• Aucun résultat trouvé

Mechanisms of vision in the fruit fly

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanisms of vision in the fruit fly"

Copied!
8
0
0

Texte intégral

(1)

Mechanisms

of

vision

in

the

fruit

fly

Lucia

de

Andres-Bragado

and

Simon

G

Sprecher

Vision isessential to maximizetheefficiency of dailytasks suchas

feeding,avoidingpredatorsorfindingmatingpartners.An

advantageousmodelisDrosophilamelanogaster,sinceitoffers

toolsthatallowgeneticandneuronalmanipulationwithhigh

spatialandtemporalresolution,whichcanbecombinedwith

behavioral,anatomicalandphysiologicalassays.Recent

advanceshaveexpandedourknowledgeontheneuralcircuitry

underlyingsuchimportantbehaviorsascolorvision(roleof

reciprocalinhibitiontoenhancecolorsignalatthelevelofthe

ommatidia);motionvision(motion-detectionneuronesreceive

both excitatory and inhibitoryinput), and sensoryprocessing (role

ofthecentralcomplexinspatialnavigation,andinorchestrating

theinformationfromothersensesandtheinnerstate).Research

onsynergiesbetweenpathwaysisshapingthefield.

Address

DepartmentofBiology,UniversityofFribourg,Fribourg,Switzerland

Correspondingauthor:Sprecher,SimonG(simon.sprecher@unifr.ch)

Introduction

The importance of vision for survival cannot be over-stated for a vast majority of animals. Therefore, many specieshavedeveloped extremelycomplex andprecise visualsystems,andtheyallocateafairamountofenergy building them and maintaining them. Light detection impliescollectingdataaboutitsphysicalattributessuch as intensity, wavelength or polarization. Moreover, this information must be later decoded in the brain before motordecisionsaremade.Suchprocessingofthephysical input is necessary to discriminate patterns, shades, changes of illumination, and motion, either related to movingobjectsorto theanimal’sown displacement. Visualperception starts in theeye, and thereare many differentkindsofeyeswithawiderangeofpurposesand sensitivities;suchas eyecups,eyespotsorin thecaseof insects,thecompoundeye.Drosophilacompoundeyesare typically composed of around 750 smaller units called

ommatidia(Figure 1a,b).Each of theseommatidia has both a simple lens and several photoreceptors, with specialized membrane structures (rhabdomeres) in which light-sensing Rhodopsins are located. The Rhodopsinproteinsareorganizedwithinarhabdomeric structure and are predominantly oriented along one axis, thereby making insect photoreceptor cells inherently polarization-sensitive [1]. Light comes in andstimulates the retinal molecule thatis embedded within Rhodopsin, triggering the isomerization of retinal.Thisconformationalswitchchangestheaffinity of Rhodopsin from guanosine diphosphate (GDP) to Guanosine-5’-triphosphate(GTP),whichsubsequently triggers the downstream phototransduction cascade [2,3] (Figure1b,c).

The visual information is then further processed, in particular in a specialized region of the insect brain: the optic lobes. One optic lobe can be functionally divided into three neuropiles: the lamina, the medulla andthelobulacomplex(Figure1d),whichdependingon thespecies are either anatomically combined or subdi-vided.Theanatomicalreferencemapdoneby[4]enables acomparison betweendifferentinsectspecies.

Inthisreview,wewillfocusonthelatestresearchdonein threekeytopicsofDrosophilavision:colorvision,motion vision and multisensory integration. These three fields have benefited from the genetic tools available for Drosophilaandfromrecentconnectomicsandfunctional studiesto elucidate thefunction ataneuronaland ata circuit level. We will briefly compare the state of these fields in insects, mainly focusing on Drosophila melanogaster.

Decoding

chromatic

information:

from

the

eye

to

the

brain

Color-vision is important for survival as it confers rich informationabouttheexternalworld,suchasthetimeof thedayorthetypeoffoodandmatingpartners.Whatis commonlyknownascolor-visioncanmakereferenceboth to ‘true color vision’, where chromatic information is sensed independently of the intensity; and to ‘wavelength-specificbehavior’,which isabehavior that is dependenton the intensity within each wavelength. Theprocessingofthischromaticinformationreliesboth on physical structures in the eyes and in underlying neuronalcircuitstodecodethisinformationinthebrain. Attheleveloftheretina,colorvisiondependsonseveral photoreceptorproperties,suchastheirspectralsensitivity [5–7]ortheirspatialdistribution[8].InDrosophila,there

http://doc.rero.ch

Published in "Current Opinion in Insect Science 36(): 25–32, 2019"

which should be cited to refer to this work.

(2)

are several types of photoreceptor cells: six outer ones (R1–R6), which project their axons to the first visual neuropile – the lamina, and two inner ones (R7 and R8), which extend their axons to the second visual

neuropile – the medulla (Figures 1d, 2 a). The outer R1–R6photoreceptorshaveabroadbandspectraltuning, whiletheinnerR7andR8photoreceptorshaveanarrower one [7]. Even though R1–R6 have traditionally been

Figure1

Cornea

R8

R7

R1 - R6

hv Ca2+ TRP GDP GTP

PLC

β Gqα GDP GTP Na+ β γ PIP2 DAG InsP3

R

(c) M* TRPL Gqαβ γ

Central complex

Optic lobe

Ommatidia (a) Re La Me Lo LoP

PB

FB

EB

No

(e)

Re

R1 - R6 R7 R8 Dm Tm L1 (d)

La

Dm Dm L1

Lo

LoP

R7 R7R8R8

Lo

Tm Tm

Me

R1 R1

Current Opinion in Insect Science

AnatomicalstructuresinvolvedinvisualsensoryprocessingintheDrosophilamelanogasterbrain.

