• Aucun résultat trouvé

PHOTO AND ELECTROCHEMICAL DOPING IN Ge-BASED CHALCOGENIDES

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTO AND ELECTROCHEMICAL DOPING IN Ge-BASED CHALCOGENIDES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220825

https://hal.archives-ouvertes.fr/jpa-00220825

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHOTO AND ELECTROCHEMICAL DOPING IN Ge-BASED CHALCOGENIDES

S. Rajagopalan, K. Solomon Harshavardhan, Bhanwar Singh, K. Chopra

To cite this version:

S. Rajagopalan, K. Solomon Harshavardhan, Bhanwar Singh, K. Chopra. PHOTO AND ELECTRO-

CHEMICAL DOPING IN Ge-BASED CHALCOGENIDES. Journal de Physique Colloques, 1981, 42

(C4), pp.C4-911-C4-914. �10.1051/jphyscol:19814198�. �jpa-00220825�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZdment au nO1O, Tome 42, octobre 1981 page C4-911

PHOTO AND ELECTROCHEMICAL DOPING IN Ge-BASED C H A L C O G E N I D E S

S. Rajagopalan, K. Solomon Harshavardhan, Bhanwar Singh and K.L. Chopra Department o f Physics, Indian I n s t i t u t e o f Technozogy, DeZhi,

Neu DeZhi 110 016, India

A b s t r a c t : Photo and e l e c t r o c h e m i c a l doping of o b l i q u e l y d e p o s i t e d Ge-chalcogenide f i l m s have been s t u d i e d by AES/XPS teohniques. The e f f e c t of e l e c t r o c h e m i c a l a d s o r p t i o n and photodoping on t h e o p t i c a l t r a n s m i t t a n c e i s presented. The atomic c o n c e n t r a t i o n depth p r o f i l e s of A g - s e n s i t i z e d amorphous Ge and Ge Se f i l m s have been e s t a b l i s h e d . The chemical state o f

A P % ~

? I d 5 a s s o c i a t e d c h e m i c a l changes i n t h e c h a l c o g e n i d e brought about by photo and e l e c t r o c h e m i c a l d o p i n g p r o c e s s e s have been i d e n t i f i e d . Some d e t a i l s of t h e b u i l t - i n columnar s t r u c t u r e and s t r e s s e s i n o b l i q u e l y d e p o s i t e d f i l m s have b e e n r e v e a l e d by t h e p r e s e n t study.

I n t r o d u c t i o n : I t h a s been w e l l e s t a b l i s h e d t h a t t h e c h a l c o g e n i d e g l a s s e s on e x p o s u r e t o band gap i l l u m i n a t i o n undergo v a r i o u s s t r u c t u r a l (1,2,3), o p t i c a l

(4-7) and e l e c t r o c h e m i c a l (8.9) t r a n s f o r m a t i o n s . Of a l l t h e photoinduced e f f e c t s r e p o r t e d i n t h d l i t e r a t u r e (1-9) t h e photoinduced d i f f u s i o n of metals i n t h e s e g l a s s e s h a s been widely r e c o g n i s e d due t o i t s p o t e n t i a l a p p l i c a t i o n s i n t h e f i e l d of imaging technology. The photoinduced d i f f u s i o n of t h e adsorbed m e t a l s i n t o t h e c h a l c o g e n i d e g l a s s e s i s a c h a r a c t e r i s t i c phenomenon caused by p h o t o e x c i t a t i o n (10). The e l e c t r o c h e m i c a l doping and o t h e r r e l a t e d pheno- mena i n n o m a l and o b l i q u e l y d e p o s i t e d amorphous Ge Se films have been e x t e n s i v e l y s t u d i e d i n o u r l a b o r a t o r y by Sin& e t a 3 (3571-14) and it h a s been e s t a b l i s h e d t h a t o b l i q u e d e p o s i t i o n enhances t h e e l e c t r o c h e m i c a l doping.

