• Aucun résultat trouvé

1 -minimization method for link flow correction

N/A
N/A
Protected

Academic year: 2022

Partager " 1 -minimization method for link flow correction"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Transportation Research Part B

journalhomepage:www.elsevier.com/locate/trb

1 -minimization method for link flow correction

Penghang Yin

a

, Zhe Sun

b

, Wen-Long Jin

c,

, Jack Xin

d

aDepartment of Mathematics, University of California, Los Angeles, CA 90095, USA

bDepartment of Civil and Environmental Engineering, Institute of Transportation Studies, 4040 Anteater Instruction and Research Bldg, University of California, Irvine, CA 92697-3600, USA

cDepartment of Civil and Environmental Engineering, California Institute for Telecommunications and Information Technology, Institute of Transportation Studies, 4038 Anteater Instruction and Research Bldg, University of California, Irvine, CA 92697-3600, USA

dDepartment of Mathematics, University of California, Irvine, CA 92697, USA

a rt i c l e i n f o

Article history:

Received 26 April 2017 Revised 8 August 2017 Accepted 9 August 2017

Keywords:

Link flow correction

1-minimization Flow conservation law Recoverability Exact recovery Correction bound

a b s t ra c t

Acomputationalmethod,basedon1-minimization,isproposed fortheproblemoflink flow correction, when the availabletraffic flowdata onmany linksin aroad network areinconsistentwithrespecttotheflowconservationlaw.Withoutextrainformation,the problemisgenerallyill-posedwhenalargeportionofthelinksensorsareunhealthy.Itis possible,however,tocorrectthecorruptedlinkflowsaccuratelywiththeproposedmethod underarecoverabilityconditionifthereareonlyafewbadsensorswhicharelocatedat certainlinks. We analyticallyidentifythe links thatarerobust tomiscounts and relate themto thegeometricstructureofthe trafficnetworkby introducingtherecoverability conceptandanalgorithmforcomputingit.Therecoverabilityconditionforcorruptedlinks issimplytheassociatedrecoverabilitybeinggreaterthan1.Inamorerealisticsetting,be- sidestheunhealthylinksensors,smallmeasurementnoisesmaybepresentattheother sensors.Under thesamerecoverability condition,ourmethodguaranteestogive anes- timated trafficflow fairlyclose tothe ground-truth dataand leadstoa boundfor the correctionerror.Bothsyntheticandreal-worldexamplesareprovidedtodemonstratethe effectivenessoftheproposedmethod.

© 2017ElsevierLtd.Allrightsreserved.

1. Introduction

Link volume/flowdata isan importantdata sourcein bothlong-termplanning andshort-term operationapplications.

Theexamplesincludebutarenotlimitedtosignaltiming,tollroadpricing,origin-destinationtripmatrixestimation,trans- portationplanning,trafficsafety(e.g.Koonceetal.,2008;Lindsey,2006;McNally,2007;LordandMannering,2010andthe referencestherein).

Theflow conservationina trafficnetworkimpliesthatthetotal in-flowequalsthetotalout-flowateachnon-centroid node.Thecentroidsarenodeswheretraffic originates/isdestined to,andnon-centroidsnodesdenotesalltheother nodes.

Practically,when lookingattrafficflow countsoverasufficientlylong timeperiod(e.g.dailycumulative flow),we expect thatthesumofcumulativelinkflowsenteringthenon-centroidnodeequalsthesumofcumulativelinkflowsleavingit.

Theflowconservationlawisanimportantproperty,whichhasbeenexploitedinmanydifferentapplications.Forexam- ple,thewidelyusedfirst-ordertrafficflowmodel,theLWRmodel(LighthillandWhitham,1955;Richards,1956),isderived

Corresponding author.

E-mail addresses: yph@ucla.edu (P. Yin), zhes@uci.edu (Z. Sun), wjin@uci.edu (W.-L. Jin), jxin@math.uci.edu (J. Xin).

http://dx.doi.org/10.1016/j.trb.2017.08.006 0191-2615/© 2017 Elsevier Ltd. All rights reserved.

(2)

basedonthe conservationoftraffic.InChen etal.(2009), theauthorsmentioned thata pathflow estimator(PFE) needs reasonablyconsistent linkflows,meaningthattheflowconservationlawshouldbesatisfiedwithina certainerrorbound, toreproducefeasiblepathflowsolutions.

Inpractice,theflow conservationlawcan be violateddueto numerousflow measuringerrors; i.e., theobserved flow countsaregenerallycorruptedandcausedatainconsistencyissues.InSunetal.(2016),thenetworksensorhealthproblem (NSHP)(Sunetal.,2016)isproposed toevaluateindividualsensors’healthindicesbasedonthelevelofflowdataconsis- tency. Assumingflow countingsensors are alreadyinstalled on some ofthe linkswhereatleast onebase setexists, the NSHPtriestofindtheleastinconsistentbasesetthat“minimizesthesumofsquaresofthedifferencesbetweenobserved andcalculatedlinkflows”.Thehealthindexofaspecificsensorisevaluatedbasedonthefrequencythatitappearsinthe leastinconsistentset.

