• Aucun résultat trouvé

Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows

N/A
N/A
Protected

Academic year: 2021

Partager "Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows"

Copied!
11
0
0

Texte intégral

(1)

Geomorphology351(2020)106933

ContentslistsavailableatScienceDirect

Geomorphology

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / g e o m o r p h

Direct

observations

of

a

three

million

cubic

meter

rock-slope

collapse

with

almost

immediate

initiation

of

ensuing

debris

flows

Fabian

Walter

a,∗

,

Florian

Amann

b

,

Andrew

Kos

c

,

Robert

Kenner

d

,

Marcia

Phillips

d

,

Antoine

de

Preux

e

,

Matthias

Huss

a,f

,

Christian

Tognacca

g

,

John

Clinton

h

,

Tobias

Diehl

h

,

Yves

Bonanomi

i

aLaboratoryofHydraulics,HydrologyandGlaciology(VAW),ETHZurich,Zurich,Switzerland bChairofEngineeringGeologyandHydrogeology,RWTHAachenUniversity,Germany cTerrasenseSwitzerlandLtd,BuchsSG,Switzerland

dWSLInstituteforSnowandAvalancheResearchSLF,Davos,Switzerland eMartiAG,Bern,Switzerland

fDepartmentofGeosciences,UniversityofFribourg,Fribourg,Switzerland gBeffaTognaccaGmbh,Switzerland

hSwissSeismologicalService,ETHZurich,Zurich,Switzerland iBonanomiAG,Igis,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26June2019

Receivedinrevisedform29October2019 Accepted30October2019

Availableonline2November2019 Keywords: Rockavalanche Debrisflows Permafrost Environmentalseismology

a

b

s

t

r

a

c

t

Catastrophiccollapseoflargerockslopesranksasoneofthemosthazardousnaturalphenomenain mountainlandscapes.Thecascadeofevents,fromrock-slopefailure,torockavalancheandthe near-immediatereleaseofdebrisflowshasnotpreviouslybeendescribedfromdirectobservations.Wereport onthe2017,3.0×106m3failureonPizzoCengaloinSwitzerland,whichledtohumancasualtiesand significantdamagetoinfrastructure.Basedonremotesensingandfieldinvestigations,wefindachange incriticalslopestabilitypriortofailureforwhichpermafrostmayhaveplayedadestabilizingrole.The resultingrockavalanchetraveledfor3.2kmandremovedoveronemillionm3ofglaciericeanddebris depositsfromapreviousrockavalanchein2011.Whereasthisentrainmentdidnotleadtoanunusually largerunoutdistance,itfavoreddebrisflowactivityfromthe2017rockavalanchedeposits:thefirst debrisflowoccurredwithadelayof30sfollowedbytendebrisflowswithin9.5handtwoadditional eventstwodayslater,notablyintheabsenceofrainfall.Wehypothesizethatentrainmentandimpact loadingofsaturatedsedimentsexplaintheinitialmobilityofthe2017rockavalanchedepositsleadingto anear-immediateinitiationofdebrisflows.Thisexplainswhyanearlierrockavalancheatthesamesite in2011wasnotdirectlyfollowedbydebrisflowsandunderlinestheimportanceofconsideringsediment saturationinarockavalanche’srunoutpathforAlpinehazardassessments.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thefailureoflargerockslopesresultsinrockavalanches,which canhavealongrun-out(>1km)andchargethelandscapewith vastquantitiesoffragmentedrockdebris.Asaresult,theriskfor remobilizingtheunconsolidateddepositmaterialasdebrisflows, triggeredbyprimaryfactorssuchasrainfallorearthquakesor sec-ondaryfactorssuchasantecedentrainfallorsnowmelt(Huang andFan,2013)dramaticallyincreases,andremainshighforsome timeafterrockslopefailure(i.e.daystomonth,dependingon

seis-∗ Correspondingauthor.

E-mailaddress:walter@vaw.baug.ethz.ch(F.Walter).

micityandthetypeandquantityofwatersupplytoenhancethe debrismobility)(Bergeretal.,2011;Baeretal.,2017,Franketal., 2019).

Afewcasestudiessuggestadirecttransitionofrockavalanches intolargeanddestructivedebrisflows(e.g.Hauser,2002,Plafker andEricksen,1978,Petrakov etal.,2008;Huggel,2009).Hauser (2002) analysed the 1987 6.0×106m3 Cerro Rabicano rock

avalanche (Chile). Entrainment of a significant volume of path materialconsistingoffluvialsedimentsand5–10mofsnowcover mayhavecaused adirect transitionfroma rockavalancheinto adebrisflow.Asimilartransitionisreportedfortheearthquake triggered, 1970 rock-ice-avalanche at the north peak of Neva-dosHuascaran,PeruvianAndes(PlafkerandEricksen,1978).The transition from the ice-rock avalanche with an initial volume https://doi.org/10.1016/j.geomorph.2019.106933

(2)

ofapproximately50–100×106m3 (theicevolumewas

approxi-mately5.0×106m3)intoadebrisflowwaslikelyassociatedwith

theentrainmentofdebrisandasignificantamountofsnowand firn.Theaccumulatedsnowdepthatthe2.4 km-longtransition zonewhentherockmassmovedacrossGlacier511wasestimated tobeatleast28mandthetotalentrained,equivalentwatervolume was10–20×106m3(PlafkerandEricksen,1978).

Largerockslopesfailwhentheyreachacriticalstress thresh-old(Kosetal.,2016).Recognisingthechangeincriticality,well inadvanceoffailurehowever,remainsachallenge.Eventhough theprocesscascadefromslopefailuretorockavalancheanddebris flowisarecognisedphenomenon,theunderlyingmechanisms con-trollingthetransitionremainpoorlyunderstood.Frompublished accounts,rockavalanchedepositswereeitherremobilizedasdebris flowslongaftertheinitialrockavalancheevent,oreventshadto bereconstructedviascientificback-analysis(e.g.,Marietan,1925; Evansand Clague,1994,Kotlyakovet al.(2004),Haeberlietal., 2004;Huggeletal.,2005;Petrakovetal.,2008;Huggel,2009;Kääb etal.,2018).

Herewefocusonthesequenceofeventsbefore,duringandafter themassive2017rockslopecollapseonPizzoCengalointheSwiss Alps.Thecollapsewasobservedanddocumentedinunprecedented detail,resultinginanewpictureofcascadinghazardinteractions forlargerockslopeinstabilities.Incontrasttoothercasestudies, wheredebrisflowsweretriggeredbyearthquakes,rainfallorsnow meltlongafterarockavalanche(e.g.Bergeretal.,2011;Baeretal., 2017)ordirectlytransitionedintoadebrisflow(e.g.Plafkerand Ericksen,1978,Hauser,2002),thePizzoCengalorockavalanche wasdepositedandfollowedbyafirstdebrisflowwithadelayof 30sandinabsenceofanyprecipitation.Understandingthe fac-torsinfluencingtheobservedcascadesandthemechanismsbehind processinteractionsiscriticalfordevelopingfuturehazard man-agementstrategies.

