• Aucun résultat trouvé

PHOTOTHERMAL DETECTION OF PICOSECOND PHOTOINDUCED DICHROISM

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTOTHERMAL DETECTION OF PICOSECOND PHOTOINDUCED DICHROISM"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00223255

https://hal.archives-ouvertes.fr/jpa-00223255

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHOTOTHERMAL DETECTION OF PICOSECOND PHOTOINDUCED DICHROISM

C. Ironside, R. Taylor, J. Ryan

To cite this version:

C. Ironside, R. Taylor, J. Ryan. PHOTOTHERMAL DETECTION OF PICOSECOND PHO- TOINDUCED DICHROISM. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-579-C6-585.

�10.1051/jphyscol:1983696�. �jpa-00223255�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, supplement au n°10, Tome 44, octobre 1983 page C6- 579

PHOTOTHERMAL DETECTION OF PICOSECOND PHOTOINDUCED DICHROISM

C.N. I r o n s i d e , R.A. T a y l o r and J . Ryan

Clarendon Laboratory, Parks Road, Oxford 0X1 3PU, U.K.

Résume.- On décrit une technique qui utilise la spectroscopie par déflex- ion photothermique pour la mesure du dichroïsme photo induit. Elle possède l'avantage d'éliminer tous les effets non linéaires dus aux mélanges des faisceaux sonde et pompe dans les expériences picoseconde.

Abstract.- A technique which uses photothermai deflection spectroscopy to detect photoinduced dichroism is described. It has the advantage that ef- fects due to nonlinear mixing of pulse and probe in picosecond experiments are eliminated.

In picosecond spectroscopy a standard technique for obtaining temporal infor- mation about light sample interaction is the so-called pulse probe method. The sample is excited by the bleaching pulse and the induced absorption characteristics are monitored, as a function of time, by the delayed probe pulse. This method has been used widely to study various picosecond processes, however, in some cases it is difficult to separate effects due to nonlinear interactions between the pulse and probe (such as four wave mixing) and changes in absorption of the sample \_] J .

In 1975, Ippen and Shank [^2j showed how the pulse-probe method could be applied to the study of reorientation of dye molecules in various solvents. The bleaching pulse creates a dichroism in the dye solution by saturating the absorp-

tion of those molecules with their interaction dipole aligned parallel with the polarisation of the pump beam. The dichroism rotates the probe polarisation through a small angle, of the order of 1.5 degrees. The recovery from the induced dichro- ism is recorded by measuring the transmission of the probe pulse between crossed polarisers as a function of delay. At zero delay there is nonlinear mixing between the pulse and probe resulting in an anomalously large signal called the "coherence spike". This signal can be as much as three orders of magnitude larger than that due to the induced dichroism and obscures the dichroism signal close to zero delay.

Another reported difficulty [_3J with this experiment is the effect of any small birefringence of the optical components this can cause the results to be difficult to interpret.

These experimental artifacts may be overcome if, instead of detecting the probe beam after it has propagated through the sample, we observe directly the energy deposited in the sample by the prftbe beam. Photoacoustic and photothermai

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983696

(3)

C6-580 JOURNAL DE PHYSIQUE

t e c h n i q u e s o f f e r a method o f a c h i e v i n g t h i s . I n p a r t i c u l a r , i n t h i s p a p e r we i n v e s t i g a t e t h e d e t e c t i o n of i n d u c e d d i c h r o i s m by p h o t o t h e r m a l d e f l e c t i o n s p e c t r o - scopy (PDS) [ 4 ] . I n t h i s method t h e p r o p o r t i o n o f t h e e n e r g y d e p o s i t e d b y t h e probe which i s c o n v e r t e d i n t o h e a t i s d e t e c t e d by t h e change i n t h e r e f r a c t i v e i n d e x t h a t i t c a u s e s . The r e f r a c t i v e i n d e x change d e f l e c t s a PDS beam ( u s u a l l y a He Ne l a s e r ) . The d e f l e c t i o n i s measured u s i n g a p o s i t i o n s e n s i t i v e d e t e c t o r . To m o n i t o r t h e i n d u c e d d i c h r o i s m , t h e p o l a r i s a t i o n o f t h e p r o b e beam i s modulated and t h e d e f l e c t i o n o f t h e PDS beam a t t h e m o d u l a t i o n f r e q u e n c y i s r e c o r d e d u s i n g s t a n d a r d p h a s e s e n s i t i v e d e t e c t i o n e l e c t r o n i c s t o p r o c e s s t h e s i g n a l .

