• Aucun résultat trouvé

I (cm)I (cm)I (cm)I (cm)

N/A
N/A
Protected

Academic year: 2021

Partager "I (cm)I (cm)I (cm)I (cm)"

Copied!
21
0
0

Texte intégral

(1)

TIME EVOLUTION OF SURFACE

SOIL HYDRAULIC PROPERTIES

(2)

GENERAL OUTLINE

I Main objectives and general presentation II Beer-kan method and field measurements III Theoretical treatment

(3)

MAIN OBJECTIVES

(1) Characterize the hydraulic properties of 4 plots : - identical initial agricultural history,

- four different treatments repeated since 1994.

(2) Emphasize the significant drift in soil properties in terms of temporal variability.

(4)

COLIMA

JALISCO

MEXICO

ZACATECAS NAYARIT

Sierra Los Manzanillos

El Grullo La Tinaja Ciudad Guzmán GUANA-JUATO AGS Guadalajara MICHOACAN Nevado de Colima Sierra Tapalpa PACIFIC OCEAN Municipio de San Gabriel 100 km GENERAL CONTEXT • Altitude : 1200 m • Latitude : 19.1° N • Mountain semi-arid tropical climate • Rain : 400 to 650 mm

(5)

PLOTS DESCRIPTION

Plot 4 : Direct Sowing, 4.5 t/ha (DS4.5) Plot 1 : Conventional Tillage (CT) Plot 2 : Direct Sowing, no residue (DS0)

(6)

GENERAL OUTLINE

I Main objectives and general presentation

II Beer-kan method and field measurements

III Theoretical treatment IV Results and conclusion

(7)

SOIL HYDRAULIC PROPERTIES

• Soil retention curve : Van Genuchten with Burdine condition

• Soil conductivity curve : Brooks and Corey

θ θs hhg n = 1 + -m 2 n m = 1 -with θ θs η = K Ks

(8)

CUMULATIVE INFILTRATION IN SOIL

Cumulative infiltration in soil (I) is defined as :

with :

• h(θ) : soil retention curve,

• K(θ) : soil conductivity curve,

• IC : initial conditions (such as θ0),

• BC : boundary conditions (such as hsurf).

(9)

BEER-KAN METHOD

Bulk density → θs Gravimetry → θ0IC I(t) Ks, hg hsurfBC 1 2 3 4 5 6 7 8 9 10 11 12 CPSD shape parameters m, n, η Soil sampling Cylinder (32cm) SOIL

(10)

time (h) 0 1 2 3 4 5 6 7 I (cm) 0 1 2 3 4 5 time (h) 0 1 2 3 4 5 6 7 I (cm) 0 1 2 3 4 5 time (h) 0 1 2 3 4 5 6 7 I (cm) 0 1 2 3 4 5 time (h) 0 1 2 3 4 5 6 7 I (cm) 0 1 2 3 4 5

Cumulative infiltration (I) vs time

Plot 2 : DS0 Plot 1 : CT Plot 4 : DS4.5 Plot 3 : DS1.5 0 cm 2 cm 50 cm

(11)

GENERAL OUTLINE

I Main objectives and general presentation II Beer-kan method and field measurements

III Theoretical treatment

(12)

SPECIAL CASE OF CRUSTED SOIL

qmax crust (cm/h) qmax subsoil (cm/h) qrain (cm/h) q (cm/h) Time (h) q (cm /h) 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6

If Ks crust < Ks subsoil then the crust controls entirely infiltration : S+ crust < S+ subsoil (*)

(13)

SCALING INFILTRATION : THEORY

• Dimensional log-shaped infiltration curve I(t) :

with :       + + − = − + + + I S K K t S K K I S K Ks s s 2 0 2 2 0 2 0) 2( ) ln 1 2( ) ( 2

• Invariant nondimensional log-shaped infiltration curve I*(t*) :

(

*

)

*

* t ln 1 I

I = + +

with : soil sorptivity (m.s-0.5) and initial conductivity (m.s-1)

2 2 0 * 2 0 * ) ( 2 . ) ( 2 . + + − = = − = = S K K and t t S K K and I I s t t s I I α α α α + S K0 = K0)

SCALING

t

I

I

(14)

