• Aucun résultat trouvé

A NEW METHOD OF PREDICTING THE FLOW IN A 90° BRANCH CHANNEL

N/A
N/A
Protected

Academic year: 2022

Partager "A NEW METHOD OF PREDICTING THE FLOW IN A 90° BRANCH CHANNEL"

Copied!
4
0
0

Texte intégral

(1)

NOVEMBRE 1 9 6 3 - № 7 L A H O U I L L E B L A N C H E 7 7 5

N O T U L E H Y D R A U L I Q U E

A new method of predicting the flow in a 90° branch channel

(FLOW IN THE MAIN CHANNEL IS SUBCRITICAL AND THE BRANCH CHANNEL IS SUPERCRITICAL)

B Y

Gr. K E I S H N A P P A , AND K S E E T H A B A M I A H ,

C.S.I.R. RESEARCH FELLOW, CIVIL AND HYDRAULIC ASSISTANT PROFESSOR, CIVIL AND HYDRAULIC ENGINEERING SECTION, INDIAN INSTITUTE OF SCIENCE, ENGINEERING SECTION INDIAN INSTITUTE OF SCIENCE,

BANGALORE 12, INDIA. BANGALORE 12, INDIA.

Bused on dimensional analysis, an experimental relation for predicting the flow in a 90-degree branch channel, with subcritical flow in the main and supercritical flow in the branch, has been developed. The discharge distribution Qb/Qi, where Qb is the discharge in the branch channel and Qt is the discharge in the main channel, varies linearly with the F0, the Froude number in ihe main channel upstream of the branch, for a constant LIB ratio in the range LIB = 1/4 to 1 and Fo = 0.2 to 0.S, where L is the width of the branch and B is the width of the main channel. The discharge distribution decreases as the Froude number increases.

I N T R O D U C T I O N

T h e p r o b l e m of b r a n c h c h a n n e l flow is defined a s p r e d i c t i n g t h e flow i n a b r a n c h c h a n n e l for a g i v e n d i s c h a r g e i n t h e m a i n c h a n n e l , k n o w i n g t h e flow c o n d i t i o n a n d f e a t u r e s of t h e m a i n c h a n n e l a n d t h e f e a t u r e s of t h e b r a n c h c h a n n e l (like s l o p e , r o u g h n e s s coefficient, a n g l e of off t a k e , e t c . ) . T h i s is a p r o b l e m of s p a t i a l l y v a r i e d flow i n o p e n c h a n n e l h y d r a u l i c s . I t c a n also be c o n s i d e r e d a s a p a r t i c u l a r c a s e of t h e w e l l - k n o w n p r o b l e m , of s i d e w e i r flow, w h e n t h e h e i g h t of t h e w e i r i s r e d u c e d t o z e r o [ 1 ] .

C o n s i d e r i n g t h e n u m b e r of v a r i a b l e s t h a t a r e i n v o l v e d , i t w o u l d n o t b e p o s s i b l e for a n y s i n g l e

i n v e s t i g a t i o n t o give a c o m p l e t e s o l u t i o n of t h i s p r o b l e m .

T h i s p r o b l e m c a n be solved b y t h e w e l l - k n o w n m e t h o d of c o n f o r m a i r e p r e s e n t a t i o n [ 2 ] . In t h i s c a s e t h e level of t h e fluid b o t h a l o n g t h e m a i n c h a n n e l a n d t h e b r a n c h is a s s u m e d t o be t h e s a m e . As s u c h , w h e n a p p l i e d t o p r a c t i c a l p r o ­ b l e m s , t h i s i n t r o d u c e s c o n s i d e r a b l e e r r o r .

S o l u t i o n g i v e n b y T a y l o r [ 3 ] for r e c t a n g u l a r c h a n n e l j u n c t i o n s is o n l y for a p a r t i c u l a r c a s e of e q u a l w i d t h s of c h a n n e l a n d s u b c r i t i c a l c o n d i ­ t i o n s of flow in b o t h t h e m a i n a n d t h e b r a n c h c h a n n e l s . T h e s o l u t i o n is a g r a p h i c a l o n e i n v o l v i n g a l a b o r i o u s t r i a l a n d e r r o r p r o c e s s .

K. P a t t a b h i r a m i a h a n d N. R a j a r a t n a m [ 1 ] h a v e solved t h i s p r o b l e m for s u p e r c r i t i c a l flows

Article published by SHF and available athttp://www.shf-lhb.orgorhttp://dx.doi.org/10.1051/lhb/1963055

(2)

7 7 6 L A H O U I L L E B L A N C H E № 7 - NOVEMBRE 1 9 6 3

FIG. 4

Fio. 1

FIG. 5

F IG. 2

FIG. 6

FIG. 3

FIG. 7

(3)

NOVEMBRE 1963 - № 7 K R I S H N A P P A AND S E E T H A R A M I A H 777

b y t h e c o n c e p t of c o n s t a n t specific e n e r g y . H e n c e , t h e p r e s e n t i n v e s t i g a t i o n m a i n t a i n i n g s u b c r i t i c a l flow i n t h e m a i n a n d s u p e r c r i t i c a l flow

i n t h e b r a n c h c h a n n e l h a s b e e n t a k e n u p .