Though t h e k i n e t i c s of t h e e l e c t r o c h e m i c a l a d s o r p t i o n p r o c e s s have been s t u d i e d by some workers (15) i n t e r n s of t h e changes i n r e s i s t i v i t y and t r a n - s m i s s i o n , t h e photo and e l e c t r o c h e m i c a l doping p r o c e s s e s have n o t been expla- i n e d i n d e t a i l . F u r t h e r , t h e d i s t r i b u t i o n of t h e metal, i n t h e volume of t h e f i l m and i t s chemical s t a t e a r e f a r from c l e a r . Our p r e s e n t s t u d i e s on photo and e l e c t r o c h e m i c a l doping e f f e c t i n normal and o b l i q u e l y d e p o s i t e d amorphous

f i l m s have thrown l i g h t on t h e u n d e r s t a n d i n g of t h e fundamental Ag photo and e l e c t r o c h e m i c a l doping i n Ge-based c h a l c o g e n i d e g l a s s e s .

The e x p e r i m e n t a l d e t a i l s f o r vacuum d e p o s i t i o n of t h e f i l m s , and s u b s e q u e n t e l e c t r o c h e m i c a l a d s o r p t i o n and photodoping of m e t a l s , have been d e s c r i b e d elsewhere b y Singh e t a 1 (3,14). The photoinduced d i f f u s i o n s t u d i e s through AESand XPS t e c h n i q u e s have been c a r r i e d o u t w i t h Super SAM/ESCA I n s t - rument, PHI 590 A-1 0.

R e s u l t s and d i s c u s s i o n : The depth p r o f i l e s of Ag-sensitized normal (00) and o b l i q u e l y (BOO d e p o s i t e d amorphous a r e shown i n Pig.1 (a&b).

I t i s c l e a r t h i t M i s replaced by Ag, completely u p t o 100 a & i n t h e c a s e of 80° f i l m s and, p a r t i a l l y , u p t o 65 a'$ i n 00 f i l m s . An oxygen p r o f i l e h a s appeared a f t e r the A g - s e n s i t i z a t i o n p r o c e s s which f o l l o w s t h e Ge p r o f i l e .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814198

(3)

JOURNAL DE PHYSIQUE

SPUTTER ETCHING TIME I minl SPUTTER ETCHING TIME Imm)

Fig. 1 : Depth p r o f i l e of Ag-sensitized amorphous Ge f i l m s (0°&800).

Replacing Ge by Se ( a s i n Geo alSeo 5) h a s d r a s t i c a l l y decreased the electrochemical a d s o r p t i o n of Ag

6

ch la about 2 at$ only upto 100A thickness i n t h e case of 00 deposited f i l m s and about 20 a'& i n t h e case of 800deposited films. On i l l u m i n a t i o n , Ag d i f f u s e s ' decreasing t h e concentration gradient a s , P o w n i n c u r v j b (photon flux-JIOWphotons om-l) and curve

ho hot on

f l u x u

1 0 photons cm- ) of figure2, u n t i l t h e c o n c e n t r a t i o n gradient becomes zero t o give a c o n s t a n t p r o f i l e .

Fig.2: Depth p r o f i l e of Ag-sensitized amorphous Ge0.25Se0.75 f i l m s (00).

Se / 60 -

-

s

z

0

I n t h i s condition, t h e f i l m i s i n s o l u b l e in a n a l k a l i n e medium. This s e l e c t i v e chemical e t c h i n g behavior with such a high c o n t r a s t ( c l o s e t o lo@) make these f i l m s a s inorganic r e s i s t m a t e r i a l s f o r h i & r e s o l u t i o n l i t h o g r a p h i c applica-

t i o n s . The r e l a t e d changes i n t h e r e l a t i v e c o n c e n t r a t i o n p r o f i l e s of Ge and Se a r e too small ( l a % ) t o be d e t e c t e d by AES/ESCA.