Severalstudies havelooked intothe problemof correcting inconsistent flow data according to flow conservation. To solvea similar problemintransitplanning,Kikuchi etal.(2006)studied thepassenger flow balancingproblemandpro- poseda least square correction methodto adjust the flows, sothat thecounts are conservedand closeto the observed values.vanZuylenandBranston (1982)assumedthatthe observedlink flowsfollowprobability distributions constrained by flow conservation. The study derived the formula for constrained maximum likelihood estimates of the link flows.

Kikuchietal. (2000) examined andcompared sixdifferentmethods to adjustobserved flow rateaccording toflow con- servation.Allofthemethodshavethesameconstraintsbutdifferentobjectivefunctions.VanajakshiandRilett(2004)stud- iedflow inconsistencyproblembetweenneighboring upstreamanddownstream loop detectors.Anonlinear optimization problemisproposedtocorrectloopdetectordata,inthecasewhenobserveddataviolatesflowconservation.

Insummary,giventheobservedcumulativeflowsondifferentlinks,alloftheexistingflowcorrectionmethodsadopted optimizationapproachesthattrytomeetthefollowingprinciples:

Ensurethatflowconservationbefollowedexactlyatallnon-centroidnodesafteradjustmentusingasetofconstraints,

Preservethe integrityoftheobserveddataasmuchaspossibleby minimizingthedistancebetweenadjustedandob- servedflows.

However, all ofthe studies are limited tosimple hypothetical networksornetworks withsimple topologies. Also, no systematicstudyhasbeendoneregardingtheeffectivenessandapplicabilityofthemethods.

Inthis study,we propose a method to estimate the true linkflow from corrupted data on observedlinks aswell as unobservedlinksvia1-minimization.Similarto theexistingmethods,thelink flowcorrectionmethodisalsoformulated asanoptimizationproblemtominimizethedifferencebetweenobservedandestimatedlinkflows.Asanimprovementover theexistingmethods,thenode-basedformulationofflowconservationisintroducedtohandlegeneralroadnetworkwhere linkflowsareonlyobservedonmonitoredlinks,notonalllinksasassumedinmanyexistingstudies.Moreimportantly,we adoptthe1-minimizationmethodfromcompressedsensing(Candèsetal.,2005;2006)toanalyticallyderivethecondition forexact/stablerecovery ofthetruecumulativeflowcounts.The1normistheuniqueconvexsparsitypromotingpenalty.

Thoughit is not differentiable, various efficientscalable numericalmethods exist to date forits minimization (Beckand Teboulle,2009;Boydetal.,2011;Daubechiesetal.,2004;GoldsteinandOsher,2009;YangandZhang,2011)besideslinear programming.Inaddition to1 norm,other non-convexsparsitypromoting penaltyfunctionscanalsobe considered;see Yinetal.(2015);YinandXin(2017); Louetal.(2016) andreferencestherein.Theirminimizationiscomputationallymore expensivethan1,andweshallleavesuchastudyforafuturework.

Therestofthe paperisorganizedasfollows.InSection 2,westate the linkflow correctionproblemformulation,the exactandstablerecoverytheorem,therecoverabilityconditionandtheconnectionwithcompressedsensing.InSection3, weusea toy exampletoillustrate theconditionsforexactandstablelink flowrecovery.InSection 4,we usereal-world loopdetectordataasan applicationforthismethod.Inboththetoyandrealworldexamples,therecoverabilitycondition isverifiedanalytically.TheconcludingremarksareinSection5.

Notations

Letusfixsome notations.Rn representsthe realcoordinatespaceof ndimensions. Letx∈Rn,

x

1:=n

i=1

|

xi

|

takes

the1 normofx,and

x

denotestheEuclidean(2)norm.GivenanyindexsetI

{

1,2,...,n

}

,

|

I

|

countsthenumberof

elementsinI;Ic:=

{

1,2,...,n

} \

IisthecomplementsetofI.xI∈R|I|consistsoftheelementsinxrestrictedtotheindex setI.0(n)∈Rn denotesthevector containingzeros only,whileI(n)∈Rn×n denotesthe identitymatrix ofordern.For any matrixA∈Rm×n,AisthetransposeofA;AI∈R|I|×nisthesubmatrixofArestrictedtotherowindexsetI

{

1,2,...,m

}

, andAI∈Rm×|I| isthesubmatrixofArestrictedtothecolumnindexsetI

{

1,2,...,n

}

; e.g.,A{1,2}extracts thefirsttwo rowsofA,andA{1,2} extracts the first twocolumns ofA.Ker(A):=

{

x∈Rn:Ax=0(m)

}

represents thekernel spaceofA,

whileRan(A):=

{

h∈Rm:h=Axforsomex∈Rn

}

representstherangespaceofA.