(a)Generalvisionofaflybrain.Lightgoesinthroughtheretina(Re),whereitexcitesthephotoreceptorcells.Thesephotoreceptorcellstarget

differentstructuresintheopticlobe:thelamina(La),medulla(Me)andlobulacomplex,whichisinturncomposedofthelobula(Lo)andthelobula

plate(LoP).Thecentralcomplexisastructurespecializedinsensoryintegrationthatislocatedinthemiddleofthebrain.(b)Enlargedviewofan

ommatidiumcontainingthecorneaandphotoreceptorsR1–R8.TheR1–R6photoreceptorsarelocatedintheouterpartoftheommatidia,whileR7

andR8arelocatedinthemiddle,R7beingontopofR8.Lightgoesinthroughthelens(right)andenterstherhabdomeresofthedifferent

photoreceptorstostimulaterhodopsin.(c)Drosophilarhabdomere,wherethekeyplayersinvolvedinthephototransductioncascadewithinthe

rhabdomeremembraneareshown.Afterlightenterstheretina,aphotontriggerstheisomerizationofretinalwithintherhodopsinmolecule,which

leadstotheconformationalchangeofrhodopsin(R)tometarhodopsin(M*).ThistriggerstheactivationofaheterotrimericG-protein(Gaq)that

activatesthephospholipaseCb(PLCb)andhydrolysesPIP2intoInsP3andthemembrane-boundDAG.Thisultimatelyleadstotheopeningof

TRPandTRPLchannels,whichleadstotheentranceofCa2+ionsandNa+ions.(d)EnlargedviewoftheDrosophilavisualsystemincludingthe

retina(Re)andfourneuropileswithintheopticlobe.Theouterphotoreceptors(R1–R6)projecttothelamina,whiletheinnerphotoreceptors(R7

andR8)projecttothemedulla.Differenttypesofneuronesareshown:theLaminaneurons(Lm)aredirectlydownstreamofR1–R6

photoreceptors.Thetransmedulla(Tm)neuronsspanthemedullaandprojecttothelobula,whilethedistalmedulla(Dm)neuronsprojecttodistal

layersofthemedulla.(e)Enlargedviewofthecentralcomplex.Itiscomposedoftheprotocerebralbridge(PB),thefan-shapedbody(FB),the

ellipsoidbody(EB),andthenoduli(NO).

(3)

associatedwithmotion-detection,recentworkhasshown thattheyalsoplayaroleincolor-detection[9].Incontrast, theinnerR7andR8photoreceptorsaresufficientforcolor vision,althoughtheyhaverecently beenshown tohave someroleinthemotion-detectionpathwayas well[10].

This shows increasing evidence that there is crosstalk betweenbothcircuits.

TherearedifferenttypesofR7andR8photoreceptors:in thedorsalrimareawecanfindafewommatidiathatare

Figure2 “pale” ommatidia

-R8p ON /R7pOFF R8pOFF/R7pON R8y ON /R7yOFF

R8yOFF/R7yON

Sensitivity Sensitivity 400 500 600 400 500 600 700 λ (nm) λ (nm) Hassenstein-Reichardt Barlow-Levick Gruntmann et. al 2018

x

:

PD ND PD ND τ τ T4 neurones Retinal ganglion cells

PD ND

B

τ τ spatial filters temporal filters Beetle

-(c) (b) “yellow” ommatidia

Re

La

Me

LoP

Lo

Colour

Motion

T4

T5

R7

R8

R1-6 ON

L1

L2

L3

Dm8 Tm5c Tm9 OFF OFF OFF Tm3 Mi1 (a)

Current Opinion in Insect Science

ColorvisionandmotionvisionaretwonearlyindependentpathwaysinDrosophilavision.

(a)DiagramofthetwoparallelpathwaysinDrosophilavisionfromtheretina(Re)totheopticlobe.TheinnerR7andR8photoreceptorsprojectto

themedulla(Me)andaremostlyinvolvedincolorvision.BoththedistalmedulaneuronDm8andthetransmedullaneuronTm5aredownstreamof

theR7pathway.R1–R6photoreceptorsprojecttothelamina(La)andaremostlyinvolvedinmotiondetection.ThelaminaneuronesL1–L3receive

informationfromR1-R6andthensynapsetothetransmedullaneuroneslikeTm9,whichinturnsynapsetothemotion-sensitiveT4andT5

neuronesinthelobula(Lo)andlobulaplate(LoP).(b)Classicalmotion-detectionmodelsincludedetectorsthatarespatiallyseparatedandthat

makeuseoftemporalfilters(t)whichultimatelyleadeithertothesignalbeingamplifiedinthepreferreddirection(PD,Hassenstein–Reichardt

model)orsuppressedinthenulldirection(ND,Barlow–Levick).TheHassenstein–Reichardtmodelwasformulatedbasedondatafromthe