The t h e o r y o f t h e PDS d e t e c t i o n of d i c h r o i s m i s s i m i l a r t o t h a t o f conven- t i o n a l PDS. The d i c h r o i c a b s o r p t i o n c o e f f i c i e n t i s d e f i n e d a s

a D = - El- ( 1 )

where aA and a , , a r e t h e a b s o r p t i o n c o e f f i c i e n t s w i t h t h e p r o b e p u l s e p o l a r i s a t i o n p e r p e n d i c u l a r and p a r a l l e l t o t h e b l e a c h i n g p u l s e p o l a r i s a t i o n . F o r t h e c a s e of a sample o f low t h e r m a l c o n d u c t a n c e t h e n t h e d e f l e c t i o n a n g l e i s g i v e n by [5].

dN P L

8 = -

----

X

2 2 ( 1 - e ~ ~ ( a $ ) ) ( - 2

( 5 )

e x p ( - - 2 ) ) dT wpcn a

( 2 )

a a

dN

.

where - dT 1 s t h e change o f r e f r a c t i v e i n d e x w i t h t e m p e r a t u r e , P i s t h e l a s e r p r o b e i n c i d e n t power, w i s t h e m o d u l a t i o n f r e q u e n c y o f t h e l a s e r probe p o l a r i s a t i o n , p c i s t h e h e a t c a p a c i t y p e r u n i t volume, a i s t h e r a d i u s o f t h e i n t e r a c t i o n r e g i o n o f t h e l a s e r pump w i t h t h e l a s e r p r o b e . x i s t h e d i s t a n c e between t h i s i n t e r a c t i o n r e g i o n and t h e p h o t o t h e r m a l p r o b e . L i s t h e l e n g t h o f t h e i n t e r a c t i o n between t h e PDS p r o b e and t h e b l e a c h - p r o b e o v e r l a p r e g i o n .

The t h e o r y o f how t h e d i c h r o i s m r e c o v e r y i s r e l a t e d t o t h e c h a r a c t e r i s t i c r e o r i e n t a t i o n a l time can be s i m p l y d e r i v e d from t h e t h e o r y o f t h e I p p e n and Shank c r o s s p o l a r i s e r e x p e r i m e n t .

Our e x p e r i m e n t i s s e n s i t i v e t o

where CI i s t h e a b s o r p t i o n c r o s s s e c t i o n f o r t h e ground s t a t e t o t h e f i r s t e x c i t e d s t a t e N , , , , ( t ) i s t h e e f f e c t i v e c o n c e n t r a t i o n f o r B e e r ' s law a b s o r p t i o n o f l i g h t p o l a r i s e d i n t h e p a r a l l e l o r p e r p e n d i c u l a r d i r e c t i o n w i t h r e s p e c t t o t h e b l e a c h i n g p u l s e p o l a r i s a t i o n . The r e o r i e n t a t i o n a l i n f o r m a t i o n i s c o n t a i n e d w i t h i n , N ( t ) and N ( t )

.

To f a c i l i t a t e comparison w i t h p r e v i o u s work [ 6 ] , t h e f o l l o w i n g d e f i n i t i o n o f t h e p o l a r i s a t i o n a n i s o t r o p y i s u s e d

T h e e x c i t e d s t a t e decay h a s a l s o t o b e c o n s i d e r e d k ( t ) = N , , ( t ) + 2NL(t)

(4)

Combining e q u a t i o n s ( 3 ) , (4) and (5) a D ( t ) can b e w r i t t e n as

I n t h e c a s e where r ( t ) and k ( t ) a r e s i n g l e e x p o n e n t i a l s w i t h time c o n s t a n t s t and t r e s p e c t i v e l y t h e e q u a t i o n ( 6 ) d e c a y s a s a s i n g l e e x p o n e n t i a l w i t h a measured t i m e c o n s t a n t

OPTICAL MODE LOCKED

I I

A' I

I

\

f = 12

0 . 5 m W HF-NE LASER

F i g , ( 1 ) ~ x p e r i m e n t a l la y o u t f o r P h o t o t h e r m a l d e t e c t i o n of i n d u c e d d i c h r o i s m i n Dyes