2. Studysiteandhistoryofrockslopefailure

PizzoCengalo(WGS84:46◦1749.090N9◦3637.688E,3369m asl) is situated in the Val Bregaglia region within Eastern Switzerland’sCantonGrisons.Itlocatesatthevalleyheadofthe BondascaValley,some6kmup-valleyfromthevillageofBondo (Figs.1and2).NearPizzoCengalo,theBondascaValleyandits lateralcanyonshostanumberofsmallglaciers(Figs.1and2b). Atloweraltitudes,thevalleyhasbeensparselydevelopedwith anaccessroad,vacationhomes,stables,popularhikingtrails, a seasonallyoccupiedmountainhut(“ScioraHut”)andparkingareas. PizzoCengalo’sNEfacehasbeensubjecttovaryingsizesofrock slopefailures.Systematicobservationoftherockslope instabil-itycommencedin 2012,inresponsetoa1.5×106m3 rockwall

collapse,whichoccurredinDecember2011(Fig.2c).The2011 col-lapseevolvedintoa rockavalanche, traveling2.7km downthe Bondascavalley,andchargedthelandscapewithaconsiderable depositofrockdebris(Fig.2c).Photographsshowthattheback scarpofthe2011failurewaslargelycoveredwithathicklayerof bluepermafrostice(Fig.S3a),whichmayhavecontributedtothe catastrophicfailure.Duringsummer2012,heavyrainfall remobi-lizedpartsofthe2011rockavalanchedeposit,andfourdebrisflows weretriggered,whichreachedthevillageofBondo,locatedata dis-tanceof6kmatthevalleybottom(Baeretal.,2017).Thedebrisflow hazardpromptedtheconstructionofaretentionbasininBondoand theinstallationofanearlywarningsystematPrä(Fig.1).

On23August2017,another,significantlylargerrockvolume of3.00×106 ±0.02m3 collapsedatthePizzo CengaloNEface,

(Figs.1and2d)asdeterminedfromrepeatedterrestriallaserscans (TLS,seeSections3andTextS2)andtime-lapsphotographs,which alsodocumentaprecursory0.10-0.15×106m3rockfalleventon21

August2017(personalcommunicationM.Keiser,CantonGrisons). Themaincollapse on23 August2017resultedina3.2kmlong rock avalanche, which overran the deposits of the2011 event andreachedthehikingtrailtotheScioraHut(Fig.2d).Therock avalancheclaimedthelivesofeighthikerswhopassedtheaffected trailsectionatthetimeoffailure.

3. Slopestabilitypriortothe2017event

Displacementmonitoringwithterrestrialradarinterferometry (TRI,seeSectionS3inthesupplementarymaterialfordetails)and TLSbetween2012and2017promptedanearlywarningissued sev-eralweekspriortothe2017catastrophicfailure.TRIdatashowed thatannualdisplacementsvariedbetween40mmyr−1and60mm yr−1duringthe2012–2015period(Fig.4).BetweenAugust2015 andJuly2016annualdisplacementsnotablyincreasedbyafactor 1.5,andwerethenfollowedbyadramatic,factor2.5–3.0increase betweenJuly2016andJuly2017.TRImeasurementsinsummer 2013indicatenoslopedisplacementsduringthesummerseason (Fig.4b–c).Thus,themeasuredannualdisplacementsaccumulated solely betweenthe beginning offall and end of spring. During this period,increasedfluid pressureassociated withsnowmelt infiltrationcannotexplaintheobserveddisplacements,assnow accumulatesonlyatafewlocationsinthesteeprockwall. Addi-tionally,snowmeltonNorth-facingrockslopestendstoforma basalicelayerunderthesnowpackinspring,largelypreventing theinfiltrationofmeltwater(Phillipsetal.(2016)).

Afterthe2017failure,first-handobservationsviatelescope con-firmed small patches of ice in thebackscarp, which appeared coveredorinterspersedwithdebrisanddust.Inadditiontothese observationsofice,arecentlydevelopedpermafrostdistribution mapconfirmsthepresenceofpermafrostintheNEslopeofPizzo Cengalo(Kenneretal.,2019).Permafrostisknowntoplayan impor-tantroleinrockslopestability(Allenetal.,2013;Krautblatteretal., 2013;Delineetal.,2015;Phillipsetal.,2016).Icesegregationor freezethawcyclescaninduceicegrowthinfractures(ice-wedging) whichenhance crackopening(Matsuoka,2001; Draebingetal., 2017)followedbyprogressiverockbridgefailure(Phillipsetal., 2016).The fact that at least in 2013displacements were only observedbetweenthebeginningoffallandendofspringbutnot duringthesummerperiodsuggeststhatice-wedgingisan impor-tantpreparatoryfactor.

Theincreaseddisplacementratesafter2015suggestanincrease inthedegreeofcriticality(i.e.,agreaterproportionof discontinu-itiesintherockmassareclosetotheirstrengthlimit)resulting fromrockbridgefailurethatoccurredinthepreviousyears.This isconsistentwiththeTLSdataobtainedbetweenlatespringand earlyfall2016,whichincontrastto2013alsoshowedsignificant displacementsduringthesummerperiod.Theincreasedcriticality impliedanincreasedsensitivityoftherockslopetostresschanges induced,forexample,bychangesinwaterpressureassociatedwith summerrainfallevents.

ThefinaltriggerfortherockslopefailureinAugust2017cannot beassociatedwithasingleevent.Post-failureanalysishowever showsthatatthetimeoffailure,thewaterlevelsindaylighting structuresatthelateralreleasesurfacewereapproximately60m abovethebasalfailureplane(Fig.3).