Chlorophanusbeetle,whiletheBarlow–Levickmodelwasbasedonexperimentaldatafromrabbitretinalganglioncells.Morerecentmodels,like

theoneproposedbyGruntmanetal.[21]forDrosophilaT4neurones,incorporateexperimentalevidencethattheyhavebothexcitatoryand

inhibitoryinputthatarespatiallyseparatedandalsotakesintoaccountsomebiophysicalnonlinearity(b).Themodelproposesbothspatialand

temporalfilters,whichultimatelyleadtoasuppressionofthenulldirection.(c)‘pale’and‘yellow’ommatidiadifferintherhodopsinexpressionin

R7andR8photoreceptorsandthereforeintheirspectralpreference.RecentevidencefromRef.[13]hasshownthatwithin‘pale’or‘yellow’

ommatidia,R7andR8inhibiteachother,whichcanbeseenintheirspectraltuningwhenshownacompositelightstimulus.

(4)

responsible for polarization vision, although the most common ones are distributed throughout the eye and arecalled‘yellow’or ‘pale’dependingonwhich pairof rhodopsinsareexpressedin R7andR8.

Truecolorvisioncannotbeexecutedbyasingle photo-receptor onits own and requires complexfurther com-parisons as can be simple subtractions. These compar-isons have been shown to take place in the synaptic terminalsofR7andR8intheflymedullathroughmutual inhibition[11,12].Recentworkusingtwo-photoncalcium imagingwithgeneticallyencodedcalciumindicators,has shown that the signal from R7 and R8 undergoes a comparison within one ommatidium. The mechanism usedforthiscomparison isthroughreciprocalinhibition atthepresynapticterminal[13](Figure2c).

However,colorvisionisnotonlyrelatedtothedetection of photons of a given wavelength:the chromatic visual inputmust befurtherdecodedin thebrain.The direct synaptictargetsofR7andR8areneuronespresentinthe medulla: either transmedulla (Tm), or distal medulla (Dm) amacrine neurones [11]. The determination of thedownstreamsynapticpartnersofR7alongwith func-tionalstudieshaveshownthatthereisasingle pathway mediatingtheinnateUVpreference,whichinvolvesboth Dm8andTm5c[11,14](Figure 2a).Thiscontrastswith thegreat redundancy found in the color-discrimination pathwayforlongerwavelengths,suchasgreenandblue. Fourtransmedulla neurones (Tm5a-c and Tm20) have been shown to be involved in this behavior but the inactivation of any single one of these neurones is not enoughtopreventcolor-learning [15].

Morerecentstudieshavefocusedinthereconstructionof visualprojectionneuronesconnectingthelobulawiththe centralbrain.TheuseofamodifiedGFPreconstruction across synaptic partners (GRASP) [16] has allowed the characterization of the downstream targets of the chro-matic Tm neurones in the lobula [17]. Furthermore, some of these visual projection neurones (VPNs), also calledlobulacolumnarcells,canalreadylinkvisualinput to specific behavioral actions, such as taking off before flyingor walkingbackwards[18].

Motion-vision:

the

update

of

a

paradigm

Aclassicaspectofinsectvisionwithgreathistoric signifi-cance is motion-detection. To avoid predators and to captureprey,insectsneedtodetermineboththeirflying directionw.r.tfixedreferencesandtheirrelativepositionto other movingindividuals.However, motiondetection is not trivial:itcannot onlyrely onsignal detectionatthe photoreceptorlevel,butitrequirescomplexcomputations inthebrainitself.Therefore,theinterestinmodels mim-ickingneural computations has never stopped growing. Classical examples wouldbe theHassenstein-Reichardt correlator [19], which was developed from behavioral

studiesonthebeetleChlorophanus,ortheBarlow-Lewick extension[20],whereaninhibitoryorexcitatorysignalis generatedaccordingtothedirectionofmotionandthese signals are subsequently compared to detect motion (Figure 2b, for reviews check [24–27]). More recently, Gruntmanet al.havedocumentedthe roleofT4onthe detectionoftheoffsetsbetweenexcitatoryandinhibitory inputs[21],andBorstetal.havemappedtheneuralcircuit intotheONandOFFpathways[22].Furtherresearchis needed to clarify a few elements, like therole of non-linearity,whichis presentin theHassenstein–Reichardt correlator,andhasbeenchallengedbyGruntmanetal.,who claimthatnon-linearityisnotneeded.Anotherexample wouldbegroupsonlyobservingnull-directionsuppression, butnopreferreddirectionenhancement,whileBorstetal. arguethatbothexist.Clearly,possessingsuchmodelshas value in itself, and the interest to develop them is not reducedtoadultDrosophila.Anexampleofthisis therecent successful application of a generalized Markov chainto modelthetaxisofDrosophilalarvae[23].Approachesbased onacostfunctionandaMarkovian-likeprocessweighting theinvolveddecision-makinglandscapeopenupa quanti-tativewayofmeasuringthebalancebetweenstochasticand drivenprocessesoperatinginthebrain(chanceand neces-sity), which are ingrained after a robust evolutionary process.