E x p e r i m e n t a l D e t a i l s

The e x p e r i m e n t a l a r r a n g e m e n t f o r p h o t o t h e r m a l d e t e c t i o n o f i n d u c e d d i c h r o i s m i s i l l u s t r a t e d i n F i g ( 1 ) . A s y n c h r o n o u s l y pumped mode-locked dye l a s e r (Cr 599.04) was o p e r a t e d w i t h Rhodamine 6G and p r o d u c e d p u l s e s of a b o u t 5 p s d u r a t i o n and

1.5 n J e n e r g y a t a r e p e t i t i o n r a t e of 2 2 8 MHz t h a t i s e q u i v a l e n t t o 4.2 n s between p u l s e s . The a v e r a g e power was 300 mw. The b l e a c h i n g p u l s e t r a v e l s t h r o u g h a v a r i a b l e o p t i c a l d e l a y l i n e t h a t c o u l d s c a n 1000 p s . The p r o b e beam i s d i r e c t e d t h r o u g h a P o c k e l s c e l l t h a t modulated i t s p o l a r i s a t i o n t h r o u g h 90 d e g r e e s a t a v a r i a b l e f r e q u e n c y . The c o u n t e r - p r o p a g a t i n g b l e a c h and p r o b e beams were a l i g n e d

t h r o u g h a 100 m i c r o n p i n h o l e and c r o s s e d i n t h e sample where t h e a v e r a g e power of b l e a c h and p r o b e beams were around 140 mw and 10 mw r e s p e c t i v e l y . The sample c e l l was 1 mm t h i c k and c o n t a i n e d dyes i n v a r i o u s s o l v e n t s i n c o n c e n t r a t i o n s o f t o

-

5

10 m o l a r . P h o t o t h e r m a l d e f l e c t i o n was o b s e r v e d u s i n g a 0 . 5 mW He Ne l a s e r beam whose p o s i t i o n was i n i t i a l l y f i x e d by a l i g n i n g t h r o u g h t h e same p i n h o l e a s t h e dye l a s e r b l e a c h and p r o b e beams and s u b s e q u e n t l y r e p o s i t i o n e d t o o b t a i n optimum PDS s i g n a l . The d e f l e c t i o n o f t h e PDS beam was r e c o r d e d w i t h a q u a d r a n t s i l i c o n photo- d i o d e . The p r o c e s s i n g e l e c t r o n i c s t o o b t a i n a s i g n a l p r o p o r t i o n a l t o d i s p l a c e m e n t o n t h e q u a d r a n t p h o t o d i o d e were made from a s t a n d a r d d e s i g n . P h a s e s e n s i t i v e e l e c t r o n i c p r o c e s s i n g produced a s i g n a l p r o p o r t i o n a l t o t h e PDS p r o b e d e f l e c t i o n a t m o d u l a t i o n f r e q u e n c y . T h i s s i g n a l i s d i r e c t l y p r o p o r t i o n a l t o t h e i n d u c e d

(5)

JOURNAL DE PHYSIQUE

d i c h r o i s m . The d i c h r o i s m r e c o v e r y a s a f u n c t i o n o f p r o b e d e l a y was o b s e r v e d by s c a n n i n g t h e o p t i c a l d e l a y l i n e .

TIME (pd

F i g . (2) P h o t o i n d u c e d d i c h r o i s m r e c o v e r y f o r D O D C I i n Methanol

R e s u l t s and Assessment

F i g u r e ( 2 ) and F i g u r e ( 3 ) show t h e i n d u c e d d i c h r o i s m decay c u r v e s f o r t h e d y e s D O D C I and D Q O C I i n mol. s o l u t i o n s o f m e t h a n o l . The w a v e l e n g t h o f t h e dye l a s e r was a p p r o x i m a t e l y 630 nm. The f i r s t o b s e r v a t i o n t o make a b o u t t h e two f i g u r e s i s t h a t t h e r e i s no c o h e r e n c e s p i k e a t z e r o d e l a y and i n d e e d i n a l l o u r r e s u l t s s o f a r we h a v e s e e n no e v i d e n c e of a c o h e r e n c e s p i k e .