T H E O R E T I C A L A N A L Y S I S O F T H E P R O B L E M

I n c a s e of s u b c r i t i c a l flow i n t h e m a i n c h a n n e l a n d s u p e r c r i t i c a l flow i n t h e b r a n c h c h a n n e l , t h e profile a l o n g t h e m a i n c h a n n e l is s h o w n i n F i g u r e 1. T h i s is s i m i l a r t o t h e c a s e of s i d e Weirs, w h e n t h e flow i n t h e m a i n c h a n n e l is s u b c r i t i c a l a s g i v e n b y d e M a r c h ! [ 4 ] .

T h e d i s c h a r g e i n t h e b r a n c h c h a n n e l Q6 d e p e n d s o n d0, V0, B , L , 0, g, y.

w h e r e

d0 = d e p t h a t t h e u n i f o r m flow i n t h e m a i n c h a n n e l ;

V0 = v e l o c i t y a t t h e u n i f o r m flow i n t h e m a i n c h a n n e l ;

6 = a n g l e of off t a k e of t h e b r a n c h t o t h e m a i n ;

g = a c c e l e r a t i o n d u e t o g r a v i t y ; Y = specific w e i g h t of w a t e r .

E x p r e s s i n g i n f u n c t i o n a l r e l a t i o n s h i p :

U (Q». <*o> V0, B, L, 9, g, y) = 0 (1)

B y d i m e n s i o n a l a n a l y s i s :

Q » / Q i = / s < F0, L / B , d0/ B , e ) (2) w h e r e :

Q1 = d0V0B a n d F0 = VoVgyi) F r o m e x p e r i m e n t s i t h a s b e e n f o u n d t h a t df0/B is n o t a s i g n i f i c a n t p a r a m e t e r (in t h e r a n g e 0,1 ^ d0/ B < 0,5). So, f o r a p a r t i c u l a r v a l u e of 9 = 9 0 ° :

Q » / Q i = M F o , L / B ) (3)

E X P E R I M E N T A L D E T A I L S

I n t h e e x p e r i m e n t a l s e t - u p , t h e m a i n c h a n n e l is of 2 ft w i d e , 2 * ft d e e p a n d 50 ft l o n g . T h e b r a n c h c h a n n e l is of v a r i a b l e w i d t h a n d 10 ft

l o n g . T h e l o n g i t u d i n a l s l o p e of t h e b r a n c h c h a n n e l w a s k e p t t o m a i n t a i n s u p e r c r i t i c a l flow for t h e m a x i m u m d i s c h a r g e ( 1 / 3 0 ) .

T h e d i s c h a r g e i n t h e m a i n c h a n n e l w a s v a r i e d f r o m 0.5 t o 3 c u s e c s . E x p e r i m e n t s w e r e c o n d ­ u c t e d f o r t h e 90° b r a n c h . T h e w i d t h of t h e b r a n c h c h a n n e l w a s k e p t a t 1/2', 3 / 4 ' , 1', 1 1 / 3 ' , a n d 1 2 / 3 ' a n d 2 ' so a s t o give a L / B r a t i o r a n g i n g f r o m 1/4 t o 1. T h e d e p t h a n d v e l o c i t y i n t h e m a i n c h a n n e l w e r e v a r i e d b y m e a n s of baffles.

D I S C U S S I O N

O F T H E E X P E R I M E N T A L R E S U L T S

I n t h e t h e o r e t i c a l a n a l y s i s , t h e d e p t h c o n s i d e ­ r e d is t h e d e p t h a t t h e u n i f o r m flow i n s t e a d of t h e d e p t h , d2 a t t h e u p s t r e a m e n d of t h e b r a n c h ( F i g . 1 ) . T h i s is i n o r d e r t o f a c i l i t a t e t h e p r e d i c t i o n of flow t o t h e b r a n c h k n o w i n g t h e u n i f o r m d e p t h of flow i n t h e m a i n c h a n n e l u p s t r e a m of t h e b r a n c h . T h e r e s u l t s t h a t a r e p l o t t e d i n F i g u r e s 2 t o 7 s h o w , i n e a c h c a s e t h e d i s c h a r g e d i s t r i b u t i o n Q6/ Q i v a r i e s l i n e a r l y w i t h F0 f o r a n y c o n s t a n t L / B r a t i o a n d t h e d i s c h a r g e d i s t r i b u t i o n d e c r e a s e s a s F r o u d e n u m b e r i n c r ­ e a s e s . W h e n Fc w a s i n c r e a s e d to b e y o n d 0.8, t h e d e p t h dx i n t h e m a i n c h a n n e l a t t h e u p s t r e a m e n d of t h e b r a n c h a p p r o a c h e d t o c r i t i c a l c a u s i n g f l u c t u a t i n g flow.