To be able to compute motion-vision, it isessential to havedetectorswithreceptivefieldsthatareseparatedin space, whose input can be temporally compared. As a consequence, downstream of the detectors, flies have direction-selective neurones: cells that respond differ-ently tovisualcuesmovingin oppositedirections. InDrosophila,thefirstrealdirection-selectivecellsalong thepathwaywerefoundalongtimeago:TheT4andT5 neuronesdifferentiallyrespondeithertolightincrements (T4,ON pathway)or lightdecrements(T5, OFF path-way) in a direction-selective manner [28,29] and are crucial components for motion detection [28]. Further-more, bothT4 and T5 have fourdifferent subtypes of neurones (T4a-d and T5a-d), which are all columnar neuronesandextendtheirdendritesoverafewcolumns. Each one of these subtypes of neurones is tuned for detecting movementin one thefourcardinaldirections andconsequentlyprojectstooneofthefourlayersofthe lobula plate[28,30].T4 andT5 are postsynapticto the medulla neurons, which have been extensively studied bothattheanatomicallevelandatthephysiologicallevel [26–30].Thesemedulla neurons arepostsynaptic toL1 andL2neuronsinthelamina,whichinturnreceivethe visualinputfromR1-R6photoreceptors[31](Figure2a). However, T4 and T5 are the first neurones in this network thatshowdirection-selectivity[28].

RecentworkfocusedonthesynapticinputstoT4andT5 hasshownthattheyreceivebothexcitatoryandinhibitory

(5)

inputs [32,33,34]. Furthermore, anatomical efforts to map these neurones using novel high-precision EM andcalcium imaging assays,have shown thatthere isa spatial separation betweenthe two components, which canbeproducedbyspatialortemporaldelaysofinputs alongspatiallyorientedT4dendriticbranches[34,35]. Most recently,Gruntman etal. [21]have usedinvivo whole-cellrecordingsofT4tofindthatdirectional selec-tivityderivesfromthecombinationofspatiallyoffsetfast excitatoryandslow inhibitoryinputs.Such aconclusion has been reinforced by simulations that prove how a significantpartofthedirectionalinformationdrawnfrom the T4 dendrites is related to different input signals acquired over spatially separated regions of the flies’ eye.Apartfromthespatialseparation,bothtypesofinput differintheirtemporalprofile: excitationisafastevent whileinhibitionisslowerone[21].Theserecent find-ingshavechallengedtheclassicalmotion-detection mod-els,andleadtotheformulationofnewerandintegrative ones,whicharebasedonpassiveconductancebiophysical properties.Thishaspromptedmodelsthatdescribethe physiologicalproperties of theT4neurones more accu-rately than before byexploiting theidea of combining excitation and inhibition both temporally and spatially [21,22](Figure2b).

Sensory

integration

Oncethevisualinputisperceivedandprocessedinthe earlyprocessingcentres,suchastheretinaandtheoptic lobe, the signal is transmitted to higher brain regions through the visual projection neurones (VPNs). The visualinputmustbeintegratedwithothersensory infor-mationaswellaswiththeindividual’sinnerstatebefore the appropriate response is coordinated. In arthropods, thestructurethathasbeenlinkedtothisprocessiscalled thecentral complex.

The central complex isa highly conservedstructure in insects, which is organized in modular neuropiles (For review, see Ref. [36]).These neuropiles are called the ellipsoidbody(EB),thefan-shapedbody(FB),thenoduli (NO)andtheprotocerebralbridge(PB)[4].Thefunction oftheseneuropilesseemstobelargelyconservedamong differentinsect speciesand it hasrecently beenshown that some of these neuropiles come from homologous developmentallineages in fliesandgrasshoppers [37]. The central complex has long been known to be involvedindiversefunctionssuchasmemoryandmotor control. Recently, there have been a lot of studies analyzingitsroleinprocessingvisualinformation.Most ofthestudieshinttowardstheimportanceofthecentral complexinspatialorientationthroughdifferent mecha-nisms:bytheuseoflandmarkdetection[38,39],orusing theso-called‘compasscells’tocalculatethepositionof the sun [40], or the animal’s heading, as encoded by head-directioncells [39,41,42].

Moreover,work by Omotoet al. hasstarted elucidating the way in which the central complex receives visual input,andthelineagesfromwhichtheseneuronescome[

43]. It had also been previously hypothesized that the visualsystemmustinputintotheellipsoidbodyneurones astheseneuronesaresensitivetovisualinput[38].The inputofvisualneuronesintothecentralcomplexhasalso been analysedin other insects,also suggesting thatthe centralcomplexmighthavearoleinefficientnavigation aidedbythedetectionofpolarized lightintheUV-rich sky[44,45].

Thecentralcomplexisastructurewherewecanseehow theuseofgenetictechniquesavailableforDrosophila[46] combinedwiththeefforttohaveamorphologicalmapof thestructure with asingle-cell level resolution [47–49] havepavedthewayforfunctionalpredictions.For exam-ple,Turner-Evansetal.havemadeuseoftheanatomical dataavailablefortwooftheCentralComplexneuropiles (EBandPB)to proposeaconceptualmodelof howthe brainwouldbeabletokeeptrackofcompass-like infor-mation. For such a model, they had to make several hypotheses: Firstly, that a group of neurones called P-EN would encode the animal’s angular velocity. Sec-ondly, that the activity of thesubpopulations of P-EN neuronesonbothsidesof thePBwouldco-localizeina ‘bump’,whichcorrespondstoagroupofneuronesthatare activeatthesametime,andthatitwouldencodeforthe fly’srotationalvelocity andheading. Lastly,that the P-ENgroup of neuroneswouldupdateasecond groupof neurones, the so-called ‘compass neurones’, which encodethefly’sheadingbothwhentheflyturnsin the darkness and when there are visual cues. Using the genetictoolsavailableforD.melanogaster,theywereable to record the synaptic activity of these neurones using calciumimagingandelectrophysiologyandconfirmthese assumptions. Furthermore, they recorded the synaptic activityofboth populationsof neuronessimultaneously and were able to complete the model and add the requirementof athird additional component: recurrent inhibition[42].Despiteotherspeciesnothaving sucha vastnumberofgenetictools,abodyofworkonthecentral complex is also being generated due to physiological recordingsandanatomical mappings[50].

