal ulation of the elasti onstants: ubi system asa simple example

Thebasi problem in al ulatingelasti onstantsfromabinitiomethodsisnotonlythe

demandofa urate al ulationals hemesforevaluatingthetotalenergyofthesolidbut

alsothemassiveand onerous omputations impliedintheestimationof theentiresetof

the inequivalent ij

. For instan e, when the symmetry of the system is de reased, the

number of independent elasti onstants expands and a larger number of distortions is

ne essaryto omputethefullsetof ij

[34 ℄. These onstants anbededu edbyapplying

smallstrainsto theequilibriumlatti e and thendeterminingtheresulting hangeinthe

total energy. In parti ular we al ulate thelinear ombinations of theelasti onstants

by straining the latti e ve tors R a ording to the rule ~

R = R  D. The matrix D

representsthesymmetri distortionmatrixwhi h ontainsthestrain omponentsand ~ R

is thematrix that ontains the omponents of the distortedlatti e ve tors. In order to

(33)

(e.g. strains within1.5 %).

In ubi materialsthereareonlythreeinequivalentelasti onstants: 11 , 12 and 44 .

Thesevalues anbeestimatedby al ulatingthetotalenergyofthesystemasafun tion

oftheshearsdes ribedbelow[35℄. For 11

and 12

thefollowingshear,D 1 , is onsidered, D 1 = 0 B  1+Æ 0 0 0 1+Æ 0 0 0 1 (1+Æ) 2 1 C A (3.3)

wherethezaxisismodi edandthexandyaxesarekeptthesameinavolume onserving

way. The variationofthe strainenergy density(U =Energy=Volume)asa fun tionof

theshear Æ is des ribedwiththefollowing equation,

U =6C 0 Æ 2 +O(Æ 3 ) (3.4) with C 0 = 1 2 ( 11 12

). From the al ulation of C 0

and the bulk modulus, B =

1 3 ( 11 +2 12

), one an evaluate the rst two elasti onstants. With the same

pro e-dure,but onsideringthe followingshear,

D 2 = 0 B  1 Æ 0 Æ 1 0 0 0 1 ( 1 Æ 2 ) 1 C A (3.5) the 44

onstant an be al ulated fromtheequation,

U =2 44 Æ 2 +O(Æ 4 ): (3.6)

Isotropi shear modulus The isotropi shear modulus, G

Iso

, was rstly expressed

byA.Reussaslongago asin1929 [36 ℄. IntheVoigt's approximation theequation takes

thefollowingform:

G Iso = 1 15 [( 11 + 22 + 33 ) ( 23 + 31 + 12 )+3( 44 + 55 + 66 )℄ (3.7)

Forthespe ial ase ofa ubi symmetrytheabove relationtranslatesinto theform of

G = 1 15 (3 11 3 12 +9 44 ): (3.8)

Therefore, after having a omplished the al ulation of the whole set of single rystal

elasti onstants, itispossibleto estimate(forallthematerials)theelasti shear moduli

fora poly rystalline 1

solid bysimply applying theabove relation (Eq. 3.7). A ording

to the nding of A. P. Gerk [30 ℄ and D. M. Teter [22 ℄, the larger is the value of the

al ulatedG, thehardershouldbethematerial.

1

Ingeneral,asingle rystalismorediÆ ulttoprepare thanapoly rystallinematerial. Asamatter

(34)

Density Fun tional Theory

4.1 Introdu tion

Condensedmatter physi s andmaterialss ien earebasi allyrelatedto the

understand-ingandexploitingthepropertiesofsystemsofintera tingele tronsandatomi nu lei. In

prin iple,all theproperties of materials an be addressed given suitable omputational

toolsforsolvingthisquantumme hani sproblem. Infa t,throughtheknowledgeofthe

ele troni properties itis possibleto obtaininformationon stru tural,me hani al,

ele -tri al,vibrational,thermaland opti properties. However, the ele tronsand nu leithat

omposematerials onstituteastronglyintera tingmanybodysystemandunfortunately

thismakes thedire t solutionof the S hrodinger's equation an impra ti al proposition.