Theorientationofgeologicalstructuresisakeycontrolling fac-torforthePizzoCengalorockslopeinstability.Structuresinthe granodioriteincludethreepenetrative,brittlesetsof discontinu-ities(Fig.3 andS1in theSupplementaryinformation).Priorto the2017catastrophic failure, kinematicanalysisof the geolog-icalstructures(Supplementaryinformation)indicatesaprimary topplingmechanismalongslope-paralleldiscontinuities(Set3in Fig.3andS1).Thosediscontinuitiesaffecttherockslope

(3)

stabil-F.Walter,F.Amann,A.Kosetal./Geomorphology351(2020)106933 3

Fig.1. OverviewmapandtopographiccrosssectionshowingtheBondascaValley,PizzoCengaloandthevillageofBondo.Limitsofthe2011and2017rockavalanche deposits,andlimitsofthedebrisflowsarealsoshown.NotethedebrisflowretentionbasininBondoandanearlywarningsystemfordebrisflowsinstalledatPrä.

ityabove2800masl.Belowthiselevation,thelowerdipangleof thesediscontinuitiesrenderstopplingunlikely.Thisissupported bydisplacementmapsobtainedfromradarinterferometric mea-surements, which indicate nodisplacements below 2800masl (Fig.4).Duetotoppling,thesteepslope-parallelstructures(Set 2)arekinematicallyunconstrainedandslidingcanoccurasa sec-ondarymechanism.Set1(Fig.3c)isofparticularimportancefor thedeep-seatedrockslope instabilitybecauseit strikesnormal totheslopeand,duetoitswidespreadpersistence(e.g.>50m), formsmajorlateralreleaseplanes(Fig.3).Thebasalfailureplane oftheslopeinstabilityisnotassociatedwithpre-existing geologi-calstructures,butratherexhibitsastep-shapedsurfaceindicating progressiverockbridgefailure(Fig.3)(Gischigetal.,2011a,2011;

Phillipsetal.,2016).Failureofrockbridgeswasfrequentlyheard asalow-frequencyrumblingduringsummerfieldtripsbetween 2015and2017.Thequalitativeintensityoftheaudiblesoundswas notablystrongerin2016and2017,whichanecdotallycorrelates withthedramaticincreaseindisplacementratesmeasuredwith TRIandTLS.

4. Rockavalanchedynamics

Thecatastrophiccollapseon23August2017wascapturedon video(videoS1;Supplementaryinformation).Thefootageshows howthefailedrockmassimpactedasmallglacierlocatedatthefoot oftheslope(Fig.2b).Theimpactcausedtheejectionofawhitejet

(4)

Fig.2.a)DetailsofBondascaValleyheadandterrainchangesinresponsetothe2011and2017PizzoCengalorockavalanches.a)SitesituationwithinSwitzerlandandthe BondascaValley.b)GlaciercoverageandthestreamnetworkmappedonanorthophotowhichshowsPizzoCengaloandtheupperBondascaValleybeforethe2011and 2017rockavalanches.Mapdata:swissimage©2019swisstopo(5704000000).c)&d)Changesinsurfaceelevationcausedbytherockslopefailuresin2011and2017.Map: SwissMapRaster©2019swisstopo(5704000000).Redcirclesina),b),c)andd):mountainhutCapannadiSciora.Theyellowtriangleswitharedoutlineinb),c)andd)

(5)

F.Walter,F.Amann,A.Kosetal./Geomorphology351(2020)106933 5

Fig.3.a)ThePizzoCengaloNEfacebeforethe2017rockfalleventandb)6hafterthe2017failure.The2011and2017releaseareasareoutlinedinredandorange,c)Zoom tothefailurezonewiththelateralreleaseplane(red)correspondingtoSet1structuresandSet3structures(blue)responsiblefortheprimarytopplingmechanicsandSet 2structures(orange)thatformslopeparallelreleaseplanes.d)Photograph48hafterthemainrockfallevent.ThewatertablecanbeinferredfromwaterflowfromSet3 structuresatthelateralreleaseplane.

indicatethepositionfromwhichterrestriallaserandradarmeasurementswerecarriedout.Thenumberedareaswithblackoutlinesind)definetheindividualdeposition orerosionareas.Thewhitearrowinsector1ashowsthepositionoftheblowholeslinkedtotheoccurrenceofgeyser-likewaterfountains(FigureS3b).Erosion/deposition distributionsaredifferencesoftheFederalOfficeofTopographyswisstopo(www.swisstopo.admin.ch)digitalelevationmodelsregisteredon18July2012-26September 2011(Panelc)and25August2017-30August2015(Paneld).

(6)

Fig.4. Resultsofrockslopedisplacementmonitoringacquiredwithaportableradarinterferometer.Displacementsinpanelsa,b,d–gareshownasinterferograms.Eachcolor cycle(e.g.,fringe)representsan8.72mmdisplacementandisdefinedbythewavelengthoftheradar’scentralfrequency(e.g.,17.2GHz).c,aphase-unwrappeddisplacement map,scaledto±3.0mm.Theinterferogramsanddisplacementmapwereprojectedintoathree-dimensionalphotogrammetricmodelforvisualization.AtpointsP1andP2 displacementdatawereextractedandplottedinpanelh.h)yearlydisplacementratesattwoselectedpointsextractedfrominterferogramsbetween2012–2017(P1and P2).Thedateofcatastrophicfailureisshownbythedashedline.

oficeand/orwaterparticleswithasub-verticaltrajectorydirected towardstheW-faceoftheBügeleisenridgeline(Fig.3a).Itwasthen redirectedalongaNEtrajectorydowntheBondascavalley(e.g.in thedirectionoftherockavalancherun-outFig.2).Theicejetwas airborneforapproximately8–9sandthefall-outoftheparticles occurredalongadistanceofapproximately450–550mmainlyin area1a(Fig.2d).Ourfirst-orderapproximationfromvideoS1 sug-gestsavelocityofupto70ms−1forthelargerandfasterparticleson

theleadingedgeoftheicejet.Avolumeof0.6±0.1×106m3glacier

ice wasremoved by an undetermined combination of melting, impactanderosion(forthevolumeestimationseeSupplementary information).

Thecascadeofeventswasrecordedonnearbyseismicstations, andwasequivalenttoanearthquakeofMI3.0(Fig.5)asreported bytheSwissSeismologicalService.Atdistancesexceeding100km, seismicstationsrecordedabroadbandsignalbetween0.005and

(7)

F.Walter,F.Amann,A.Kosetal./Geomorphology351(2020)106933 7

Fig.5.Spectrogram(top)derivedfromtheground-velocityseismogram(bottom)ofthe2017rockavalancheeventrecordedattheclosetseismicstationCH.VDL(46.48317, 9.44956;FigureS4).Afirstpeakinamplitudeoccursabout15–30safterthefirstonsetofthesignal,followedbyalargersecondpeakatabout40–60s.Withadelayof30s, therockavalanchesignalisfollowedbyasustainedhigh-frequencydebrisflowtremorwithinitiallyelevatedenergyabove20Hzforatleast200–300s.

severalHz(Fig.S5),allowingforadetailedreconstructionofthe rockavalanche run-outdynamics.Seismicenergy above1Hz is associated withinter-particle collisionsand particleinteraction withobstaclesintherun-outpath,whereasthelowerfrequencies arecausedbytheforce,whichtherockavalanche’sbulkmotion exertsontheEarth’ssurface(EkströmandStark,2013;Allstadt, 2013;Allstadtetal.,2018,andreferencestherein;seedetailsin TextS8).