T h e d i s c h a r g e d i s t r i b u t i o n e q u a t i o n c a n b e g i v e n a s C V Q i = m F0 + C.

T h e v a l u e s of m a n d C b e i n g p l o t t e d w i t h L / B r a t i o , t h e e q u a t i o n s of m a n d C a r e :

m = — ( 1 . 4 5 L / B + 0.32) C = (1.575 L / B + 0.16) T h e r e f o r e , e q u a t i o n (3) b e c o m e s :

= (1,545 — 1,45 F0) -g- + 0,16 (1 — 2 F0) (4)

C O N C L U S I O N S

I n c a s e of 90° b r a n c h c h a n n e l , i n t h e r a n g e L / B = 1/4 t o 1 a n d F0 = 0.2 t o 0.8.

1. T h e d i s c h a r g e d i s t r i b u t i o n Q,,/Qi is a l i n e a r f u n c t i o n of F0 for a c o n s t a n t L / B r a t i o .

(4)

778 LA HOUILLE BLANCHE № 7 - NOVEMBRE 1963

2. T h e d i s c h a r g e d i s t r i b u t i o n d e c r e a s e s a s t h e F r o u d e n u m b e r i n c r e a s e s .

A c k n o w l e d g e m e n t s

T h e a u t h o r s a r e d e e p l y i n d e b t e d t o P r o f e s s o r N . S . G o v i n d a R a o for h i s g u i d a n c e a n d k e e n i n t e r e s t d u r i n g t h e c o u r s e of t h i s i n v e s t i g a t i o n . T h e a u t h o r s a r e t h a n k f u l t o D r N. R a j a r a t n a m for h i s h e l p .

R e f e r e n c e s

[1] PATTABHIRAMIAH ( K . R . ) and RAJARATNAM (N.). — A new method to predict flow in a branch channel.

Irrigation & Power Journal, New Delhi, Jan. 1960.

[2] MILNE THOMPSON. •— Theoretical Hydrodynamics.

[3] Edward H. TAYLOR. — Flow characteristics at rec­

tangular junctions. Trans. ASCE., 1944.

[ 4 ] COLLINGE ( V . K.). — The discharge capacity of side weirs. Proc. Inst, of Civil Engineers (London), vol. 6, 1957.

[5] VEN TE CHOW. — Open channel hydraulics.

RÉSUMÉ

Nouvelle méthode pour la détermination du débit dans un branchement à 90° sur un canal

(l'écoulement est fluvial dans le canal principal et torrentiel dans le branchement)

PAR G. K R I S H X A P P A ET K. S E E T H A R A M I À H

Les auteurs présentent des résultats expérimentaux valables dans le domaine suivant : L / B compris entre 0,25 et 1 F0 = V0 VffUo compris entre 0,2 et 0,8

(L est la largeur de la dérivation, B celle du canal p r i n c i p a l , V0 la vitesse et y0 le t i r a n t d'eau à l'amont du canal p r i n c i p a l ) .

Les figures 2 à 7 montrent les résultats obtenus, qui peuvent être représentés avec une ap- proximation suffisante p a r la formule :

= (1,545 —1,45 F0) - | - + 0,16 (1 — 2 F0) où Q„ et Qj sont les débits- dans la dérivation et dans le canal principal.

Il faut noter que, dans le domaine des expériences, le r a p p o r t d0/B (qui a varié entre 0,1 et 0,5) n'avait aucune influence sensible sur le débit dérivé.

Références

Documents relatifs

The results show that terms, abbreviations and Latin words are considerably more used in discharge documents than in general newspaper text.. Even if some of

Des courbes présentées, pour les ressauts hy- drauliques dans un courant d'eau s'écoulant dans un canal horizontal ouvert à section para- bolique, expriment, sous

3 (in this case the beam refrac- tion in unessential and the field dynamics ia defined by absorption) the discharge quickly approaches the stationary state. It should be

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Furthermore we seek to determine the pressure gradient and the Nusselt number variation along the inner and outer walls and finally we try Io see how the Reynolds number as well as

Mathieu Nacher, Antoine Adenis, Basma Guarmit, Aude Lucarelli, Denis Blanchet, Magalie Pierre Demar, Félix Djossou, Philippe Abboud, Loïc.. Epelboin,

Coupling the environment (temperature, hydrodynamics, food availability) to the entire life cycle of P. maximus is essential to correctly understand

The passage is a horizontal 4-cell square channel roughened by circular ribs with different attack angles of 90 ◦ , 60 ◦ , 45 ◦ and 30 ◦ to the main flow direction on the up-