(3)

2. Methodology 2.1. Problemsetup

Givenatrafficnetworkwithnon-centroidnodesonly,thenode-linkincidencematrixA∈Rn×l withnbeingthenumber ofnodesandlthenumberoflinks,canbeexpressedas

Ai j=

−1 ifthe j-thlinkis outgoinglinkof nodei

1 ifthe j-thlinkis incominglinkof nodei 0 otherwise.

ThenAisalwaysoffull(row)rankasprovedinNg(2012),andtrafficflowdata fˆ∈Rl obeystheflowconservation:

Afˆ=0(n). (2.1)

Suppose M

{

1,2,...,l

}

is the set oflinkswhose link flows are observed,and

|

M

|

=m.We call Mas “monitored set”

thereafter.Weassumethat fM= fˆM+eM∈Rm,

istheobservedinconsistentflowdatacorruptedbysensingerrorseM∈Rm.

Theflowcorrectionproblemistoderive anestimateof fˆ,denotedbyf,fromthecorrupteddata fM.Hereweimpose an underlyingassumption onM forthe flowcorrection problemtobe well-posed.We willneedthe conceptofbaseset introducedinSunetal.(2016).

Assumption2.1. McontainsatleastonebasesetKM,meaningthat

|

K

|

=lnandAKc∈Rn×nisinvertible.

Fortheconsistent data fˆM= fM(i.e.,eM=0(m)),ofcourse wehave fˆK= fKsinceKM.Thenthe fˆcanbeuniquely recoveredbyperforming(Ng,2012;Sunetal.,2016):

fˆK= fK and fˆKc=−

(

AKc

)

1AKfK.

IfMcontainsmorethanonebaseset,the fˆrecoveredintheabovefromdifferent fK willbeconsistent.

Assumption2.1isthesufficientandnecessaryconditionforthewholelinkflowstobeinferable.Itguaranteesthatthe whole flowdata canbe deduced fromatleastone subset ofthe observedlink flows.Without thisassumption, however, some ofthe link flows cannot be estimated fromavailable data andthe problemis unsolvable (Ng, 2012), whetherthe measuredflowsareconsistentornot.

2.2. Flowcorrectionvia1-minimization

Since A isof fullrow rank,Ker(A) is an (ln)-dimensionalsubspace ofRl.Suppose Z∈Rl×(ln) is thematrix whose columnsformabasisofKer(A).Since fˆ∈Ker(A),wehave

fˆ=Zx, forsomex∈Rln.

Asaresult, fˆMmustbeoftheformZMxforsomex∈Rln.

Remark2.1. ClearlytheexistenceofZisnon-unique,butfisinvarianttothechoiceofZandonlydependsonthestructure ofthetrafficnetwork.IndeedfistheoneinRan(Z)whoserestrictiononMhastheleastabsolutedeviationfrom fM.Sof onlydependsonRan(Z)whichissameasKer(A).NotethatAisthenode-link matrixuniquelydeterminedby thenetwork structure.

Thefollowingresultnotonlygivesa concreteconstructionofZ,butalsointerpretsxin(2.2) asan estimateof fˆK for somebasesetK(notnecessarilyasubsetofM).

Theorem2.1. LetK beany base set.Without loss ofgenerality,suppose A is partitionedas [AK,AKc] withAKc ∈Rn×n being invertible.Then

Z=

I(ln)

(

AKc

)

1AK

∈Rl×(ln)

isabasismatrixofKer(A).Moreover,bychoosingsuchZ,xfrom(2.2)isanestimateof fˆK.

WewillshowtheproofinAppendixC.Ourproposedmethodconsistsofthefollowingtwosteps:

1. Wefirstsolvean1-minimizationproblem:

x=argmin

xRl−n

ZMxfM

1, (2.2)

Thatis, we seekan estimate ofeM=fMfˆM in the affine space

{

fMZMx:x∈Rln

}

withthe least1 norm.The problem(2.2) canbe efficientlysolved bythe alternatingdirectionmethodof multipliers(ADMM)(Boyd etal., 2011);

seeAppendixAfortheimplementationdetails.

(4)

Fig. 1. A Toy Network. The solid links are monitored. The numbers in parentheses denote the ground-truth traffic counts.

2. fˆisthenestimatedby

f=Zx. (2.3)

Zxmayhavenon-integerentries,inthiscase,wecanjustperformrounding.

2.3.Connectionswithcompressedsensing

Compressed sensing (Candès et al., 2006; Donoho, 2006) aims to recover a sparse signal (vector) y from an under- determined linearsystemthat generally hasinfinitely manysolutions. It enablesrecovery of thesignal y fromfarfewer samplesthan requiredby theNyquist-Shannonsamplingtheorem. Majoringredients of thestandard compressedsensing techniqueinclude

Sparsity:mostoftheentriesinyarezeros.