FollowingAllstadt(2013),weinvertthelowfrequency seismo-grams(TextS8)fortheunderlyingforcehistory(Fig.6).Uponinitial release,therockmassacceleratesdownwardandeastwardandthe elasticreaction(“rebound”)ofPizzoCengaloisopposite,i.e.upward andwestward(PhaseAinFig.6).Thislikelyoverlappedwiththe

north-slopingglacierimpactpushingthegroundsouthward.The massthenacceleratesnorthwardacrosstheglacier,whichresults inafurthersouthwarddirectedreboundforce.Withinafewtens ofseconds,themassimpactstheBügeleisenridgelinetotheeastof theglacier.Theridgelineexertsawestwardforceontherockmass forcingitonamorenorthwardtrajectory.Thisimpliesaneastward reactionforceexertedbytherockmassontheridgeline(Phase B).Duringthefinalfrictionalslowdown,therockmasspushesthe groundprimarilynorth-northwestanddownward(PhaseC).

Fromtherockavalanche’sforcehistory(Fig.6)wecalculatethe centerofmasstrajectory(Fig.7;seeTextS8fordetails).The tra-jectorybulgessomewhattoofareastwardthanexpectedfromthe valleyshape.Wethereforeinterpretthetrajectorywithcare

(8)

confin-Fig.6.Forcehistoryofthe2017PizzoCengalorockavalanche.Dashedlines rep-resentuncertaintyestimates.Greenlinesarethelow-frequency(0.006–0.1Hz) seismogramsfromthenearestbroadbandstationVDL(FigureS4).Bluesolidline rep-resentsthecalculatedrockavalanchespeedsalongitstrajectorywithdashedlines indicatinguncertainties.ThegreyseismogramistheVDLrecordfilteredbetween1 and5Hz.Differenttrajectoryphasesdiscussedinthemaintextarelabeled(A:mass detachmentandglacierimpact,B:impactwithBügeleisenridgeline,C:final slow-down).Verticalgreybarsdenotethemanuallypickedonsetandendoftheforce history.

ingaquantitativediscussiontothoseaspectsthatcanbeexplained withtopographicfeaturesalongthetrajectory.

Thefirstofthetwoavalanche’sspeedmaxima(Figs.6Cand7)is reachedasthecenterofmassleavesthesteepglacierportionand entersflatterterrain(Fig.2).Thesecondmaximum(Figs.6Cand7) locatesjustbehindthesteepterrainstepinthecentralrunoutarea (Figs.1and2).Therockavalanche’shigh-frequencyseismogram exhibitstwoburstsseparatedby20–30s(Figs.5and6)andthe firstburstisassociatedwiththeglacierimpactbeforethefirstspeed maximumwhereasthesecondhigh-frequencyburstresultsfrom theimpactbehindthedownstreamterrainstep(Figs.6Cand7).

The timingof high-frequency energy transmission and rock avalanchedynamicsisconsistentwithpreviousstudies:Adelay

Fig.7.Rockavalanchetrajectoryfromtheforcehistorycalculationwithcenterof massspeedcolorcoded.Thetwogreendotsindicatespeedmaximaandthered circledenotesthemountainhutCapannadiSciora.Ascalculatedrockavalanche speeddoesnotvanishattheend,thecalculatedtrajectorywastruncated.

betweenthehigh-frequency seismicsignal aftertherock mass detachmentmanifestingitselfinthestartoftheforcehistorycan be explained with progressive fragmentation of the rock mass (Allstadt,2013;Hibertetal.,2014].Similarly,acorrespondenceof highrockmassmomentumandhigh-frequencyseismicsignalshas beenobservedforotherevents(Hibertetal.,2017).However,the generationofthefirsthigh-frequencyseismicburstofthePiz Cen-galoeventislikelyalsorelatedtothecollisionwiththeBügeleisen ridgeline,constitutingatopographicalbarrier(Hibertetal.,2014). Weusethetemporalseparationofthehigh-frequencybursts (20–30 s) and the distance between the two ground impact pointsalongthetrajectory(about1200m),toestimatetherock avalanche’sspeedbetweenthefirstandsecondimpactpointsto 40–60ms−1.Thisrangeofvaluesisconsistentwiththeaverage speed(Fig.6),calculatedasfollows:Weintegratethespeedtime seriesbetweenthetwohigh-frequencyburstsanddivideitbythe timedifference,whichgives44-64ms−1.About60safterthefirst impacttherockavalanchecametoastopwithmostofthedebris depositedinArea3(Fig.2).

Inourinversionofthelow-frequencyseismicsignaltherock avalanche’sforcehistoryisonlyconstrainedbyseismicdata.As aconsequence,thoseportionsoftheaccelerationanddeceleration phaseswhichhappenslowlyenoughtosuppressameasurable seis-micsignal(especiallyduringthefinalslowdown),arenotincluded intheinvertedforcehistoryandcalculatedtrajectory.Thisexplains thenon-vanishingfinal rock avalanche speed of26m/s (Fig.6) calculated with our inverted force history. This problem could bemitigated withtheinversion algorithmofEkströmand Stark (2013),whichrequiresstationarityoftherockmass’bulk momen-tum.Moreover,suchconstrainedinversionsavoidspuriousforce histories for band-limited seismic signals (Hibert et al., 2015). ForthePizCengaloeventwefollowtheunconstrainedinversion approachofAllstadt(2013)inordertoelucidatedynamicdetailsof therockavalancheandthereforemaximizethebandwidthofthe invertedlow-frequencyseismicsignals(TextS8).

(9)

F.Walter,F.Amann,A.Kosetal./Geomorphology351(2020)106933 9

5. Fromrockavalanchetoremobilizationofrockdebris

Within8.5days,aseriesof15debrisflowsformedfromthe depositsofthe2017rockavalancheasdocumentedbyeye wit-ness observationsand seismicdatafrom stationVDL (personal communication M.Keiser, CantonGrisons, Fig.5 and S4;Table S1). Theeventsstarted nearlyimmediatelyafter the2017rock avalanche. Theexact number of individualeventsis somewhat subjectivebecauseitissometimesnotclearwhethersubsequent surgesbelongedtothesamedebrisflow.Infact,thefirstdebrisflow wasovertakenbytheseconddebrisflow.

Bycomparingdigitalelevationmodels(DEMs) weestimated thevolumesofthesingledebrisflowevents.Asonlyfour rele-vantDEMsareavailable(30.08.2015,25.08.2017,30.08.2017and 05.09.2017;TextS4)onlycumulativevolumesofsuccessivedebris flowscanbecalculated.Volumeestimatesforsingleeventsrelied atleastpartiallyonindirectevidence.Forexample,thegeometry ofthechannelcarvedbyadebrisflowwasusedinitsflowvolume calculation.