Apart from the central complex, there are other more directcircuitsthatareinchargeofvisualsensory integra-tion.Thisisthecaseofsomedescendingneuronesthat aredownstreamoflarge-fieldvisualinterneuronsandthat synapse directly into motor centres, consequently con-trollingflightbehavior[51]orthelooming-sensitive neu-ronesthatdirectlysynapseontothegiantfibredrivingan escaperesponse[52,53].

Another form of sensory integration is to relate the sensory input to the animal’s inner state. The central complexhasbeen shownto beinvolvedin this typeof

(6)

sensoryintegrationforalongtimebutnewerworkshows thatotherstructures,suchastheopticlobes,areinvolved inthebehavioralmodulationofvisualprocessing[54–57]. Morerecentworkhasalsoshownthatthebehavioralstate (eitherwalkingortetheredflyingflies)playsaroleinthe activityofneuronesinthefan-shapedbody:These neu-rones are only responsive to visual stimuli in tethered flyingflies[58,59].Interestingly,Zachariasetal.havealso shownthatdifferentbehavioralstates(suchasthespeed of walking) also influence quick responses such as the onesprocessedbythelooming-sensitiveneurones[60].

Discussion

Visualprocessing inDrosophilaisdividedinto two par-allel pathways within the first neuropiles of the optic lobe: motion vision and color vision. In turn, motion visioniscomputedintwoparallelpathwaysaswell:one thatisspecializedindetectionoflightincrements(ON pathway)andanotheronethatisspecializedindetecting lightdecrements (OFF path-way). This parallelization of vision tasks presumably confers a high efficiency. After this first decoding of visual information, it is subsequentlypooledinthecentralcomplexwithinputs fromothersenses and with theflies’ innerstate in the centralbrain.

The availability of a sophisticated toolbox and thefact thatinsectspresentrobustandstereotypicbehaviorsthat can be easily quantified renders the topic of vision in insects an informative research venue. It is possible to combinebehavioraldatawithanatomicaldatafrom Elec-tronMicroscopy (EM)andwithphysiological datafrom calciumimagingorelectrophysiologyexperiments, yield-ing understanding of the process of vision at different levels.Eachof thesetechniqueshasitsownadvantages anddrawbacks:EMdoesnotgiveinformationaboutthe functionality of synapses, but it can provide a general understandingof thecircuit,calcium imagingis techni-callyeasiertoperformthanelectrophysiology,butitlacks temporal resolution and the possibility of measuring inhibition. Finally,genome-editing techniques, such as CRISPR–Cas9[61],havewidenedthepossibilityto per-form genetical manipulations in species that were not originallyestablishedas geneticmodels.

Inconclusion,acombinationofsophisticatedbehavioral assays[62] andfunctional recording techniquessuchas electrophysiologyorcalciumimagingeveninwalkingor tetheredflyingflies [63],hashelped to establishcausal linksbetweenvisualinputand behavioraloutput anda clearcorrelationbetweenanatomicalstructuresand func-tionalunits.Bridgingallthatinformationtogether, mech-anisticinsightfromtheprocessingofvisualinformationat differentlevelshasbeen obtained:fromgenes,to mole-cules, to individual neurones and even to neuronal circuits.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

WethankallmembersofProf.SimonSprecher’slabforfruitfuldiscussions

andcomments.ThisworkhasbeensupportedbytheSystemsXinitiative.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview,

havebeenhighlightedas:

 ofspecialinterest

ofoutstandinginterest

1. IsraelachviliJN,WilsonM:Absorptioncharacteristicsof orientedphotopigmentsinmicrovilli.BiolCybern1976,21:9-15.

2. MontellC:Drosophilavisualtransduction.TrendsNeurosci 2012,35:356-363.

3. MontellC:VisualtransductioninDrosophila.AnnuRevCellDev Biol1999,15:231-268.

4. ItoK,ShinomiyaK,ItoM,ArmstrongJD,BoyanG,HartensteinV, HarzschS,HeisenbergM,HombergU,JenettAetal.:A systematicnomenclaturefortheinsectbrain.Neuron2014, 81:755-765.

5. HuangS-C,ChiouT-H,MarshallJ,ReinhardJ:Spectral sensitivitiesandcolorsignalsinapolymorphicdamselfly. PLoSOne2014,9:e87972.

6. MenzelR,BlakersM:Colourreceptorsinthebeeeye– morphologyandspectralsensitivity.JCompPhysiol1976, 108:11-133.

7. SalcedoE,HuberA,HenrichS,ChadwellLV,ChouW-H, PaulsenR,BrittSG:Blue-andgreen-absorbingvisualpigments ofDrosophila:ectopicexpressionandphysiological characterizationoftheR8photoreceptorcell-specificRh5and Rh6rhodopsins.JNeurosci1999,19:10716-10726.