As stated by Dira inthe far 1929 [37 ℄, progress depends mostly on the elaboration of

suÆ ientlya urateand approximatete hniques.

Thedevelopmentofdensityfun tionaltheoryandthedemonstrationofthe

tra tabil-ity and a ura y of the Lo al Density Approximation (LDA) represents an important

milestone in ondensed matter physi s. The DFT of Hohenberg and Kohn [38 ℄ was

adopted bythe LDA whi h was rstly developed and applied by Slater [39 ℄ and his

o-workers [40 ℄. First prin iplesquantum me hani al al ulations based on theLDA have

be ome one of themostfrequentlyusedtheoreti al tools inmaterials s ien e.

Nonethe-less, the great ontribution of the lo al density approximation al ulations remained

limited untilthelate 1970's when several workshave demonstrated thea ura y of the

approa hin determiningproperties of solids[41 , 42 ,43 , 44 ℄. Even thoughit hasbeena

great dealto state whytheLDA shouldorshouldnotbe adequatefor al ulating

prop-erties of materials, there is however no doubtthat themost onvin ingarguments have

beenderivedfromthedire t omparisonof al ulationswithexperiments. In parti ular,

despiteitssimpli itythelo aldensityapproximationhasbeenvery su essfulin

(35)

arealso situationswheretheaboveapproa h donotleadto suÆ ientlya urateresults.

This an bethe asewhen thedi eren es inthetotal energy, whi h areusuallyrelevant

in al ulatingstru turalpropertiesand binding,areto beestimatedvery a urately. As

a matter of fa t, smallina ura ies may have here a dramati e e ts. In general, LDA

su er from more or less well-known failures and therefore there have during the last

de adebeenseveralattemptsto go beyondthislo alapproximation byin ludinge e ts

dependingon thevariationof theele tron density.

Nowadays,improvedtheoreti als hemesandtherapidgrowthin omputingfa ilities

have ausedmanytypesofsystemsandpropertiestobestudiessu essfullywithdensity

fun tional methods. In the next following Se tions we brie y resume the fundamental

on eptswhi hareat the baseof thisimportant and fas inatingtheory.

4.2 The basi prin iples of the method

ThetheoremofHohenbergandKohnisatthebaseoftheDFTandstatesthatthetotal

energy, E,ofanon-spin-polarisedsystemofintera tingele tronsinanexternalpotential

isgiven exa tlyasa fun tionalof thegroundstate ele troni density, .

E = E[℄ (4.1)

They further showed that the true ground state density is the density that minimises

E[℄and that theother groundstate propertiesarealso fun tionalsof thegroundstate

density. The extension to spin-polarisedsystems is also possible whereE and the other

groundstate propertiesbe ome fun tionalsof boththeupand downspindensities.

E = E[

" ;

#

℄ (4.2)

TheHohnenberg-Kohntheoremprovidesnoguidan etotheformofE[℄,thustheutility

ofDFTdependson thedis overyof suÆ ientlya urate approximations. In orderto do

this,the unknownfun tionalE[℄ is rewrittenasthe Hartree total energy plusanother

smallerunknownfun tional alledex hange- orrelation(x ) fun tional,E x [ ℄. E[℄ = T s [℄+E ei [℄+E H [℄+E ii [℄+E x [℄ (4.3) In Eq. 4.3 T s

[ ℄ represents the single parti le kineti energy while E ei

[℄ denotes the

Coulombintera tionenergybetweentheele tronsand thenu lei. ThetermE ii

[℄ arises

from the intera tionof the nu leiwith ea h other and E H

[℄ is the Hartree omponent

ofthe ele tron-ele tronenergy.