,-

40- z

W

Y r

S

The atomic concentration p r o f i l e s of 800 deposited Ge Se f i l n s under electrochemical and pho todoping conditions a r e sh0w8'g f P$?e I t 3 (a&b)

.

is c l e a r t h a t i n t h e case of 800 deposited f i l m s , t h e amount of e l e c t r o - chemical adsorption/doping is about

5

t o 6 times h i g h e r than t h e 00 deposited f i l m s , and i n c r e a s e s towards t h e f i l m - s u b s t r a t e i n t e r f a c e . F u r t h e r , a s the atomic c o n c e n t r a t i o n of Ag i n c r e a s e s along the depth, the G e concentration

Ge

2 4 6 1

SPUTTER ETCHlNGllME ( m m )

(4)

SPUTTER ETCHING TIME lmnn)

SPUTTER ETCHING TIME(min1

F i g . 3: Depth p r o f i l e o f A g - s e n s i t i z e d 80° Ce-Se f i l m s .

g o e s downj Se p r o f i l e r e m a i n i n g i n t a c t a s t h a t f o r undoped f i l m s . On e x p o s u r e Ag d i f f u s e s o u t t i l l no c o n c e n t r a t i o n g r a d i e n t of Ag e x i s t s t h r o u g h o u t t h e f i l m . The Ge p r o f i l e r e m a i n s p r a c t i c a l l y unchanged a n d t h e Se p r o f i l e shows a s l i g h t i n c r e a s e t o w a r d s t h e s u b s t r a t e a f t e r photodoping.

F o r c o m p r e h e n s i v e i n t e r p r e t a t i o n and c h e m i c a l s t a t e i d e n t i f i c a t i o n Of t h e Se-Ge:Ag f il2s a f t e r p h o t o a n d e l e c t r o c h e a i c a l d o p i n g , t h e e x a c t p e a k p o s i t i o n a s w e l l a s t h e w i d t h (F'VIIIM) of Se 3d, Ce 3d a n d Ag 3 d 5 l 2 1 i n e s h a v e b e e n tabu- l a t e d a l o n g w i t h t h e a v a i l a b l e s t a n d a r d s .

S t a n d a r d 800 Se-Ge 800 Se-Ge:Ag

L i n e B i n d i n g i 3 i n d i n g a i n d i n g

J n e r g y F'VHIli Energy F\MM Energy FXIM

P o s i t i o n ( e ~ ) P o s i t i o n ( e ~ ) P o s i t i o n ( e ~ )

-

( e v ) ( e v ) ( e v >

Ce 3d 28.95 1.47 31.6 1.9 30.65 1.9

- - --

Though t h e Ag peak p o s i t i o n c o i n s i d e s w i t h t h e s t a n d a r d Ag v a l u e , Se 3d p e a k p o s i t i o n h a s d e c r e a s e d from 55.3 t o 54.3 eV a f t e r Ag doping. A l s o , t h e r e i s a c o r r e s p o n d i n g p e a k s h i f t in Ge 3d f r o m 31.6 t o 3C.65 eV. T h e s e c h e m i c a l s h i f t s may be a t t r i b u t e d t o t h e p r e s e n c e of Ag2Se, Ag c l u s t e r p r e c i p i t a t i o n and o t h e r complexes l i k e Ag-Ge-Se a f t e r Ag doping. I n d e e d , t h e s e p h a s e s h a v e been

c o n f i r m e d by o u r TEI4 s t u d i e s .