Alarge debrisflow withaninitialvolume ofapproximately 0.545±0.05×106m3wasinitiatedwithadelayofapproximately

30s(Fig.5;seeTextS9)afterthedepositionoftherockavalanche. This event was followed by ten debris flows within 9.5h and anothertwo debrisflowstwodaysafterrockavalanche deposi-tion(TableS1).Notably,remobilizationofthedebriswithinthese twodaysoccurredintheabsenceofrainfall.Aweekaftertherock avalanche,twodebrisflowsoccurredduringprecipitationon31 August2017.

Directobservationsshowthatthefirstdebrisflowwasahighly viscous,slowmovingphenomenon.Theinitialvelocityofthefirst debrisflow wasapproximately 8m/s and canbe reconstructed fromtheinitiationtimederivedfromtheseismicdataanalysisand thetriggeringtimeoftheearlywarningsystemin“Prä”(Fig.1) at09:35:36UTCon23August2017(localtimeisUTC+2h).The debrisflowwasfirsttimeseenandphotographedataround09:43 closetotheexitoftheBondascavalley,about950mdownstream oftheearlywarningsystem.Theseobservationssuggestan aver-agevelocityof2m/s.Eyewitnessesreportedthatthedebrisflow wasmovingbelowwalkingspeedwhenitarrivedattheoldbridge at09:48(averagevelocityaround0.4m/s)anditwasovertakenby thefollowingdebrisflow(TableS1).Thisfirstdebrisflowdestroyed elevenstablesandvacationhomesintheBondascavalley(Fig.1and TableS1intheSupplementaryinformation).

Approximatelyonehouraftertherockavalanche, helicopter-borne observations of a distinct channel in the rock avalanche depositionindicatethatthefirstdebrisfloworiginatedfromArea3 (Fig.2d).Thisfirsteventhasatypicaldebrisflowseismogram show-ingasustainedtremoraftertherockavalanchesignalwithhigh frequenciesupto50Hz(Fig.5)(Allstadtetal.,2018).Inthe spec-trogram(Figs.5andS7)thesignalmostlyresidesbelow10Hzand towardsitsbeginningseismicitybetween15and50Hziselevated for3–4minutes.Aspectralgapabove10Hz(“delay”inFigs.5and S7)clearlyseparatestherockavalancheseismogramfromthis ini-tiationsignal(TextS9).Thisshowsthatthefirstdebrisflowformed withadelayofaround30saftertherockavalanchewasdeposited (Fig.5,TableS1).Observationsfromthehelicoptershow12 addi-tionaldebrisflowson23and25Augustthatreachedtheretention basininBondo(TableS1andFig.1).Incontrasttothefirstdebris flowtheyhadalowerviscosityandwereinitiatedfromArea1a (Fig.2d).

Thetotalvolumeofthetendebrisflowsfollowingthefirstmajor oneon23August2017was2.20–2.3×105m3.Thefirsteightdebris

flowsdidnotcausedamageinthevillageofBondo,butsuccessively filledthedebrisflowretentionbasin.Subsequentdebrisflows over-toppedtheretentionbasin anddamaged thecantonal roadand housesinthevillageofBondo.Thetotalvolumeofdebrisflows

reachingBondoon25August2017was7.0-8.5×104m3.The

trans-porteddebrisagainovertoppedtheretentionbasinand areasof Bondowereoverrun,causingfurtherdamage.Noneofthedebris flowscausedhumancasualties.Finally,on31Augustheavy precip-itationtriggeredtwodebrisflowswithtotalvolumesofbetween 2.6and2.85×105m3.

6. Discussion

Ourobservationsrevealthefollowingdetailsaboutthe2017 rockavalanche:

1Detachment:Rockbridgefailureleadtoenhanceddisplacement

ratesandacriticalstabilitystateinthePizzoCengalo’sNErock face(Figs.3and4).Icewedgingmayhavecontributedtorock bridgefailure.

2Dynamics:Therockavalanche wasconstrained byridgelines,

slopebreaksandothertopographicalfeatures(Fig.6),iteroded ca.0.6×106m3ofglacialice(Fig.S2)andproduceddepositsthat

coveredthoseofthe2011rockavalancheandotherpre-existing valleyfillssuchasmorainesandalluvialfans(Fig.2).

3Immediatedebrisflows:Withinhalfaminutetoseveraldays

afterthe2017rockavalanche,aseriesof15debrisflowswere mobilizedindepositsaboveandbelowtheterrainstepalongthe rockavalanche’srunoutpath(Fig.2,TableS1),mostofthemin theabsenceofprecipitation.

Wenowaddressthekeyquestionaboutwhatcausedthehigh mobility of the 2017 rock avalanche deposits leading to near-immediateformationofthefirstdebrisflowinArea3(Fig.2),a terraininclinedonlymoderatelyataround13◦(Fig.1).

Theinitiationofdebrisflowsrequiresrelativelyhighwater con-tent(e.g.JohnsonandSitar,1990).Apuzzlingquestioninthiscase is:Wheredidthewatercomefromtomobilizethedebrisflows in theabsence of precipitation?The water contentin therock slopeisvolumetricallynegligible,andtheporespaceswithinthe disintegratedrockavalanchematerialareessentiallydry. Further-more,volumeexpansionastherockmassdisintegratesprohibits porepressureincreaseduringthedynamicflow(HungrandEvans, 2004).

Therockavalancheeroded6.0×105m3ofglacierice.Muchof

thismasslikelymeltedimmediatelyuponrockavalancheimpact andduringsubsequenttransportwithintherockavalanche.This issupportedbyaccountsofrescueteamssearchingfortheeight missinghikers,hoursaftertheevent,whodidnotreportanyicein thedeposits(personalcommunicationM.Keiser,CantonGrisons). However,theobservedice/waterjet,formedbytheinitialimpact ontheglacier(supplementalvideo),showsthatnotalloftheglacier icewasentrainedatthemovingfrontoftherockavalanche: Com-paringtheaveragerockavalanchespeedcalculatedfromthelow frequencyseismicity(44–64ms−1,Section4)withthespeedof thefastesticejetparticles(70ms−1,Section4)suggeststhatthe majorityofjetice,whichmovedmuchslowerthanitsfront,was strewnacrosstheuppersurfaceoftherockavalanchewhereit sub-sequentlymeltedandcontributedtoahigherwatercontentinthe depositedrockavalanchedebris,thuscontributingtoitsmobility (Area3inFig.2).

