• Aucun résultat trouvé

Electronic structure and photoluminescence properties of Eu(η9-C9H9)2

N/A
N/A
Protected

Academic year: 2021

Partager "Electronic structure and photoluminescence properties of Eu(η9-C9H9)2"

Copied!
8
0
0

Texte intégral

(1)

Electronic Structure and Photoluminescence Properties of

Eu(

η

9

-C

9

H

9

)

2

Harry Ramanantoanina,*

,†

Lynda Merzoud,

Jules Tshishimbi Muya, Henry Chermette,*

,‡

and Claude

Daul*

Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland; E-mail: harry.ra@hotmail.com

Université de Lyon; Université de Lyon 1, UMR CNRS 5280, Institut Sciences Analytiques, 5 rue de la Doua, 69100

Villeurbanne, France; E-mail: henry.chermette@univ-lyon1.fr

Department of Chemistry, Faculty of Sciences, Kinshasa, DR Congo; Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

§Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland; E-mail: claude.daul@unifr.ch

(2)

Table S1. Calculated geometrical parameters for Eu(η9-C9H9)2 in the ground Eu configuration 4f 7 within the D9d point group: bond distances (d in Å) and bond angles (A in deg.).

D

9d

LDA/TZ2P

PBE/TZ2P

PBE/TZ2P-D3(BJ)

B3LYP/TZ2P B3LYP/TZP

Good

Boost-Very-Good

Excellent

Very-Good

Very-Good

Very-Good

d(Eu-C) 2.779 2.887 2.887 2.875 2.956 2.953

d(C-H) 1.095 1.093 1.093 1.096 1.084 1.085

d(Eu-X) 1.888 2.025 2.026 2.009 2.131 2.125

d(C-X) 2.039 2.057 2.057 2.057 2.048 2.050

A(X-C-H) 176.6 177.1 177.1 176.8 177.7 177.5

Table S2. Calculated geometrical parameters for Eu(η9-C9H9)2 in the ground Eu configuration 4f 7 within the D9h point group: bond distances (d in Å) and bond angles (A in deg.).

D

9h

LDA/TZ2P

PBE/TZ2P

PBE/TZ2P-D3(BJ) B3LYP/TZ2P B3LYP/TZP

Good

Boost-Very-Good

Excellent

Boost-excellent Very-Good

Very-Good

Very-Good

Very-Good

d(Eu-C) 2.779 2.888 2.888 2.888 2.888 2.876 2.954 2.950

d(C-H) 1.095 1.093 1.093 1.093 1.093 1.093 1.084 1.085

d(Eu-X) 1.888 2.027 2.026 2.027 2.027 2.011 2.129 2.121

d(C-X) 2.039 2.057 2.057 2.057 2.057 2.057 2.048 2.050

(3)

Figure S1. The displacement vectors of the both lower frequencies 15cm-1 (left) and 50cm-1 (right) corresponding to the

(4)

Table S3. Calculated Slater-Condon integrals ( ) and spin-orbit coupling constant (ζ ) (in eV) for Eu2+ configuration 4f7 in

the free ion and Eu(η9-C9H9)2 obtained from DFT using the LDA, PBE and B3LYP DFT functional.

LDA PBE B3LYP

Free ion Eu(η9-C

9H9)2 Free ion Eu(η9-C9H9)2 Free ion Eu(η9-C9H9)2 (4 , 4 ) 12.2962 9.7008 12.2785 10.2458 12.2137 10.4719 (4 , 4 ) 7.6303 6.0239 7.6190 6.3612 7.5774 6.4992 (4 , 4 ) 5.4656 4.3161 5.4575 4.5575 5.4273 4.6557 ζ 0.1610 0.1447 0.1604 0.1479 0.1585 0.1478

Table S4. Calculated ligand-field ( ) matrix elements (in eV) for the 4f electrons of Eu2+ configuration 4f7 in Eu(η9-C9H9)2

with D9 symmetry obtained from DFT using the LDAPBE and B3LYP DFT functional. For clarity, non-zero matrix elements

are highlighted. LDA 4 4 4 4 4 4 4 |4 , -0.3683 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.1980 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.1089 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.1231 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.1089 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.1980 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3683 PBE 4 4 4 4 4 4 4 |4 , -0.2771 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.1426 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0898 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0897 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0898 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.1426 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2771 B3LYP 4 4 4 4 4 4 4 |4 , -0.1013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0317 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0501 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0389 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0501 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0317 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1013

(5)

Table S5. Calculated Slater-Condon integrals ( and ), energy gap parameter (∆!"#) and spin-orbit coupling constant (ζ )

(in eV) for Eu2+ configuration 4f65d1 in the free ion and Eu(η9-C9H9)2 obtained from DFT using the LDA, PBE and B3LYP

DFT functional.