1-minimization:minimizing

y

1toexploitthesparsityofy.

Letusreturntotheflowcorrectionproblem,whichisinessenceequivalenttotheestimationofeM.Inanextremecase, supposeallthesensorsarebad,leadingtolargesensingerrors.Withoutfurtherinformation,itisclearlyimpossibletogeta goodestimateof fˆfrom fMbyanymeans.Intuitively,however,reconstructing fˆispromisingifmostofthesensorsrecord consistentflowdata.Mathematicallyspeaking,eMissparse.Theflowcorrectionproblemthuscanbeviewedassparseerror correctionproblem(Candès etal., 2005;Xuetal., 2013), whichissimilarto compressedsensing.Note that,however,the flowcorrectionproblemdeviatesfromthetraditionalcompressedsensingproblem,wherethematrixAwouldberandom.

3. Correctionresults

Notethatour proposedmethoddoesnot take advantageofanyprior informationaboutthe possiblebadsensors. Ap- parentlyonecan notalways hope foragoodestimationf to fˆ,evenifthereis onlyonebad sensorinthenetwork.For instance,inthenetworkshowninFig.1,ifthesensoronlink1givesverywrongcount,then basicallythereisnowayto reasonablycorrectthiserrorbecauselinks1and2areequivalentinthetopologyofthenetwork.Withthat said,without extrainformation,obtainingagoodestimateof fˆispossibleonlywhenthebadsensorsarelocatedatsomeparticularlinks.

Theselocationstoleratingmiscountaresomehowdeterminedbythenetworkstructure.Inthefollowing,weshallintroduce theconceptofrecoverability.

Definition3.1. Givenanetworkwithnode-linkincidencematrixAandmonitoredlinksetM,wedefinetherecoverability forthesubsetSMby

Rec

(

S;A,M

)

:= inf

hKer(A):hS1=0

hM\S

1

hS

1 , (3.4)

whichisafunctionofthesubsetSandalsodeterminedbyboththenetworkstructureAandthemonitoredlinksetM. Sinceforanyh∈Ker(A),itholdsthath=Z

v

forsome

v

Rln,thenwecanrewrite(3.4)as

Rec

(

S;A,M

)

= inf

vRl−n:ZSv=0

ZM\S

v

1

ZS

v

1

, (3.5)

which resembles the classical Rayleigh quotient for the principal eigenvalue

μ

of the generalized eigenvalue problem (Weinberger,1974):ZSZS

v

=

μ

ZM\SZM\S

v

if2 normreplacesthe1norm.Theoptimizationoftheratiooftwohomoge- neousfunctionsofdegreeonehasbeenstudiedinHeinandBühler(2010),whereaninversepoweriterativealgorithmwas proposed.BasedonHeinandBühler(2010),weproposeanefficientalgorithmtosolveproblem(3.5)whichwillbedetailed inAppendixB.

(5)

3.1. Exactrecovery

Wefirst considerthecasewheresome sensorsarebad, whichintroduceinconsistencyoftheflow data.Thefollowing Theorem3.1assertsthatwhenthebadsensorsarelocatedatcertainlinksetSwhosesizeisexpectedtobesmall,thenno matterhowlargetheerrorsare,weareabletoexactlyrecover fˆfrom fM.

Theorem3.1(Exactrecovery). LetS:=

{

iM:ei=0

}

,whichmeansmiscountsonlyoccuratthelinksetS.IfRec(S;A,M)>

1,thentheestimationfcomputedby(2.3)isequalto fˆ.Thatis,thelinksinS arerobusttomiscountsifRec(S;A,M)>1. Theproofisomittedhere,sincetheabovetheoremisaspecialcaseofTheorem3.2inSection 3.2.Weremarkthatthe lower boundforRec(S;A,M)intherecoverabilityconditionissharp.Indeedthemethodcanfail whenRec(S;A,M)=1, aswillbeseeninthefollowingexample.

Example3.1. Letusconsiderthetrafficnetworkassociatedwiththe3×6node-linkincidencematrix A=

1 1 −1 −1 0 0

0 0 1 0 −1 0

0 0 0 1 1 −1

,

andtheground-truthnetworkflow fˆ=

⎢ ⎢

⎢ ⎢

⎢ ⎣

300 200 300 200 300 500

⎥ ⎥

⎥ ⎥

⎥ ⎦

asinFig.1,thenodeandlinksarelabeledwiththeirIDwithgroundtruth

linkflowsintheparentheses.

ThenTheorem2.1givesthat

Z=

⎢ ⎢

⎢ ⎢

−1 0 1

1 0 0

0 1 0

0 −1 1

0 1 0

0 0 1

⎥ ⎥

⎥ ⎥

.