Apart from thelost glacier ice, Fig. 2 shows a distinct pat-tern of material erosion and deposition during the 2017 rock avalanche:Abovethetopographicstep,debriswasdepositedin Area 1betweenthetoeof thePizzoCengaloand theBondasca morainetotheEast(Fig.2).BetweenAreas1and 3,in Area2, erosionandthusentrainmentof sedimentsoccurredduringthe rockavalancherun-out(Fig.2).Wefocusonareasshowing depo-sition in 2011 and erosion in 2017 tospecifically quantify the

(10)

amountofentrainedmaterialfromthe2011depositinthe2017 rockavalanche.DEMdifferences(Fig.2)showthatthicknessofthe 2011depositslocallyexceeded10mandatleast6.65×105m3of

thesedepositswereerodedandentrainedbythe2017event. Inadditiontotheentrainmentof6.65×105m3ofthe2011rock

avalanchedeposit,DEMdifferencingyieldssome2.0×105m3 of

othersedimentsthathavebeenentrainedalongtherun-outpath. Theseestimatesaresubjecttolargeuncertaintiesbecausethe addi-tionalsedimentswerecoveredbyvegetationbeforethe2017rock avalanche.Ourestimateofthetotalentrainmentvolumeranges between8.0and 9.0×105m3 and is considereda lowerbound

becausesedimentreplacementcannotbeexcluded.Ouranalysis showsthat entrainmentoccurredtosomeextentin Area1 but mainlyinArea2(Fig.2d).Consequently,depositsinArea3,where thefirst debris flow was initiated, included much of the 2011 deposits.

Quantitativestudies(e.g.Hungr andEvans, 2004;Mangeney etal., 2007, Crostaet al.2009, Aaronet al.,2019)suggest that entrainment of saturated sediments along the rock avalanche run-outpathcanenhancetherockavalanchemobility.Therock avalanchemobilityiscommonlyexpressedbytheindexH/L(i.e. theratiooffallheighttohorizontaltraveldistance).Interestingly, theH/Lratioforthe2017PizzoCengalorockavalanche,withafall heightofH=1.7kmandahorizontaltraveldistanceofL=3.3kmto themostdistalpointofArea3is0.53.ThisH/Lratioiswithinthe rangeofrockavalanchesofsimilarvolumesinnon-glaciatedareas, withnegligiblesediment entrainment(Hungrand Evans, 2004; Sosioetal.,2012),andclosetoavalueof0.6fordry,fragmented rock,assuggestedbyHeim(1932).Thus,theH/Lratioindicatesthat entrainmentdidnotsignificantlyenhancethemobilityoftherock avalanchethatcametoahaltinArea3,30sbeforethefirstdebris flowwasinitiated,asshownbytheseismicfrequencysignature (TextS9,Fig.S7).Wepropose,however,thatthewatercontentof theentrainedsedimentswasacriticalfactorinthedeposit mobil-itycontributingtotheinitiationofdebrisflowsintheabsenceof precipitation.

Thesurfacehydrologypriortothe2017event(Fig.2)shows thatmeltwaterfromtheBondascaglacierdrainedthroughthe pre-existingsediments(includingthe2011deposits)whichwerelikely saturatedatthetimeofthe2017rockavalanche.Onceentrained in the2017 rockavalanche, these sediments provided a major sourceofwater. Unliketheentrainmentofglacierice, whichat leastpartiallyoccurredbehindtherockavalanchefront,muchof thesaturatedsedimentswereentrainedinArea2anddepositedin Area3,wherethefirstdebrisflowinitiated.

Thefirst-hand accountsof climbers who coincidentally wit-nessed theevent, reportedthat in Area 1a(Fig.2), geyser-like waterfountains(blowouts)occurred25and40minaftertherock avalanche(Fig.S3).Theclimbersreportedtwoexplosiveandclearly audiblewaterfountainswithanestimatedheightofafewmeters. Theremnantsoftheblowoutswerelocatedlaterinthefieldbythe authors(locationshownbyanarrowinFig.2d).Hourslater res-cueteamsreportedsaturatedmudholesadjacenttosoliddebris depositsalongthemarginsofArea3(Fig.2),whichpersistedfor manydaysaftertheevent.Theseobservationsnotonlycorroborate thepresenceofwaterinthe2017deposits,butalsosuggestthatthis waterwaspressurizedandmayhavediffusedtotheearthsurface whereitformedmudholes.Wehypothesizethatdynamic load-inguponimpact(HutchinsonandBahndari,1971;BovisandDagg, 1992;HungranEvans,2004)inducedtheexcessporepressures, whichpersistedhourstodaysasaresultoflowpressure dissipa-tionrates(e.g.MajorandIverson,1999,andreferencestherein).The resultingmobilityofthedebrismaterialisalsosupportedbydirect observationsoftheinitiationofdebrisflowsfromArea1a(Table S1):Shallow-seatedmechanicalinstabilitywithinthedebrisledto aprogressivevolumeincreaseofmovingdebrisandeventuallyto

theformationofdebrisflows.Further,alltwelvedebrisflowevents fromArea1ainitiatedfromdebristhatcoveredthepre-existing maindrainagepathoftheBondascaglacieroutflowstream(Fig.2d). Themobilityofthedebrismaterialwasthusadditionallyenhanced byacontinuoussub-surfacewatersupply.

Ourhypothesisofentrainmentanddynamicloadingofwater saturatedsedimentsexplainswhyincontrasttothe2017event, the2011rockavalanchewasnotdirectlyfollowedbydebrisflows. Instead,remobilizationoftherockavalanchedepositdidnotoccur until six tonine monthsafter the event,in response toheavy summerrainfallin 2012(Baeretal., 2017).Aerialphotographs takenon26September2011beforethe2011rockavalancheshow thatthedistributionofthesedimentsintheBondascavalleywas significantlysmallerand agreaterareaofbedrocksurfaceswas exposed(Fig.2b).Theimpactofthefailedrockmasserodedonly ∼0.1×106m3 of glacierice (TextS6) andsince the2011event

occurredinwinter,runofffromtheBondascaglacierwasnegligible. Sedimentsalongtherun-outpathandinthedepositswere there-forelikely unsaturatedin 2011.Thediffering mobility between the2011and2017depositsisinlinewithlaboratoryexperiments ofwater-saturatedgranularflows(Iversonetal.,2011):Forflows overridingwetsedimentsthereexistsapositivefeedbackbetween entrainmentandmomentum.Forflowsoverridingdrysediments this feedback is negative.Consequently, entrained dry material tendstoreducetherun-outdistancewhereasentrainmentof sat-urateddebriscanenhancethemobilityofthedebris(Abele,1997; Crostaetal.,2009).

Fromthiscomparisonwerecognizethattwopre-existing fac-torsplayedacriticalroleinthe2017hazardcascadethatranged fromrockwallfailureoverrockavalanchepropagationto ensu-ing debrisflows: 1)The landscapewas covered withsufficient sedimentsfromthe2011rockavalanche,and2)thepre-existing sedimentsweresaturatedwithsummermeltwaterfromthe Bon-dascaglacierandbyintenserainfallduringthunderstormsinJuly andAugust2017.