SCALING INFILTRATION : EXAMPLE

t t I I t I . . * *

α

α

= =

A set of dimensional infiltration curves1 nondimensional infiltration curve

• A set of fitted scaling parameters αI, αt

SCALING

0 1 2 3 4 5 6 0 1 2 3 4 t*(-) I*(-) 0 1 2 3 4 5 6 0 1 2 3 4 t(h) I(cm)

(15)

FROM SCALING FACTORS TO SOIL PARAMETERS

• Soil texture parameters :

m.n = function of cumulative particle size distribution

• Soil structure parameters :

αt αI = Ks - K0 θs = ε . 2m-Mhg = f-1( g(α I)) S+ = f(hg) S+ = g(αI) (3) (5) (4) (2) (1) 2 m.n η = 3 +

(16)

GENERAL OUTLINE

I Main objectives and general presentation II Beer-kan method and field measurements III Theoretical treatment

(17)

COMPARISON OF

K

s

VALUES

Plot 4 (DS4.5)

Plot 1 (CT) Plot 2 (DS0)

Plot 3 (DS1.5)

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0cm 2cm 50cm

Ks (m/s)

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0cm 2cm 50cm

Ks (m/s)

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0cm 2cm 50cm

Ks (m/s)

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 0cm 2cm 50cm

(18)

COMPARISON OF SORPTIVITY

VALUES (S)

Plot 4 (DS4.5)

Plot 1 (CT) Plot 2 (DS0)

Plot 3 (DS1.5)

1.E-05 1.E-04 1.E-03 1.E-02 0cm 2cm 50cm

S (m/s0.5)

1.E-05 1.E-04 1.E-03 1.E-02 0cm 2cm 50cm

S (m/s0.5)

1.E-05 1.E-04 1.E-03 1.E-02 0cm 2cm 50cm

S (m/s0.5)

1.E-05 1.E-04 1.E-03 1.E-02 0cm 2cm 50cm

(19)

COMPARISON OF

h

g

VALUES

Plot 4 (DS4.5)

Plot 1 (CT) Plot 2 (DS0)

Plot 3 (DS1.5)

hg (m)

1.E-03 1.E-02 1.E-01 1.E+00 0cm 2cm 50cm

1.E-03 1.E-02 1.E-01 1.E+00 0cm 2cm 50cm

hg (m)

1.E-03 1.E-02 1.E-01 1.E+00 0cm 2cm 50cm

hg (m)

1.E-03 1.E-02 1.E-01 1.E+00 0cm 2cm 50cm

(20)

COMPARISON OF

θ

s

AND

m.n

VALUES

0cm all plots 50cm plots 1,3,4 50cm plot 2 0 0.1 0.2 0.3 m.n (-) 0.3 0.4 0.5 0.6 θs (cm3/cm3)

(21)

CONCLUSIONS

 The physically based Beer-Kan method is suitable to estimate properly

soil hydraulic properties h(θ) and K(θ).

 Different treatments can induce a significant temporal variability of

surface soil layer conductivity in the long run (5 years).

 A small quantity of residue (DS1.5) provides with good soil protection and

Références

Documents relatifs

Ecrivez sur les pointillés les noms des dessous que l’on trouve dans des revues pour enfants. Je suis un objet qu’on porte sur la tête

L'avion Solar Impulse 2, qui fonctionne uniquement à l'énergie solaire, a atterri le 3 juillet 2015 après avoir largement battu le record mondial de vol

Calcule le périmètre de chaque figurea. Calcule le périmètre de

• Dans un programme informatique en g´ en´ eral et dans un algorithme en particulier, une variable est le nom donn´ e ` a une valeur (qui peut ˆ etre de plusieurs types) stock´

Inscrire dans chaque rectangle ou triangle rectangle son aire (ainsi que le calcul qui permet de la trouver) :. E XERCICE

Construire le patron de ce cylindre de révolution :b. Construire le patron de ce cylindre de

[r]

ويلوي ذنم يراسلا ، R129 i-Size ديدجلا يبورولأا نوناقلا عم قفاوتت ةرايس دعقم ةدعاق نع ةرابع وه Tinca base AR ماظن بيكرت ىلع عيجشتلا قيرط نع تارايسلا يف لافطلأل