8. WernetMF,PerryMW,DesplanC:Theevolutionarydiversityof insectretinalmosaics:commondesignprinciplesand emergingmolecularlogic.TrendsGenet2015,31:316-328.

9. SchnaitmannC,GarbersC,WachtlerT,TanimotoH:Color discriminationwithbroadbandphotoreceptors.CurrBiol2013, 23:2375-2382.

10. WardillTJ,ListO,LiX,DongreS,McCullochM,TingC-Y, O’KaneCJ,TangS,LeeC-H,HardieRCetal.:Multiplespectral inputsimprovemotiondiscriminationintheDrosophilavisual system.Science2012,336:925-931.

11. GaoS,TakemuraS,TingC,HuangS,LuZ,LuanH,RisterJ, ThumAS,YangM,HongSetal.:Theneuralsubstrateofspectral preferenceinDrosophila.Neuron2008,2:328-342.

12. TakemuraS-Y,LuZ,MeinertzhagenIA:Synapticcircuitsofthe Drosophilaopticlobe:theinputterminalstothemedulla.J CompNeurol2008,509:493-513.

13.

 SchnaitmannGriesbeckO,C,ReiffHaikalaDF:ColorV,AbrahamprocessingE,OberhauserintheearlyV,Thestrupvisual T, systemofDrosophila.Cell2018,172:318-330.e18.

Thefirsteverevidenceofchromaticprocessingthroughlateralinhibition

attheleveloftheommatidiahasbeenreportedusingcalciumimagingby

recordingtheresponseof‘pale’and‘yellow’ommatidia.

14. KaruppuduraiT,LinT-Z,TingC-Y,PursleyR,MelnatturKV, DiaoF,WhiteBH,MacphersonLJ,GallioM,PohidaT:A hard-wiredglutamatergiccircuitpoolsandrelaysUVsignalsto mediatespectralpreferenceinDrosophila.Neuron2014, 81:603-615.

15. MelnatturKV,PursleyR,LinT-Y,TingC-Y,SmithPD,PohidaT, LeeC-H:Multipleredundantmedullaprojectionneurons mediatecolorvisioninDrosophila.JNeurogenet2014, 28:374-388.

(7)

16. MacphersonLJ,ZaharievaEE,KearneyPJ,AlpertMH,LinT-Y, TuranZ,LeeC-H,GallioM:Dynamiclabellingofneural connectionsinmultiplecoloursbytrans-synaptic

fluorescencecomplementation.NatCommun2015,6:10024.

17.

 LeeLinT-Y,C-H:LuoMappingJ,ShinomiyachromaticK,TingpathwaysC-Y,LuintheZ,MeinertzhagenDrosophilavisualIA, system.JCompNeurol2016,524:213-227.

The combination of a modified GFP reconstruction across synaptic

partners(GRASP)andamethodtolabelbothmitochondriaanddendrites

makespossibleananatomicalreconstructionoftheneurons

postsynap-tictothechromaticTmneuronsinthelobula.Theuseoflightimagingand

electronmicroscopyandthedouble-labellingmethodprovidesaclear

anatomicalviewof clear playersinDrosophila chromatic vision.This

methodcanbefurtherusedforotherbigandcomplexneurones.

18.

 WuCardM,GM,NernRubinA,WilliamsonGM:VisualWR,projectionMorimotoneuronsMM,ReiserintheMB, Drosophilalobulalinkfeaturedetectiontodistinctbehavioral programs.eLife2016,5:e21022.

Individuallobular columnarneurones(LC) have been optogenetically

activated,andspecificbehaviorsrelatedtothemhavebeentraced.This

showshowtheseneuronesaretheoutputchannelsofdifferentsensory

perceptionmodalities,suchasvision,andhowtheyaredirectly

respon-sibleforveryspecificbehaviors.

19. HassensteinB,ReichardtW:SystemtheoretischeAnalyseder Zeit-,ReihenfolgenundVorzeichenauswertungbeider BewegungsperzeptiondesRusselkjeffersChlorophanus. Naturforschg1956,11b:513-524.

20. BarlowHB,LevickWR:Themechanismofdirectionally selectiveunitsinrabbit’sretina.JPhysiol1965,178:477-504.

21.

 GruntmanexcitationE,andRomainoffset,S,delayedReiserM:inhibitionSimplecomputesintegrationdirectionaloffast selectivityinDrosophila.NatNeurosci2018,21:250-257.

Ademonstrationthatdirection-selectivityarisesbothfromthespatialand

temporalintegrationofexcitationandinhibitoryinputbyusinginvivo

electrophysiologicalrecordingsofT4neurons.Becauseofthetemporal

resolutionofelectrophysiologicalrecordings,theauthorschallengethe

currentworkingmodelsandprovideabetterinsightintotheT4

physiol-ogyanddirection-selectivity.

22. BorstA:Abiophysicalmechanismforpreferreddirection enhancementinflymotionvision.PLoSComputBiol2018,14:1-15.

23. deAndres-BragadoL,MazzaC,SennW,SprecherSG:Statistical modellingofnavigationaldecisionsbasedonintensityversus directionalityinDrosophilalarvalphototaxis.SciRep2018, 8:11272.