7. Conclusions

Thisinvestigationpresentsauniqueopportunitytostudya cas-cadeofAlpinemassmovementprocesses.Favoredbypermafrost conditions,a3.0×106m3rockmasscatastrophicallyfailedatthe

PizzoCengaloNErockfaceproducingamajorrockavalancheinfall 2017.Inversionofseismicbroadbanddatayieldsaforcehistory, whichdescribesdynamicdetailsoftherockavalanche’scenterof masstrajectorythatagreeswellwithlocaltopographicfeatureslike aconstraininglateralridgelineandtopographicsteps.

Ourobservationssuggestthatentrainmentanddynamic load-ingofwatersaturatedsedimentsmayhavebeendominantfactors in the hazard cascade. They did not increase the reach of the 2017 rock avalanche compared to typical non-entraining rock avalanches.However,entrainmentofwatersaturatedsediments and the hypothesized dynamic loading may explain the high depositmobilitythatcauseddebrisflowsnearlyimmediatelyafter therock avalanchedepositionand in absenceof any precipita-tion.Thisisincontrasttothe2011rockavalanche.In2011less sedimentscovered therockavalancherun-out pathwhich ren-dersentrainmentlesslikely.Inaddition,thesedimentswerelikely notsaturatedsincetheeventoccurredinwintertimewithonly minimalwaterrun-offfromtheBondascaglacier.Saturated sedi-mententrainmentwasthuslikelythepivotalfactorindebrisflow productionfollowingthe2017rockavalanche.

Thestudyelucidatestheimportanceofinvestigatingconditions alongarockavalancherunoutpathwhenforecastingorassessing hazardousAlpinemassmovements.Focusingonconditionsinthe releasezone,only,whenestimatingtiming,volumeandrunout

(11)

dis-F.Walter,F.Amann,A.Kosetal./Geomorphology351(2020)106933 11

tancesofrockcollapsesandensuingdebrisflowsisinsufficientto fullygraspthepotentialhazardchaindownslope,aswasshownin the2017PizzoCengaloevent.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgments

Data are available online at the institutional repository of RWTH Aachen University (http://dx.doi.org/10.18154/RWTH-2018-228255)andtheSwissSeismologicalService(http://arclink. ethz.ch/webinterface/). The salary of FW was paid by the Swiss National Science Foundation via Grants PP00P2157551 andPP00P2 183719).Terrestrial measurementswerefundedby ArgeAlps.WethankAmandineSergeantforfruitfuldiscussionson theseismicinversion.

AppendixA. Supplementarydata

Supplementarymaterial relatedto thisarticle canbe found, intheonline version,atdoi:https://doi.org/10.1016/j.geomorph. 2019.106933.

References

Aaron,J.,McDougall,S.,Jordan,P.,2019.Dynamicanalysisofthe2012Johnsons Land-inglandslideatKootenayLake,BC:theimportanceofundrainedflowpotential. Can.Geotech.J.(ja).

Abele,G.,1997.Rockslidemovementsupportedbythemobilizationof groundwater-saturatedvalleyfloorsediments.ZeitschriftfurGeomorphologie41(1),1–20.

Allen,S.,Huggel,C.,2013.Extremelywarmtemperaturesasapotentialcauseof recenthighmountainrockfall.Glob.Planet.Change107,59–69.

Allstadt,K.,2013.ExtractingsourcecharacteristicsanddynamicsoftheAugust2010 MountMeagerlandslidefrombroadbandseismograms.J.Geophys.Res.Earth Surf.118(3),1472–1490.

Allstadt,K.E.,Matoza,R.S.,Lockhart,A.,Moran,S.C.,Caplan-Auerbach,J.,Haney,M., Thelen,W.A.,Malone,S.D.,2018.Seismicandacousticsignaturesofsurficial massmovementsatvolcanoes.J.Volcanol.Geotherm.Res.

Baer,P.,Huggel,C.H.,McArdell,B.W.,Frank,F.,2017.Changingdebrisflowactivity aftersuddensedimentinput:acasestudyfromtheSwissAlps.Geol.Today33 (6),November–December2017.

Berger,C.,McArdell,B.W.,Schlunegger,F.,2011.Sedimenttransferpatternsatthe Illgrabencatchment,Switzerland:implicationsforthetimescalesofdebrisflow activities.Geomorphology125(421–432),2011.

Bovis,M.J.,Dagg,R.,1992.Debrisflowtriggeringbyimpulsiveloading:mechanical modellingandcasestudies.Can.Geotech.J.29,345–352.

Crosta,G.B.,Imposimato,S.,Roddeman,D.,2009.Numericalmodellingof entrain-ment/depositioninrockanddebris-avalanches.Eng.Geol.109(1–-2),135–145.

Deline,P.,Gruber,S.,Delaloye,R.,Fischer,L.,Geertsema,M.,Giardino,M.,etal.,2015.

Icelossandslopestabilityinhigh-mountainregions.In:SnowandIce-related Hazards,RisksandDisasters.AcademicPress,pp.521–561.

Draebing,D.,Krautblatter,M.,Hoffmann,T.,2017.Thermo-cryogeniccontrolsof fracturekinematicsinpermafrostrockwalls.Geophys.Res.Lett.44,3535–3544.

Ekström,G.,Stark,C.P.,2013.Simplescalingofcatastrophiclandslidedynamics. Science339(6126),1416–1419.

Evans,S.G.,Clague,J.J.,1994.Recentclimaticchangeandcatastrophicgeomorphic processesinmountainenvironments.Geomorphol.Nat.Hazards,107–128.

Frank,F.,Huggel,C.,McArdell,B.W.,Vieli,A.,2019.Landslidesandincreased debris-flowactivity:asystematiccomparisonofsixcatchmentsinSwitzerland.Earth Surf.ProcessesLandforms44(3),699–712.

Gischig,V.S.,Moore,J.R.,Evans,K.F.,Amann,F.,Loew,S.,2011a.Thermomechanical forcingofdeeprockslopedeformation:1.Conceptualstudyofasimplifiedslope. J.Geophys.Res.EarthSurf.116(F4),F04010.

Gischig,V.,Amann,F.,Moore,J.R.,Loew,S.,Eisenbeiss,H.,Stempfhuber,W.,2011b.

Compositerockslopekinematicsatthecurrentrandainstability,Switzerland, basedonremotesensingandnumericalmodeling.Eng.Geol.118(1–2),37–53.

Haeberli,W.,Huggel,C.,Kääb,A.,Zgraggen-Oswald,S.,Polkvoj,A.,Galushkin,I.,etal., 2004.TheKolka-Karmadonrock/iceslideof20September2002:an extraordi-naryeventofhistoricaldimensionsinNorthOssetia,RussianCaucasus.J.Glaciol. 50(171),533–546.

Hauser,A.,2002.RockavalancheandresultingdebrisflowinEsteroParraguirreand RioColorado,regionmetropolitana,Chile.Geol.Soc.Am.XV,135–148.

