• Aucun résultat trouvé

The oceans of Pluto

N/A
N/A
Protected

Academic year: 2021

Partager "The oceans of Pluto"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2016-07-05

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23000386

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The oceans of Pluto

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=bdcd2f24-ef17-4bc5-b25d-5179866a10d1 https://publications-cnrc.canada.ca/fra/voir/objet/?id=bdcd2f24-ef17-4bc5-b25d-5179866a10d1

(2)

THE OCEANS OF PLUTO

Ken Tapping, 5thJuly, 2016

Just about a year ago the New Horizons

spacecraft flew past Pluto. It showed us a world like nothing we had expected. Out there in the cold, dark outer reaches of the Solar System, we expected Pluto to be a deep-frozen ball of rock and ice, unchanged over billions of years, apart from a long history of being cratered by collisions with other objects. We had made temperature measurements. During the Plutonian winter, temperatures fall to about –240 C, and in summer, they rise to a not-very-balmy –220 C. Our main interest in Pluto was due to our idea that it would have changed little since the birth of the Solar System, and would be a preserved sample of the primordial material from which the Sun and other bodies formed. We were wrong.

As the spacecraft approached Pluto, and the images got more and more detailed, it became clear that Pluto was very different from what we expected. Instead of an icy, rocky ancient surface covered with craters we saw great areas with no craters, and other areas that were cratered, but relatively few of them. Pluto’s surface is not ancient; it is geologically young, and still changing. One area that really stood out was a large, pinkish plain, which has been provisionally named

“Sputnik Planum”, the “Plain of Sputnik”, after the first manmade satellite to orbit the Earth. It was covered with huge polygon-shaped tiles, separated by grooves. At the edge of the plain, where it met the surrounding mountainous terrain, there were features that looked like the broken and refrozen masses of ice we see on the seashore or on Canadian lakes in winter, where the tide or wind piles up ice on the shore. The tiled appearance looked very like the surfaces we see in the Canadian Arctic, where the ground overlying permafrost has repeatedly melted and refrozen. It also resembles the frozen tops of convection cells, like the ones we see in a pot of heating cooking oil. This leads to a surprising conclusion; the surface of Pluto is not permanently frozen. It is melting,

rearranging and freezing again. This raises two questions: what material is melting and re-freezing, and where is the heat coming from?

In the Canadian Arctic the terrain is moulded by the melting and refreezing of water. However, on Pluto the temperatures are so low that water is a permanently solid rock mineral. The best

candidate is nitrogen. There is a lot of it on Pluto and at the temperatures on that world, it would be a solid. The melting point of nitrogen is –210 C. It is possible that on particularly warm days the nitrogen would melt, or at least become a soft, semi-molten slurry. That would explain the glacier-like features we see. However, it is glacier-likely that the Sputnik Plain is not a plain at all; it is the frozen cover of an ocean. In addition, the complete lack of craters on the Sputnik Plain suggests that the cover is not permanently frozen; it melts

sometimes. However, even the Plutonian summers are not really warm enough, and to have a molten ocean below that icy cover requires some heat to be applied from below, at the seabed.

The most likely candidate is heat released in its core by the decay of radioactive elements collected when Pluto formed. Since these elements are usually dense, they tend to

accumulate in the core, where they produce heat. Such elements contribute to our world having a molten core. Heat from the bottom of Pluto’s ocean melts the nitrogen into a liquid or slurry, which convects to the surface, forming those huge polygons. Due to its great distance from us, the spacecraft signals are very weak and the

information is being sent back very slowly, so it is likely that more surprises will be coming.

Jupiter is descending in the west, and Mars and Saturn lie in the southern sky. Mars is the bright one; Saturn is fainter and to Mars’ left. The Moon will reach First Quarter on the 11th.

Ken Tapping is an astronomer with the National Research Council's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355 E-mail: ken.tapping@nrc-cnrc.gc.ca

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in