24. MaussAS,VlasitsA,BorstA,FellerM:Visualcircuitsfor directionselectivity.AnnuRevNeurosci2017,40:211-230.

25. BorstA:Insearchoftheholygrailofflymotionvision.EurJ Neurosci2014,40:3285-3293.

26. SiliesM,GohlDM,ClandininTR:Motion-detectingcircuitsin flies:comingintoview.AnnuRevNeurosci2014,37:307-327.

27. BorstA,HaagJ,ReiffDF:Flymotionvision.AnnuRevNeurosci 2010,33:49-70.

28. MaisakMS,HaagJ,AmmerG,SerbeE,MeieM,LeonhardtA, SchillingT,BahlA,RubinGM,NernAetal.:Adirectionaltuning mapofDrosophilaelementarymotiondetectors.Nature2013, 500:212-216.

29. SchnellB,RaghuSV,NernA,BorstA:Columnarcellsnecessary formotionresponsesofwide-fieldvisualinterneuronsin Drosophila.JCompPhysiolA2012,198:389-395.

30. TakemuraS-Y,BhariokeA,LuZ,NernA,VitaladevuniS,RivlinPK, KatzWT,OlbrisDJ,PlazaSM,WinstonPetal.:Avisualmotion detectioncircuitsuggestedbyDrosophilaconnectomics. Nature2013,500:175-181.

31. BausenweinB,DittrichAPM,FischbachK-F:Theopticlobeof Drosophilamelanogaster.CellTissueRes1992,267:17-28.

32. HaagJ,ArenzA,SerbeE,GabbianiF,BorstA:Complementary mechanismscreatedirectionselectivityinthefly.eLife2016,5: e17421.

33. LeongJCS,EschJJ,PooleB,GanguliS,ClandininTR:Direction selectivityinDrosophilaemergesfrompreferred-direction enhancementandnull-directionsuppression.JNeurosci2016, 36:8078-8092.

34.

 StrotherRubinGM,JA,ReiserWuS-T,MB:WongTheemergenceAM,NernA,ofRogersdirectionalEM,LeselectivityJQ, inthevisualmotionpathwayofDrosophila.Neuron2017, 94:168-182.e10.

Theauthorsshowthatmotiondirection-selectivityfirstemergesinthe

dendritesoftheT4neurons.Thisisshownbygeneticallymanipulating

inputneuronstoT4andrecordingthemusingcalciumimaging.These

resultshinttowardsT4neuronesusingcomponentsfrombothclassic

motiondetectionmodels.

35.

 TakemuraMeinertzhagenS,NernIA:TheA,ChklovskiicomprehensiveDB,SchefferconnectomeLK,RubinofaGM,neural substratefor‘ON’motiondetectioninDrosophila.eLife2017, 6:e24394.

UsinganewEMtechnique,Takemuraetal.refinetheanatomicalmapof

theneuronalinputstoT4andshowthatthereisaspatialseparation

betweentheexcitatoryandinhibitoryinput.

36. PfeifferK,HombergU:Organizationandfunctionalrolesofthe centralcomplexintheinsectbrain.AnnuRevEntomol2014, 59:165-184.

37. BoyanG,LiuY,KhalsaSK,HartensteinV:Aconservedplanfor wiringupthefan-shapedbodyinthegrasshopperand Drosophila.DevGenesEvol2017,227:253-269.

38. SeelingJD,JayaramanV:Featuredetectionandorientationtuning intheDrosophilacentralcomplex.Nature2013,503:186-266.

39. SeelingJD,JayaramanV:Neuraldynamicsforlandmark orientationandangularpathintegration.Nature2015, 17551:186-191.

40. GiraldoYM,LeitchKJ,RosIG,WarrenTL,WeirPT,DickinsonMH: SunnavigationrequirescompassneuronsinDrosophila.Curr Biol2018,28:2845-2852.e4.

41. GreenJ,AdachiA,ShahKK,HirokawaJD,MaganiPS,MaimonG: Aneuralcircuitarchitectureforangularintegrationin Drosophila.Nature2017,546:101-106.

42. Turner-EvansD,WegenerS,RouaultH,FranconvilleR,WolffT, SeeligJD,DruckmannS,JayaramanV:Angularvelocity integrationinaflyheadingcircuit.eLife2017,6:e23496.

43. OmotoJJ,KelesMF,NguyenBM,BolanosC,LovickJK,FryeMA, HartensteinV:Virtualrealityforfreelymovinganimals.CurrBiol 2017,27:1098-1110.

44. elJundiB,WarrantEJ,ByrneMJ,KhaldyL,BairdE,SmolkaJ, DackeM:Neuralcodingunderlyingthecuepreferencefor celestial orientation. Proc Natl Acad Sci U S A 2015, 112: 11395-11400.

45. elJundiB,WarrantEJ,PfeifferK,DackeM:Neuroarchitectureof thedungbeetlecentralcomplex.JCompNeurol2018, 526:2612-2630.

46. NernA,PfeifferBD,RubinGM:Optimizedtoolsformulticolor stochasticlabelingrevealdiversestereotypedcell

arrangementsintheflyvisualsystem.ProcNatlAcadSciUSA 2015,112:E2967-E2976.

47. WolffT,IyerNA,RubinGM:Neuroarchitectureand neuroanatomyoftheDrosophilacentralcomplex:a GAL4-baseddissectionofprotocerebralbridgeneuronsand circuits.JCompNeurol2015,523:997-1037.