LDA PBE B3LYP

Free ion Eu(η9-C9H9)2 Free ion Eu(η9-C9H9)2 Free ion Eu(η9-C9H9)2 (4 , 4 ) 13.1953 10.2288 13.1782 10.4472 13.0985 10.0889 (4 , 4 ) 8.2380 6.3689 8.2270 6.5053 8.1751 6.2793 (4 , 4 ) 5.9145 4.5679 5.9065 4.6659 5.8687 4.5030 (4 , 5%) 2.8803 2.2676 2.8538 2.2197 2.6649 2.1353 (4 , 5%) 1.4223 1.0247 1.4098 1.0295 1.3102 0.9960 (4 , 5%) 1.4871 1.1747 1.4770 1.1682 1.3872 1.1381 (4 , 5%) 1.1501 0.8351 1.1408 0.8438 1.0627 0.8208 (4 , 5%) 0.8631 0.6096 0.8559 0.6192 0.7951 0.6019 ∆E"# - 2.9511 - 2.7517 - 3.0898 ζ 0.1741 0.1514 0.1735 0.1524 0.1713 0.1480 ζ' 0.1176 0.0700 0.1149 0.0744 0.1036 0.0722

(6)

Table S6. Calculated ligand-field ( ) matrix elements (in eV) for the 4f electrons of Eu2+ configuration 4f65d1 in Eu(η9-C9H9)2 with D9 symmetry obtained from DFT using the LDA, PBE and

B3LYP DFT functional. For clarity, non-zero matrix elements are highlighted.

LDA 4 4 4 4 4 4 4 5% 5% 5% 5% 5% |4 , -0.1506 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.2797 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 -0.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 -0.1138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 -0.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.2797 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1506 0.0000 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2184 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3516 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -2.2665 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3516 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2184 PBE 4 4 4 4 4 4 4 5% 5% 5% 5% 5% |4 , -0.0962 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.2209 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 -0.0608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 -0.1279 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 -0.0608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.2209 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0962 0.0000 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1612 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0892 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.8558 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0892 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1612

(7)

Table S6. (continued.) B3LYP 4 4 4 4 4 4 4 5% 5% 5% 5% 5% |4 , 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 -0.0857 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0679 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 -0.0358 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0679 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0857 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |4 , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1830 0.0000 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9682 0.0000 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.5706 0.0000 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9682 0.0000 |5%, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1830

(8)

Figure S2. Graphical representations of the four totally symmetric (a1g) vibrational modes that are involved in the emission

spectrum through vibronic coupling.

Figure

Table S2. Calculated geometrical parameters for Eu( η 9 -C 9 H 9 ) 2  in the ground Eu configuration 4f  7  within the D 9h  point group: bond distances (d in Å) and bond angles (A in deg.)
Figure S1. The displacement vectors of the both lower frequencies 15cm -1  (left) and 50cm -1  (right) corresponding to the  (quasi)free rotation of the (η9-C9H9)- rings around the C9 axis and the wagging mode
Table S3. Calculated Slater-Condon integrals ( ) and spin-orbit coupling constant ( ζ )  (in eV) for Eu 2+  configuration 4f 7  in  the free ion and Eu( η 9 -C 9 H 9 ) 2  obtained from DFT using the LDA, PBE and B3LYP DFT functional
Table S5. Calculated Slater-Condon integrals (  and  ), energy gap parameter ( ∆! "# ) and spin-orbit coupling constant ( ζ ) (in eV) for Eu 2+  configuration 4f 6 5d 1  in the free ion and Eu( η 9 -C 9 H 9 ) 2  obtained from DFT using the LDA, PBE and
+4

Références

Documents relatifs

(Note, though, that the number of training patterns seen before this maximum number of mistakes is made might be much greater.) This theoretical (and very impractical!) result (due

In the case of regression, in which a Gaussian probability model and an identity link function are used, the IRLS loop for the expert networks reduces to weighted least

In this paper, we bound the generalization error of a class of Radial Basis Functions, for certain well dened function learning tasks, in terms of the number of parameters and

The experiments described in this paper indicate that, for some tasks, optimal experiment design is a promis- ing tool for guiding active learning in neural networks.. It

They reported empirical results demon- strating the slow convergence of EM on a Gaussian mix- ture model problem for which the mixture components were not well separated..

What is more surprising and less obvious is that SVM and a specic model of sparse approximation, which is a modied version of the Basis Pursuit De-Noising algorithm (Chen,

The messages received by node B after 1 ; 2 and 3 iteration of propagation in the loopy network, are identical to those received by node B after convergence in the

We present a model of motion perception whereby measurements from dierent image regions are combined according to a Bayesian estimator | the esti- mated motion maximizes