The e l e c t r o c h e m i c a l a d s o r p t i o n p r o c e s s , which i s a n e l e c t r o c h e m i c a l d i s - p l a c e m e n t t y p e of r e a c t i o n , i n v o l v e s o x i d a t i o n o f Ge atoms by m e t a l ( ~ g ) i o n s b y c h a r g e t r a n s f e r t i l l t h e e q u i l i b r i u m e l e c t r o c h e m i c a l p o t e n t i a l i s a t t a i n e d between t h e s e m i c o n d u c t o r s u r f a c e a n d t i e e l e c t r o l y t e . The p r e s e n c e of GeO h a s b e e n o b s e r v e d by XPS a n a l y s i s f o r Ge 3d s h e l l o f amorphous Ge f i l m s b e f o r e a n d 2 a f t e r e l e c t r o c h e m i c a l doping. A l s o , i t is t o be p o i n t e d o u t t h a t f r e e Se i s r e l e a s e d when Ag r e p l c e s Ge by t h e e l e c t r o c h e m i c a l d i s p l a c e m e n t r e a c t i o n . But o n l y d u r i n g p h o t o e x p o s u r e , t h e f r e e Se d i f f u s e s t o w a r d s t h e s u b s t r a t e , a s s e e n f r o m t h e Se p r o f i l e of 8 0 ° d e p o s i t e d Ge Se f i l m s a f t e r p h o t o doping. On e x p o s u r e t o band gap i l l u x i n a t i o n , t h e % ? & s ~ d 5 0 f Ag o c c u r s t o homogenize t h e Ag i n c h a l c o g e n i d e n e t w o r k u n t i l a n u n i f o r m p r o f i l e i s a t t a i n e d forming

(5)

C 4 - 9 1 L JOURNAL DE PHYSIQUE

c o z p l e x e s o f t h e t y p e Ag-Ge-Se p l u s A G ~ S ~ a n d Ae; c k l s t e r p r e c i p i t a t i o n .

',"he e n h a n c e d e l e c t r o c h c r ~ i c o l d o p i n g i n SO0 d e p o s i t e d f l l n s c a n b e a t t r i b u - t e d t o t h e p r e s e n c e o f c o l u 3 n a r i n t e r f a c i a l r e g i o n s : r i t h a s s o c i a t e d v o i d s e n d d a n g l i n g b o n d s w h i c h a c t a s d i f f u s i o n p i p e s . T h e i n v e r s e p r o f l l e o f ~g ( i n c r e a - s i n g Ag toi.:ards t h e s u b s t r a t e ) may b e due t o t h e i n f l u e n c e o f t h e b u i l t - i n s t r e s s e s a t t h e f ~ l u - s u b s t r z t c i n t e r f a c e .

O u r f u r t h e r s t u d i e s o n x e t n l d o p i n g h a v e e s t a b l i s h e d t h a t t h e a e t a l d o p i n t ; d e c r e ~ s e s by 2.5 a n d 1G i n c a s e o f Cu a n d Xu, r e s p e c t i v e l y e n d i s p r a c t i c a l l y

z e r o i n t h e c a s e o f A l .

C o n c l u s i o n s : 1. T h e p r e s e n c e o f oxygen, o x i d e f o . ~ a t i o n in a-3orphous Ge f i l n s d e p o s i t e d c l o s e t o n o r n n l i n c i d e n c e a n d t h e c o x p l e t e c o n v e r s i o n of G e to Ag i n t h e c a s e o f 8 C o d e p o s i t e d f i l n s a d d t o t::e u n d e r s t a n i i n g of t h e e l e c t r o c h e c i c a l a d s o r p t i o n p r o c e s s a n d i t s r e a c t i o n a e c h a n i s z .

2. T h e a h o t o i n d u c e d d i f f u s i o n o f Ag n t t a i n s s a t u x t i o n , p r o d u c i n g a homogeneous A g p r o f i l e , f o r m i n g A&-Ge-Se c o n p l e x a a d Ag2Se, w h i c h a r e i n s o l - u b l e i n a l k a l i n e oediusl.

3. The c o l u ~ n a r s t r u c t u r e a n d t h e f i l y - s u b s t r a t e i n t e r f a c e a r e r e s p o n s i b l e f o r t h e u n u s u a l A g p r o f i l e p r e s e n t i n 800 'A-Se:.kg f i l o s . R e f e r e n c e s :

1. S h i r n i z u , I . and F ? . i t z s c h e , 3.. J.A?pl.Phy~. 4J, (1 9 7 6 ) , 2 9 6 9 .

2. Tanaka,K.and Ohtsukn,Y., 'Thin S o l i d F i l m s , $3, ( 1 9 7 3 ) , 1 7 ; J.Appl.Phys.

a,

( 1 9 7 8 ) , 6 1 3 2 .