E H [℄ = e 2 Z d 3 rd 3 r 0 ( r)( r 0 ) 0 (4.4)

(36)

IntheLDA, E x [ ℄is writtenas E x [℄ = Z d 3 r(r)" x (( r)) (4.5) where" x

()isapproximatedbyalo alfun tionofthedensity,whi husuallyreprodu es

theknownenergy ofthe uniformele tron gas. Re nement of theLDA are theso- alled

generalisedgradientapproximation(GGA)andtheweightedapproximation(WDA).An

expression similar to Eq. 4.5 is used in the GGA where the " x

( ) is repla ed by a

lo al fun tion of the density and the magnitude of its gradient, " x

(;jrj). From

the in orporationof theadditional information ontained inthe lo al gradient a better

des riptionof thesystem isexpe ted [45 , 46 , 47 ℄. Several di erent parameterisationsof

theGGA fun tional have beenproposed [47 ℄ and testedon a widevariety of materials.

The GGA improve signi antly the ground state properties of light atoms, mole ules

andsolidsandgenerallytendstoprodu elargerequilibriumlatti eparametersandband

gapswithrespe tto the LDA.

A more sophisti ated approa h is the WDA that in orporates true non-lo al

infor-mationthroughCoulomb integrals ofthedensitywithmodel ex hange orrelation holes

[48 , 49 ,50 ℄. Itameliorates greatly theenergiesof atomsand forthediamondstru tures

of Si and Ge yields bulk properties that are mu h improved as well. Nonetheless, the

WDA ismore demanding omputationallythan theLDA or GGA, and a ordinglyfew

WDA studies have beenreportedforsolids.

Following the Kohn and Sham indi ations [51 ℄, the ele tron density an be written

as a sum of single parti le densities. Given the fun tional E x

the ground state energy

and density an be obtained by the self- onsistent solution of a set of single parti le

S hrodinger-likeequations,knownastheKohn-Shamequationswithadensitydependent

potential, (T +V ei ( r)+V H (r)+V x (r) )' i (r)= i ' i (r) (4.6)

wherethedensityisgiven byaFermi sum over theo upiedorbitals.

( r)= X o '  i (r)' i ( r) (4.7) The ' i

aresingle parti leorbitals,  i

arethe orresponding eigenvalues, T isthekineti

energy operator, V ei

is the Coulomb potential due to the nu lei, V H

is the Hartree

potential and V x

is the ex hange orrelation potential. V H and V x depend on  as follows: V H (r) =e 2 Z d 3 r 0  (r) jr r 0 j (4.8)

(37)

and V x (r)= ÆE x [℄ Æ(r) (4.9)

Inthisframework,a al ulationrequirestheself- onsistentsolutionofequations4.6and

4.7. This meansthat a ertain densityhas to be found su h that it yields an e e tive

potential that, inserted into the S hrodinger-like equations, yields orbitals that an

re-produ eit. Forthisreason,insteadoffa ing-upwiththeproblemofsolvingamany-body

S hrodingerequation,usingDFTwe annowhave theeasierproblemofdeterminingthe

self- onsistentsolutiontoa seriesofsingle parti leequations. Insolids,afurther

simpli- ationthat fa ilitatesDFT al ulationsis providedbythe Blo h'stheorem, wherethe

harge densityand thesingleparti leKSHamiltonianhave theperiodi ityofthelatti e.

ThusKS orbitalswith di erent Blo h momenta are oupledonlyindire tlythroughthe

density dependent potential. Therefore, in DFT based al ulations, the single parti le

KS equations may be solved separately on a grid of sampling points in the symmetry

irredu iblewedge of the Brillouin zone and the resulting orbitals used to onstru t the

harge density(thisisnotthe ase, forexample, inHartree-Fo kmethods).

Asalready mentionedthegreat advantageofthe densityfun tionalapproa h isthat

theresultingsingle-parti leequationsare omputationallysimplertosolvethenthe

equiv-alent Hartree-Fo k equations. This makes possible to onsider systems that are more

omplex(i.e. largersizeor ompli atestru ture)thenthosetreatedbytheHartree-Fo k

derived methods.