LetthemonitoredlinksetbeM=

{

1,2,4,5,6

}

,then

ZM=

⎢ ⎢

−1 0 1

1 0 0

0 −1 1

0 1 0

0 0 1

⎥ ⎥

.

Lettheobservationbe fM=

⎢ ⎢

⎢ ⎣

f1 f2 f4 f5 f6

⎥ ⎥

⎥ ⎦

=

⎢ ⎢

⎢ ⎣

300 200 200 300 600

⎥ ⎥

⎥ ⎦

,i.e.,theobservedlinkflowonlink6isinflatedby100duetosensorerror.So

eM=fMfˆM=

⎢ ⎢

⎢ ⎣

0 0 0 0 100

⎥ ⎥

⎥ ⎦

,S=

{

iM:ei=0

}

=

{

6

}

,andM

\

S=

{

1,2,4,5

}

.

We can verifyby eitheran analytic approach orAlgorithm2 that therecoverabilityconditionRec(S;A,M)=2>1is satisfied.Then Theorem3.1assertsthatfderived from(2.2) and(2.3)mustbe equalto fˆ.It isindeedtruebecausex=

200

300 500

,andtherefore

f=Zx=

⎢ ⎢

⎢ ⎢

300 200 300 200 300 500

⎥ ⎥

⎥ ⎥

=

fˆ.

(6)

Comparethisresultwiththegroundtruthlinkflows,wecanconcludethattheerrorsarecompletelyeliminated.

Remark3.1. Wehavetworemarksbelow.

Withoutknowingthecountatlink3,i.e.,M=

{

1,2,4,5,6

}

,theproposedmethodwouldfailexactrecoveryifthecount was corrupted at any other link except link 6. Take link 1 for example, it is easy to check that Rec(

{

1

}

;A,M)=1. Therefore,link1isnotguaranteedtoberobust tomiscount byourtheory.Indeedthisisthecaseasmentionedinthe beginningofthissection.

Supposelink3wasalsomonitored,i.e.,M=

{

1,2,...,6

}

,thenanycountingerroratoneofthelinks3,4,5and6could beaccuratelycorrected.

3.2.Stablerecovery

Inamorerealisticsetting,we assumethatall theelementsineMare non-zeros,yetmostofthemarerelativelysmall comparedwiththeother few.Thisrefers toapproximatesparsityincompressedsensing.Inthiscase,itisstill possiblefor ftobecloseenoughto fˆ.Inanotherword,theestimationerrorsareboundedfromaboveinthiscase.

Theorem3.2(Stability). ForanySM,ifRec(S;A,M)=

α

>1,thenfcomputedby(2.3)obeys

ffˆ

1

λ ( α

,A,M

)

eM\S

1, (3.6)

forsomeconstant

λ

(

α

,A,M)>0dependingonly on

α

,A and M.Moreover,

λ

(

α

,A,M) decreasesin

α

,meaningthatlarger

recoverabilityleadstohighercorrectionaccuracy.

Inview of(3.6),fis agoodestimationif

eM\S

1 issmall.Onthe otherhand,theestimation errordoesnot relyon eS.Theorem3.1isessentiallyacorollaryofTheorem3.2inthespecialcase

eM\S

1=0.TheproofofTheorem3.2willbe giveninAppendixC,inwhichwederiveanexplicitexpressionfortheconstantfactor

λ

(

α

,A,M).

Example3.2. WeconsiderthesamesettingasinExample3.1exceptthattheother observeddatacontainssmallsensing

noisebesidesthelargecorruptionatlink6.Specifically,let fM=

⎢ ⎢

⎢ ⎣

302 201 198 301 600

⎥ ⎥

⎥ ⎦

andeM= fMfˆM=

⎢ ⎢

⎢ ⎣

302 201 198 301 600

⎥ ⎥

⎥ ⎦

⎢ ⎢

⎢ ⎣

300 200 200 300 500

⎥ ⎥

⎥ ⎦

=

⎢ ⎢

⎢ ⎣

2 1

−2 1 100

⎥ ⎥

⎥ ⎦

.

AgainwetakeS=

{

6

}

.SinceRec(S)=2>1,itisassertedbyTheorem3.2thatthe1 normoftheestimationerror

ffˆ

1iscomparableto

eM\S

1=2+1+2+1=6.

Thisistrue,asweobtainthatx=

201

303 503

by(2.2), f=

⎢ ⎢

⎢ ⎢

⎢ ⎣

302 201 303 200 303 503

⎥ ⎥

⎥ ⎥

⎥ ⎦

,and

ffˆ

1=12.

NotethattheoriginalcountingerroratLink6is100,insharpcontrasttotheerroraftercorrectionwhichisjust3.

4. Testexamples

Inthissection,weprovidebothsyntheticandreal-worldexamplestodemonstrateeffectivenessofourproposedmethod.