3. Bhanlrar S i n c h , R a j a g o p a l a n , S . , Shat,P.K., P a n d y a , D.E. a n d Chopra,%.L., S s l i d S t a t e C o ~ r u n .

3,

( 1 9 7 9 ), 1 ~ 7 .

4. d e N e u f v i l l e , J.P., i n @ ? t i c a l F r o p o r t i e s o f S o l i d s - R e c e n t Develope;:cnts, e d i t e d by .jeraphin,B.O. ( I10:th-Liolland, A m s t c r d l a , 1 3 7 5 ).

5.

d e N e u f v i l l e , J.P., ..osn,S.C. a n ? vvst-iinsky, 3.2. J.9on-Crys:. S o l i d s

2,

0 9 7 4 ) , 1 9 1 .

6. 'isr~icn,K., h?pL.Yhys.Lett.,&, ( 1 9 7 5 j,243.

7. Ksnezan,s.~.?odob.na,J.nnci Ze?el,J.t{, Z.kppl.Phys, fg, ( 1 9 7 ~ i 4 6 6 3 .

U. Jts';gi,Y.an.? i e ? L b u t s ~ , ; . , B p p l . P h y s . i e t t .

a

( 1 3 7 5 ),5:.8.

9. Chan;,l.~..j. 2nd ~ ! o u , T . : ~ . , O ~ ~ . C O E T T . U ~ . - ? ~ . , (1 97b ), 22,,, T h i n S o l i d P i l r ~ s

2.

( 1 9 7 8 ),463.

1 0 . Kokado,lf. S h i n i z u , I . nnc! Inoue,E., J.Yon-Cryst. s o l i d s , & , ( 1 9 7 6 1131.

1 1 . Dhon:ar d i n & , R a j a g o p a l a n , 3 . . ah-t,F.P., Pnndya,D.X. a n d Chopra,;\'.L., J.::on-Cr:rst.dolids, x L J 6 , (1 38; ), 1 ~ 5 3 .

12. Rajagopal:ln,S., Bhanlrar S i n g h , Bhst,P.K.,Pnndya,D.K.and Chop?a,K.L., J.Appl.Phys.,

2,

( 1'379 j.489.

1 3 , B h a n e a r S i n g h , A a j r g o p a l a n , ~ . a n d Choyra,X .L,J.l;?pl.Phya.

51,

(190;),1768.

14. Rhan:;ar S i n g h , Chopra,K.L., J.Appl.fhys. ( ~ n P r c s s ).

15. Gold jchr:,idt,D. a n d h d x a n , P . S . , J . N o n - C r y s t . S o l i d s , 2 2 , (1 9 7 6 ), 229.

Références

Documents relatifs

(a) Demand-driven (the default model in OpenMusic): The user requests the value of node C. This evaluation requires upstream nodes of the graph to evaluate in order to provide C

The current densities obtained here in the “physicochemical” synthetic seawater show the interest of going ahead with the design of a “biological” synthetic seawater, which would

The political and economic interconnections between the choice elements in long term planning are illustrated by the relations between the choice of

We previously defined the original cytotoxic mechanism of anticancerous N-phenyl-N’-(2-chloroethyl)ureas (CEUs) that involves their reactivity towards cellular proteins

Semiconducting SWCNT extraction efficiency plotted as a function of temperature for Pluronic F108 dispersed laser ablation, plasma torch, and arc discharge SWCNTs separated by DGU..

The results of our studies indicate that four factors must be considered when optimizing dye selection and loading to max- imize luminosity of a hybrid SNP dye : molecular

The following discussion will focus on the short to medium term impacts that could be realized within three areas of focus “ feedstock optimization, utilization of microorganisms