Heim,A.,1932.BergsturzundMenschenleben(LandslidesandHumanLives). Trans-latedbyN.SkermerBitechPress,Vancouver,1932.

Hibert,C.,Ekström,G.,Stark,C.P.,2014.DynamicsoftheBinghamCanyonMine landslidesfromseismicsignalanalysis.Geophys.Res.Lett.41(13),4535–4541.

Hibert,C.,Stark,C.P.,Ekström,G.,2015.DynamicsoftheOso-Steelheadlandslide frombroadbandseismicanalysis.Nat.HazardsEarthSyst.Sci.15(6),1265–1273.

Hibert,C.,Ekström,G.,Stark,C.P.,2017. Therelationship betweenbulk-mass momentumandshort-periodseismicradiationincatastrophiclandslides.J. Geophys.Res.EarthSurf.122(5),1201–1215.

Huang,R.,Fan,X.,2013.Thelandslidestory.Nat.Geosci.6,325–326,http://dx.doi. org/10.1038/ngeo1806,2013.

Huggel,C.,2009.Recentextremeslopefailuresinglacialenvironments:effectsof thermalperturbation.Quat.Sci.Rev.28(11–12),1119–1130.

Huggel,C.,Zgraggen-Oswald,S.,Haeberli,W.,Kääb,A.,Polkvoj,A.,Galushkin,I., Evans,S.G.,2005.The2002rock/iceavalancheatKolka/Karmadon,Russian Caucasus:assessmentofextraordinaryavalancheformationandmobility,and applicationofQuickBirdsatelliteimagery.Nat.HazardsEarthSyst.Sci.5(2), 173–187.

Hungr,O.,Evans,S.G.,2004.Entrainmentofdebrisinrockavalanches:ananalysisof longrun-outmechanism.GSABull.116(9/10),1240–1252,September/October, 2004.

Hutchinson,J.N.,Bahndari,R.K.,1971.Undrainedloading,afundamentalmechanism ofmudflowandothermassmovements.Geotechnique21(4),353–358.

Iverson,R.M.,Reid,M.E.,Logan,M.,LaHusen,R.G.,Godt,J.W.,Griswold,J.P.,2011.

Positivefeedbackandmomentumgrowthduringdebris-flowentrainmentof wetbedsediment.Nat.Geosci.4(2),116.

Johnson,K.A.,Sitar,N.,1990.Hydrologicconditionsleadingtodebris-flowinitiation. Can.Geotech.J.27(6),789–801.

Kääb,A.,Leinss,S.,Gilbert,A.,Bühler,Y.,Gascoin,S.,Evans,S.G.,etal.,2018.Massive collapseoftwoglaciersinwesternTibetin2016aftersurge-likeinstability.Nat. Geosci.,1.

Kenner,R.,Noetzli,J.,Hoelzle,M.,Raetzo,H.,Phillips,M.,2019.Distinguishing ice-richandice-poorpermafrosttomapgroundtemperaturesandgroundice occurrenceintheSwissAlps.TheCryosphere13,1925–1941,http://dx.doi.org/ 10.5194/tc-13-1925-2019.

Kos,A.,Amann,F.,Strozzi,T.,vonRuette,J.,Delaloye,R.,Springman,S.,2016. Contem-poraryglacierretreattriggersarapidlandslideresponse,GreatAletschGlacier, Switzerland.Geophys.Res.Lett.43,http://dx.doi.org/10.1002/2016GL071708, 12‘466–12‘474.

Kotlyakov,V.M.,Rototaeva,O.V.,Nosenko,G.A.,2004.TheSeptember2002Kolka glaciercatastropheinNorthOssetia,RussianFederation:evidenceandanalysis. MountainRes.Dev.24(1),78–83.

Krautblatter,M.,Funk,D.,Günzel,F.K.,2013.Whypermafrostrocksbecome unsta-ble:arock–ice-mechanicalmodelintimeandspace.EarthSurf.Process.Landf. 38(8),876–887.

Major, J.M., Iverson, R.M., 1999. Debris-flow deposition: effectsof pore-fluid pressureandfrictionconcentratedatflowmargins.GSABull.111(No.10), 1424–1434,October,1999.

Mangeney,A.,Tsimring,L.S.,Volfson,D.,Aranson,I.S.,Bouchut,F.,2007.Avalanche mobilityinducedbythepresenceofanerodiblebedandassociatedentrainment. Geophys.Res.Lett.34(22),http://dx.doi.org/10.1029/2007GL031348. Marietan,I.,1925.LeséboulementsdelaCimedel’EstdesDentsduMidien1926et

leBois-Noir.JournalBull.delaMurithienne44,67–93,1925.

Matsuoka,N.,2001.Directobservationoffrostwedginginalpinebedrock.EarthSurf. Process.Landf.26(6),601–614,http://dx.doi.org/10.1016/j.coldregions.2016. 02.010.

Petrakov,D.A.,Chernomorets,S.S.,Evans,S.G.,Tutubalina,O.V.,2008.Catastrophic glacialmulti-phasemassmovements:aspecialtypeofglacialhazard.Adv. Geosci.14,211–218.

Phillips,M.,Wolter,A.,Lüthi,R.,Amann,F.,Kenner,R.,Bühler,Y.,2016.Rockslope failureinarecentlydeglaciatedpermafrostrockwallatPizKesch(EasternSwiss Alps).EarthSurf.Process.Landf.,http://dx.doi.org/10.1002/esp.3992,07/2016. Plafker,G.,Ericksen,G.E.,1978.NevadosHuascaranavalanches,Peru.In

Develop-mentsinGeotechnicalEngineering,Vol.14.Elsevier,pp.277–314.

Sosio,R.,Croat,G.B.,Chen,J.H.,Hungr,O.,2012.Moellingrockavalanchepropagation onglacier.Quart.Sci.Rev.47,23–40,2012.

Références

Documents relatifs

Néanmoins, les valeurs des paramètres de fluage que nous avons obtenues, permettent d'estimer par excès la durée de vie de compartiments rocheux sur une gamme

CIRAD (French Agricultural Research Centre for International Development), "Environmental Risks of Recycling" research unit – station de la Bretagne, BP 20, F-97

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

But, in this case, in the institutionalization phase the teacher could have used the students’ explanation of their strategy and the fact that students mention that

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Dans l'immédiat, nous nous contenterons donc d'indiquer que nous voyons dans des adverbiaux d'énoncé ou d'énonciation des marqueurs de perspective énonciative

Nevertheless, the chaotic regions disappear for larger drops and near the Faraday threshold, where the standing-wave pattern created by the drop’s impacts acts to stabilize the

The explanatory model and geomatic treatments are designed to help understand mass balance behavior at a local scale over the Austre Lovén.. It is an original