4.1. Asyntheticnetwork

Fig.2showsaparallel highwaynetwork (Hu etal.,2009; Ng,2012) with9nodesand18linksamongwhich15links aremonitored.We createtheground-truthandobservedflowdata andlist theminTable1,wherethe estimationerrors equal the differences betweenthe estimated and ground-truthvalues, and the percentage differencesequal the relative differencesbetweentheestimatedandobservedvalues.Thedataonlinks3,10and14areunobservable.Theyaremarked by “N/A” inthetable andby dashed linein theplot.The recorded dataon links6and16 are severelycorrupted, while theotherdata containsmallnoise.SobasicallyM=

{

1,2,4,5,6,7,8,9,11,12,13,15,16,17,18

}

andS=

{

6,16

}

.Itisclear

thatourestimationbyAlgorithm1isfairlyclosetotheground-truth,andthemiscountsonlinks6and16aresuccessfully detected. In fact,we can check by Algorithm2 that the recoverability conditionRec(S;A,M)=1.5>1holds. Therefore, Theorem3.2providesguaranteeforourcorrectionresult.

(7)

Fig. 2. A parallel highway network.

Table 1

Computational results for Example 1. Links with corrupted data are labeled with .

Link ID Ground-truth Observation Estimation Estimation error Percentage difference

1 10 0 0 0 9950 9950 −10 0.0%

2 70 0 0 0 69887 69887 −113 0.0%

3 80 0 0 N/A 7953 −47 N/A

4 20 0 0 1997 1997 −3 0.0%

5 150 0 0 15010 15104 104 0.6%

6 550 0 0 39751 54783 −217 37.8%

7 20 0 0 0 20043 20043 43 0.0%

8 30 0 0 3014 3014 14 0.0%

9 70 0 0 6977 6977 23 0.0%

10 90 0 0 N/A 9009 9 N/A

11 50 0 0 5045 5046 46 0.0%

12 480 0 0 47770 47771 −229 0.0%

13 25500 25397 25505 5 0.4%

14 1500 N/A 1515 15 N/A

15 20 0 0 0 20 0 0 0 20 0 0 0 0 0.0%

16 330 0 0 45302 32817 −183 −27.6%

17 45500 45912 45505 5 −0.9%

18 34500 34332 34332 −168 0.0%

Fig. 3. A road network on I-405 northbound in the city of Irvine.

4.2. Areal-worldexample

The daily cumulative flow data in thisexample is from Caltrans Performance Measurement System(PeMS) database, collectedonI-405 northboundinthecityofIrvine,onApril28,2016.Thenetworkhas18linksand9nodesasillustrated inFig.3.Theloopdetectorsareinstalledonalllinksexceptforlinks3,13,and14,whicharerepresentedbydashed lines.

ThelinksarelabeledwiththeirIDsandcorrespondingobservedflowsintheparentheses.

The estimatedlink flows by (2.2) and(2.3) are compared withthe observedlink flows inTable 2,where unobserved linksflowsaremarkedby“N/A”.Ourcorrectionresultshowsthatthepercentagedifferenceatlink6ismuchlargerthanall otherlinks. Sincethereisnoground-truthdataavailable inthisexample,we cannotcheckthecorrectionqualitydirectly.

(8)

Table 2

Computational results for Example 2.

Link ID Observation Estimation Difference Percentage difference

1 123714 123714 0 0.0%

2 4835 4835 0 0.0%

3 N/A 128549 N/A N/A

4 15479 15479 0 0.0%

5 105748 113070 7322 6.9%

6 11127 13661 2534 22.8%

7 127073 126731 −342 −0.3%

8 16194 16194 0 0.0%

9 110997 110537 −460 −0.4%

10 2809 2757 −52 −1.9%

11 113002 113295 293 0.3%

12 10941 10941 0 0.0%

13 N/A 124236 N/A N/A

14 N/A 139715 N/A N/A

15 124437 124322 −115 −0.1%

16 15393 15393 0 0.0%

17 113411 113413 2 0.0%

18 10907 10909 2 0.0%

However,link6isflaggedasunhealthysensorbyPeMS,whichisconsistentwithourestimation.Ontheotherhand,iflink 6isindeedtheonlyunhealthysensor,thequalityoftheestimatedlinkflowlistedinTable2isguaranteedbyTheorem3.2, in which we have M=

{

1,2,4,5,6,7,8,9,10,11,12,15,16,17,18

}

and S=

{

6

}

. It can be verified that the recoverability conditionRec(S;A,M)=2>1holds.

5. Conclusion

Inthisstudy,wesystematicallystudiedthelinkflowcorrectionprobleminatrafficnetworkbasedonflowconservation.