The t i m e c o n s t a n t , t m o f D O D C I t a k e n from f i g ( 2 ) i s 389

+

5 0 p s . I t i s t a k e n from t h e f i r s t p a r t (0-220 p s ) o f t h e d e c a y ( t h e sudden d r o p i n s i g n a l i s p r o b a b l y due t o m i s a l i g n m e n t of t h e d e l a y l i n e ) . F o r a f l u o r e s c e n c e l i f e t i m e , t , of 1.5 n s t h e n u s i n g e q u a t i o n ( 7 ) t h e r e o r i e n t a t i o n a l l i f e t i m e , t i s c a l c u l a t e d t o b e 266 2 5 0 p s . T h i s compares w i t h t h e I o p e n and Shank measurement o f t r = 9 3 p s f o r t h e same dye i n t h e same s o l v e n t . However Fleming e t a 1 have d e m o n s t r a t e d t h a t a s i g n i f i c a n t b u i l d up o f p h o t o i s o m e r can a ~ p r o x i m a t e l y d o u b l e t h e measured v a l u e o f t r . T h i s may a c c o u n t f o r t h e d i s c r e p a n a y between o u r v a l u e o f t r and t h a t o f I p p e n and Shank a s o u r a v e r a g e power i s p r o b a b l y h i g h e r and t h e w a v e l e n g t h a t which t h e measurement was t a k e n i s n e a r t o t h e p h o t o i s o m e r peak a b s o r p t i o n .

(6)

O R I E N T A T I O N A L R E L A X A T I O N

B 50 103 150

.

I I - L L U I I I 1 I I I v I

T I M E C p S >

F i g . (3) Induced d i c h r o i s m r e c o v e r y f o r DQOCI i n Methanol

The DQOCI tm can be found from f i g u r e (3) and i s 83 t 10 p s . The e x c i t e d s t a t e l i f e t i m e i s 3 p s t h e r e f o r e o u r measurement must b e depended on t h e c r e a t i o n o f a l o n g e r l i v e d photoisomer which w i l l a l t e r t h e ground s t a t e r e c o v e r y time t o around 4 n s ; t h i s would make t 81 2 10 ps. The r e o r i e n t a t i o n a l l i f e t i m e i n a c e t o n e was found t o be 52 t 10 p s . The r e l a t i o n s h i p between t r i n methanol, v i s c o s i t y 0.6 cp and t h a t i n a c e t o n e , v i s c o s i t y 0 . 4 c p , i s i n good agreement w i t h t h e s i m p l e hydrodynamic model o f m o l e c u l a r r e o r i e n t a t i o n which p r e d i c t s t h a t t r w i l l s c a l e l i n e a r l y w i t h v i s c o s i t y .

From t h e s i g n a l t o n o i s e r a t i o i n t h e e x p e r i m e n t we e s t i m a t e t h a t t h e minimum d e t e c t e d d e f l e c t i o n a n g l e was 3 . 3 x 10 -6 r a d , t a k i n g t h e f o l l o w i n g t y p i c a l and

dN -4

-

3

approximate v a l u e s

-

= 4.1 x 10

,

p c = 2 x I O - ~ J M - ~ , p = 10 x 10 V , w = 10 Hz and x = a = 100 x 10 d?6 m, t h e n from e q u a t i o n (2) i t i s c a l c u l a t e d t h a t a minimum aD o f 2 x 10-'m-'could be measured. I n c o n v e n t i o n a l PDS, u s i n g s i m i l a r absorbed powers, t h e minimum d e f l e c t i o n a n g l e r e p o r t e d i s 1 0 - ~ r a d t h a t i s t h r e e o r d e r s o f magnitude more s e n s i t i v e t h a n t h i s e x p e r i m e n t . The d i f f e r e n c e i s accounted f o r by t h e t u r b u l e n t c o n v e c t i o n c u r r e n t p r e s e n t i n t h e sample b e c a u s e o f a b s o r p t i o n from t h e b l e a c h i n g beam which i n d u c e s t h e d i c h r o i s m . The c o n v e c t i o n c u r r e n t n o i s e i s a t low f r e q u e n c i e s around 2 Hz b u t i n c r e a s i n g t h e m o d u l a t i o n f r e q u e n c y t o a v o i d t h i s n o i s e was l i m i t e d by t h e I / w r o l l o f f i n t h e s i g n a l e x p r e s s e d i n e q u a t i o n ( 2 ) .

(7)

JOURNAL DE PHYSIQUE

-PDS probe

samp

1 e

E s F ;on t

a ' e t e c t o ~

F i g . ( 4 ) Experimental arrangement f o r s o l i d s

S o l i d s

The r e c e n t o b s e r v a t i o n of o r i e n t a t i o n a l g r a t i n g s i n semiconductors [8,9]

s u g g e s t s t h a t i t should be p o s s i b l e t o c r e a t e induced dichroism i n s o l i d s which would r e l a x on t h e picosecond time s c a l e . The o r i e n t a t i o n a l g r a t i n g h a s been produced i n germanium wafers and due t o a n i s o t r o p i c s t a t e f i l l i n g .