4.3 Single parti le Kohn-Sham equations

Dependingontherepresentationsthatareusedfordensity,potentialandKSorbitals,

dif-ferent DFT basedele troni stru turemethods an be lassi ed. Manydi erent hoi es

aremadeinorderto minimisethe omputationaland human ostsof al ulations, while

maintaining suÆ ient a ura y. A briefsummary of themany possibilitiesto solve the

S hrodinger'sequation isgiven inFig. 4.1. InthisThesis al ulationshave beenmostly

on ernedwithtwoparti ularapproa hesnamely, planewavePseudo-Potential(PP)and

theLinearizedAugmentedPlane-Wave(LAPW).Othersimplerandfastermethods,su h

asAugmentedSpheri alWave(ASW)andtheLinearMuÆnTinOrbital(LMTO),have

alsobeenemployedinthestudyof arbonbasedhardmaterials. However, these

ompu-tational approa hes are usually reliableonly when applied to rystalline materialswith

highsymmetry andlarge ompa tness.

The expli it use of a basis an be avoided in onstru ting the KS orbitals by

nu-meri ally solving the di erential equations on grids. However, it is important to note

(38)

Figure 4.1: S hemati representationof variousDFT-based methodsof al ulation.

LAPW methods, do rely on a basis set expansion forthe KS orbitals. Be ause of this,

thedis ussionis here on ned to methodsthat do use a basisin whi h the KSorbitals

are: ' i ( r)= X C i  ( r) (4.10) wherethe

(r)arethebasisfun tionsandtheC i

aretheexpansion oeÆ ients. Given

a hoi e ofbasis, the oeÆ ientsaretheonlyvariablesintheproblem,sin ethedensity

dependsonlyontheKSorbitals. Sin ethetotalenergyinDFTisvariational,thesolution

oftheself- onsistentKSequationspermitstodeterminetheC i

fortheo upiedorbitals

that minimisethetotal energy. In order to eliminatethe unknown fun tionalT s

[℄ the

total energy an be rewrittenusingthesingle parti leeigenvalues:

E[℄=E ii [ ℄+ X o  i +E x [℄ Z d 3 r(r)  V x ( r)+ 1 2 V H (r)  (4.11)

where the sum is over the o upied orbitals and , V H

and V

x

are given by Eqs. 4.7,

4.8and 4.9, respe tively.

Densityfun tional al ulations requirethe optimisationof the C i

and the

determi-nationof the harge density(Fig. 4.2). Thispro edure is usuallyperformed separately

and hierar hi ally. Using standardmatrix te hniques it is possibleto repeatedly

Figure

Figure 2.1: Shemati ternary omposition diagram indiating dierent "hard" stoi-
Figure 4.1: Shemati representation of various DFT-based methods of alulation.
Figure 5.1: Illustration diagram of the replaement of the "all-eletron" wavefuntion
Figure 8.5: Energy dependene of the unit ell volume for ubi-C
+7

Références

Documents relatifs

The recently modified semi-local Becke-Johnson potential with LDA correlation in the form of mBJ-LDA was used to predict the energy band gap, optical dielectric function,

Titanium and its alloys are broadly used in many structural applications such as aerospace, chemical and biomedical industries due to their outstanding properties (lightweight,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this work, to retrieve the ab initio thermal conductivity, we aim at overcoming these two approximations with a direct solution to the phonon BTE [8] where the main input,

Considering the mentioned advantages of NC-CPEs and motivated by the possibility to widen the current limited library of gate electrodes, a novel EGOFET employing a

When the 2 wt% PMMA thin-film of the VT complex was heated up to 403 K, just above the polymer T g , and allowed to rapidly cool down to room temperature, the thin-film retained

Samples (serum or meat juice) collected from 205 animals in New Caledonia in April 2009 were tested for antibodies against Toxoplasma gondii by ELISA using the multi-species ID

We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil) using a modified Balamuth’s egg yolk infusion medium supplemented with 4 %