Theproblemisformulated asan 1-minimizationproblem, inwhichthedifferencesbetweentheestimatedandobserved linkflows areminimized. Weintroduced therecoverabilityconceptforasubsetoflinksandspecificallyderived therecov- erabilityconditionforexactlyretrieving themissingdata: whencertain sensors aremalfunctioning, nomatter howlarge theerrorsare, thegroundtruth flowcan be exactlyrecovered. Thatis,some linksarerobust tomiscounts. Furthermore, whensmallerrorsarepresentinobservedlink flows,theestimationerrorbound isfoundsuch thatwe canestimate the linkflows thatarecloseenoughtoground-truthundertherecoverabilitycondition.Wealsoshowedanefficientalgorithm forcomputingrecoverability.

For the real-world example in Section 4.2, the percentage differences between estimated and observed values in Table2 seemto be higherforlinks (e.g.,link5) closer tothe one (link 6in thiscase)with an unhealthysensor.In the future we will be interested in exploring the relationship between the percentage differences and the distances to un- healthysensors.However,forthesyntheticexampleinSection4.1,sucharelationisnotsoobviousinTable1;thissuggests thatthe1 normcaneffectivelypreventerrorspreading,andasensorclosetoanunhealthysensordoesnothavetohavea relativelylargepercentagedifference.

Afew morefollow-upstudytopicscan be interesting boththeoretically andpractically.Inaddition tothe 1 norm,it willbeinterestingtoinvestigatethefeasibilityandefficiencyofothersparsitypromotingpenaltyfunctionsforformulating andsolvingtheflowcorrection problem.Therecoverabilitydefinedin(3.4)iscentraltotheflowcorrectionproblem,asit determineswhetherexact recovery ispossibleornot (see Theorem3.1) andalsothe errorboundin stablerecovery (see (3.6)). In the futurewe will be interestedin examiningwith Algorithm2 how theroad network’s structure impacts the recoverabilityofasubset oflinks,andsuch astudycouldprovideguidelinesforinstallingflowcountingsensorsespecially inalarge-scalenetwork.

Acknowledgments

YinandXinwerepartiallysupportedbyNSFgrantsDMS-1522383andIIS-1632935.YinwasalsosupportedbyONRgrant N00014-16-1-7157.Wewouldliketothanktherefereesfortheirconstructivecomments.

AppendixA. ADMMforsolving(2.2)

Thefollowingalternatingdirectionmethodofmultipliers(ADMM)(Boyd etal., 2011)isanthresholding-basediterative algorithm.InAlgorithm1,z∈Rm andu∈Rm areauxiliaryvariables.’shrink’istheso-calledsoft-thresholdingoperatoron Rm.Foranyz∈Rmandr>0,shrink(z,r)performscomponent-wiseoperationonzgivenby

(

shrink

(

z,r

) )

i=sign

(

zi

)

max

{|

zi

|

r, 0

}

, i=1,...,m.

(9)

Algorithm1 ADMMforsolvingminxRl−n

ZMxfM

1. Input:ZM, fM,

δ

>0

Initialize:x(0), z(0), u(0) fori=0,1,...,k1−1do

x(i+1)=(ZMZM)1ZM(fM+z(i)u(i)) z(i+1)=shrink(ZMx(i+1)fM+u(i),1δ) u(i+1)=u(i)+ZMx(i+1)z(i+1)fM endfor

Output:x=x(k1)

Thealgorithmstopsaftersomemaximumnumberofiterations.

AppendixB.Aninversepoweralgorithmforsolving(3.5)

WepresentAlgorithm2tosolvethefollowingoptimizationproblem(3.5): vminRl−n

ZM\S

v

1

ZS

v

1 .

Theoutput

λ

isthecomputedrecoverabilityin(3.5),i.e.,Rec(S;A,M).NotethatinAlgorithm2,updatingvunderthe

Algorithm2 Aninversepoweralgorithm(HeinandBühler,2010)forsolving(3.5). Input:ZM\S, ZS

Initialize:

v

(0),

λ

(0)= ZMZ\Sv(0)1

Sv(0)1

fori=0,1,...,k2−1do

v

(i+1)=argminv

ZM\S

v

1

λ

(i) ZSsign(ZS

v

(i)),

v

subjectto

v

≤1

λ

(i+1)= ZMZ\Sv(i+1)1

Sv(i+1)1

endfor Output:

λ

=

λ

(k2)

unitballconstraintisnon-trivialandrequiresextraeffort.WewriteanADMMsolverforthissubprobleminAlgorithm3be- low.

AppendixC. Technicalproofs

ProofofTheorem2.1. ToproveZ=

I(ln)

(AKc)−1AK

∈Rl×(ln)givesabasisofKer(A),itsufficestoshowthat

Algorithm3 ADMMforupdatingv.