I n s o l i d s t h e r e i s no t u r b u l e n t convection c u r r e n t t o contend with and t h e r e - f o r e t h e photothermal d e f l e c t i o n d e t e c t i o n may be c o n s i d e r a b l y more s e n s i t i v e than i n l i q u i d s . F i g ( 4 ) shows a scheme f o r o b s e r v i n g photoinduced dichroism which we have t r i e d o u t i n GaSe, which has a convenient band gap f o r Rhodamine 6G o p e r a t i o n of t h e mode-locked dye l a s e r . Howewer, induced dichroism was n o t observed a t thesame peak power as t h a t i n t h e dye s o l u t i o n s s u g g e s t i n g t h a t t h e dye l a s e r p u l s e s have t o be a m p l i f i e d b e f o r e induced dichroism c a n be observed.

Conclusion

The use of photothermal d e f l e c t i o n t o d e t e c t induced dichroism has been demon- s t r a t e d . The major advantages of t h e technique a r e t h e absence of a coherence s p i k e and t h a t t h e r e appear t o be no s p u r i o u s e f f e c t s due t o b i r e f r i n g e n c e of t h e o p t i c a l components. The s i g n a l t o n o i s e r a t i o i n the experiment i n l i q u i d s was l i m i t e d by t h e t u r b u l e n t convection c u r r e n t from the b l e a c h i n g beam.

I n semiconductors a g r e a t e r peak power of t h e b l e a c h i n g beam i s r e q u i r e d b e f o r e induced dichroism can be ohserved.

Acknowledgements

This work was financed by t h e SERC.

(8)

R e f e r e n c e s

L e s s i n g , H.E. and Von J e n a , A. " L a s e r Handbook" e d . S t i t c h , M.L. p. 7 5 3 NORTH HOLLAND 1979.

Shank, C.V. and I p p e n , E.P. A p p l . P h y s . L e t t . 26 6 2 1975.

Waldeck, D., C r o s s , A . J . , McDonald D.B. and F l e m i n g , G.R. J. Chem. P h y s . 74 3381 1981.

J a c k s o n , W.B., Amer, N.M., B o c c a r a , A.C., F o u r i e r , D. A p p l . O p t i c s . 20 1333 1981.

B o c c a r a , A.C., F o u r i e r , D., J a c k s o n , W.B. a n d Amer, N.M. O p t i c s L e t t . 5 377 1980.

Tao, T. Biopolyrners 8 609 1969.

F l e m i n g , G.R., K n i g h t , A.E.W., M o r r i s , J . M . , R o b b i n s , R . J . and R o b i n s o n , G.W.

Chem. Phys. L e t t s . 491 1977.

S m i r l , A.L., B o g g e s s , T.F., W h e r r e t t , B.S., P e r r y m a n , G.P. and M i l l e r , A.

P h y s . Rev. L e t t s . 49 9 3 3 1982.

B o g g e s s , T,F., S m i r l , A.L. a n d W h e r r e t r , B.S. O p t i c s Commun. 4 3 128 1982.

Références

Documents relatifs

using other records in the lake sediment, including pollen (vegetation change), diatoms (lake water pH and chemistry), SOOt (coal combustion), charcoal (wood combustion),

It is, however, not very probable that similar citizen programmes will be set up for flora and insects in the near future, even though national structures with the means to

LOADING PEST FROM TAPE 2 LOADING PEST FROM DRUM 4 Legitimate Control Characters 4 Illegitimate Control Characters 4 FILES FROM TAPE 5 THE EDITOR UNDER PEST CONTROL 6 EDITOR

ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS ---..

Zaprionus indianus is assigned to the subgenus Zaprionus, species group armatus and species subgroup vittiger (Chassagnard, 1988; Chassagnard and Tsacas, 1993).. We provide here

Specifically, for the states containing components that are easily distinguishable with limited resolution on X, we first ˆ identify the noise channel that consists in applying a

If the breast is pendulous elevate the breast (infra-mammary area/undersurface of the breast). Notice any changes in the breast skin such as dimpling, puckering, or asymmetry..

The x and y coordinates are relative to drawable’s origin, and specify the upper left corner of a rectangule. Generated when a destination region could not be