48. WolffT,RubinGM:NeuroarchitectureoftheDrosophilacentral complex:acatalogofnodulusandasymmetricalbody neuronsandarevisionoftheprotocerebralbridgecatalog.J CompNeurol2018,526:2585-2611.

49. FranconvilleR,BeronC,JayaramanV:Buildingafunctional connectomeoftheDrosophilacentralcomplex.eLife2018,7: e37017.

50. StoneT,WebbB,AddenA,WeddigNB,HonkanenA,TemplinR, WcisloW,ScimecaL,WarrantE,HeinzeS:Ananatomically

(8)

constrainedmodelforpathintegrationinthebeebrain.Curr Biol2017,27:3060-3085.

51. SuverMP,HudaA,IwasakiN,SafarikS,DickinsonMH:Anarray ofdescendingvisualinterneuronsencodingself-motionin Drosophila.JNeurosci2016,36:11768-11780.

52. vonReynCR,NernA,WilliamsonWR,BreadsP,WuM,NamikiS, CardGM:Featureintegrationdrivesprobabilisticbehaviorinthe Drosophilaescaperesponse.Neuron2017,94:1190-1204.e6.

53. AcheJM,PolskyJ,AlghailaniS,ParekhR,BreadsP,PeekMY, BockDD,vonReynCR,CardGM:Neuralbasisforloomingsize andvelocityencodingintheDrosophilagiantfiberescape pathway.CurrBiol2019,29:1073-1081.e4.

54. MaimonG,StrawAD,DickinsonMH:Activeflightincreasesthe gainofvisualmotionprocessinginDrosophila.NatNeurosci 2010,13:393-399.

55. ChiappeME,SeeligJD,ReiserMB,JayaramanV:Walking modulatesspeedsensitivityinDrosophilamotionvision.Curr Biol2010,20:1470-1475.

56. FujiwaraT,CruzTL,BohnslavJP,ChiappeME:Afaithfulinternal representationofwalkingmovementsintheDrosophilavisual system.NatNeurosci2017,20:72-81.

57. KimAJ,FenkLM,LyuC,MaimonG:Quantitativepredictions orchestrate visual signaling in Drosophila. Cell 2017, 168: 280-294.e12.

58. WeirPT,SchnellB,DickinsonMH:Centralcomplexneurons exhibitbehaviorallygatedresponsestovisualmotionin Drosophila.JNeurophysiol2014,111:62-71.

59. WeirPT,DickinsonMH:Functionaldivisionsforvisual processinginthecentralbrainofflyingDrosophila.ProcNatl AcadSciUSA2015,112:E5523-E5532.

60. ZacariasR,NamikiS,CardGM,VasconcelosML,MoitaMA: Speeddependentdescendingcontroloffreezingbehaviorin Drosophilamelanogaster.NatCommun2018:9.

61. JinekM,EastA,ChengA,LinS,MaE,DoudnaJ: RNA-programmedgenomeeditinginhumancells.eLife2013,2:1-9.

62. StowersJR,HofbauerM,BastienR,GriessnerJ,HigginsP, FarooquiS,FischerRM,NowikovskyK,HaubensakW,CouzinID etal.:Virtualrealityforfreelymovinganimals.NatMethods 2017,14:995-1002.

63. SeelingJD,ChiappeME,LottGK,DuttaA,OsborneJE,ReiserMB, JayaramanV:Two-photoncalciumimagingfromhead-fixed Drosophiladuringoptomotorwalkingbehavior.NatMethods 2010,7:530-540.

Figure

Figure 1 Cornea R8 R7 R1 - R6 hv Ca 2+ TRP GDP GTP PLC βGqαGTP GDP Na +β γPIP2DAGInsP3R(c)M* TRPLGqαβ γCentral complexOptic lobeOmmatidia(a)ReLaMeLoLoP PB FB EB NoRe(e)R1 - R6R7R8DmTmL1(d)LaDmDmL1LoLoPR7R7R8R8LoTmTmMeR1R1
Figure 2 “pale” ommatidia -R8pON/R7pOFFR8pOFF/R7pONR8yON/R7yOFF

Références

Documents relatifs

Peripheral vision loss affects the processing of spatial frequencies in the central vision of people with glaucoma.. Audrey Trouilloud, Alexia Roux-Sibilon, Floriane Rutgé,

We expected that if information in peripheral vision is used to generate a predictive signal that shapes visual processing in central vision, the peripheral influence on

Although the complete argument on vision that we tried to reconstruct here is com- posed of disconnected pieces thatthe Queries introduce in a seemingly non-committal way, it is

In this paper, we propose a novel approach that uses directly the optimal motion synthesis derived from the planner to the control system without going through footsteps but instead

EMARO (European Master on advanced Robotics), two year English taught Erasmus Mundus Masters program [Online: http://emaro.irccyn.ec-nantes.fr]. MSc COMPUTER VISION, two

l’épreuve d’une confrontation avec les textes concrets de science élaborés en Chine ancienne. Mais il importe aussi de ne pas perdre de vue qu’il se fonde sur une

L’œil et l'appareil photo. sont 2 instruments d'optique : ils permettent de former l'image d'un objet... 2) Les caractéristiques d'une lentille convergente.. → activité 2 :

On the other hand, important color information in the original images may disappear or become indistinct in the six images in the right, which are the simulation results for people