Input:ZM\S, ZS,b=

λ

(i)ZSsign(ZS

v

(i))fromAlgorithm2,and

δ

>0 Initialize:

v

(0),z(0),u(0)

for j=0,1,...,k3−1do

v

(j+1)=(ZM\SZM\S)−1

ZM\S(z(j)+u(δj))+δb

v

(j+1)= vv((j+1j+1)) if

v

(j+1)

>1

z(j+1)=shrink(ZM\S

v

(j+1)+u(δj),1δ) u(j+1)=u(j)+

δ

(z(j+1)ZM\S

v

(j+1))

endfor

Output:

v

(i+1)inAlgorithm2

1. AZ=Oisazeromatrix.ItistruesinceAZ=[AK,AKc]

I(ln)

(AKc)1AK

=AKAKc(AKc)−1AK=O.

2. Zhasfullrank,i.e.,rank(Z)=ln.Thisisalsotruebecause,ononehandrank(Z)ln,ontheotherhand,rank(Z)≥ rank(I(ln))=lnsinceI(ln)isasubmatrixofZ.

(10)

Thenby(2.3),wehave f=

I(ln)

(

AKc

)

1AK

x=

x

(

AKc

)

1AKx

.

Since fˆ=

ˆ

fK fˆKc

,weconcludethatxisanestimateof fˆK.

ProofofTheorem3.2. Suppose f= fˆ+

v

,since f, fˆ∈Ran(Z),thenwehave

v

∈Ran

(

Z

)

.

Moreover,since fM =ZMxand fˆM∈Ran(ZM),(2.2)impliesthat

fMfM

1=

ZMxfM

1

fˆMfM

1. (5.7)

BearinmindthateM= fMfˆMisthesensingerror,soontherighthandsideof(5.7),

fˆMfM

1=

eM

1=

eS

1+

eM\S

1, (5.8)

andonthelefthandside,

fMfM

1=

(

fˆ+

v )

MfM

1=

v

MeM

1

=

v

SeS

1+

v

M\SeM\S

1

eS

1

v

S

1+

v

M\S

1

eM\S

1 (5.9)

In(5.9),weusedthetriangleinequalityfor1norm.Combining(5.7),(5.8),and(5.9),wehave

eS

1+

eM\S

1

eS

1

v

S

1+

v

M\S

1

eM\S

1

or

2

eM\S

1≥ −

v

S

1+

v

M\S

1 (5.10)

Bytheassumptionthat

Rec

(

S;A,M

)

:= inf

hKer(A):hS1=0

hM\S

1

hS

1 =

α

>1,

wehave

α

hS

1

hM\S

1 holdsforallh∈Ker(A)=Ran(Z).Sincev∈Ran(Z)asaforementioned,wehavefurther

v

M

1(1+

α

)

v

S

1,thenitfollowsfrom(5.10)that

2

eM\S

1

v

M

12

v

S

1

(

1− 2

1+

α ) v

M

1,

andthus

(

ffˆ

)

M

1=

v

M

1≤2

( α

+1

)

α

−1

eM\S

1. (5.11)

Inwhatfollows,wederiveanupperboundfor

(ffˆ)Mc

1.Withoutlossgenerality, supposeA=[AK, AKc]withKMbeinganybaseset.Sincebothfand fˆobeyflowconservation,wehave

0(n)=A

(

ffˆ

)

=[AK, AKc]

(

ffˆ

)

K

(

ffˆ

)

Kc

,

whichgives

(

ffˆ

)

Kc=−

(

AKc

)

1AK

(

ffˆ

)

K.

SinceKM,wehaveMcKc.Therefore,(ffˆ)Kis containedin(ffˆ)M,and(ffˆ)Mc is containedin(ffˆ)Kc. Usingtheabovefacts,wehave

Références

Documents relatifs

They suggest therefore that a joint committee of members of the executive boards of the two organizations and that joint expert committees on the subjects of common interest should

Our signature method is a variant of Balinski's [3] compétitive (dual) simplex algorithm. It constructs rooted trees that have precisely the same primai structure as Balinski's

On ε∂ω, r d ε is by construction the remainder of order two in the Taylor expansion of u Ω 0.. Let us turn ourselves to the derivative.. We consider the same class of

Summary — The Tikhonov regularized solution is approximated by the fimte element method A relation beween the regularization parameter and the mesh size is given which implies that

In [BB], to apply Proposition 6.4, we used the fact that if η is harmonic strain field (as defined there), then ∗Dη is also a harmonic strain field, and the pointwise norm of both

In an upcoming paper by Lee and Wang, we construct examples of two-dimensional Hamiltonian stationary self-shrinkers and self-expanders for Lagrangian mean curvature flows, which

Under the same recoverability condition, our method guarantees to give an estimated traffic flow fairly close to the ground-truth data and leads to a bound for the correction

GUE, GOE, GSE for the case of hermitian, symmetric, and, respectively, quaternion self-dual Wigner matrices; and the ensembles of real or complex sample covariance matrices