• Aucun résultat trouvé

THE DYNAMICS OF A HIGH-FREQUENCY DISCHARGE IN A WAVE BEAM

N/A
N/A
Protected

Academic year: 2021

Partager "THE DYNAMICS OF A HIGH-FREQUENCY DISCHARGE IN A WAVE BEAM"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219076

https://hal.archives-ouvertes.fr/jpa-00219076

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE DYNAMICS OF A HIGH-FREQUENCY DISCHARGE IN A WAVE BEAM

V. Gil’Denburg, A. Litvak, A. Yunakovsky

To cite this version:

V. Gil’Denburg, A. Litvak, A. Yunakovsky. THE DYNAMICS OF A HIGH-FREQUENCY DIS- CHARGE IN A WAVE BEAM. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-215-C7-216.

�10.1051/jphyscol:19797106�. �jpa-00219076�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, supptbment au no?, Tome 40, JuiZZet 1979, page C7- 215

M E DYNAMICS OF A HIGH-FREQUENCY DISCHARGE IN A WAVE BEAM

V.B. Gilldenburg, A.G. Litvak and A.D. Yunakovsky.

Applied Physics Institute, Academy of Sciences of the U. S . S.R., Gorky-U!S. S. R.

m e of the inportant problems in tke

t

-L

\/ag

(radial coordinate), 2- 2/Lo theory of a high-frequency discharge in (longitudinal coordinate),

n- n /no

electroma@;netic wave beams (optical [I]

,

(electron density) asing the following 2

submillimeter [2] and rf [3] bands) is designations:

a.

and

to- k

Qo m e the

the study of self-consistent plasma-fwd characteristic transveree and longitu- evolution at the first afterbreakdom st*

gee charactprized by high electron tempe- 4 O

rature (T,

>

10 K) and low heavy parti- cle temperature ( T m ~ 300°K). In the pre- sent paper the computer simulation results for the dynamics of euch a noneqailibrium discharge in a converging wave beam are given. The analogous problem for a diver- ging beam was solved in [4]

.

!the ionization by an electron impact (with frequency Qi ) and attachment to molecules (with frequency

&

were as-

sumed to be the main proceases responsible for electron balance. The frequency dif- f erence

$, -

was cons ldered as the gi- ven function of the field amplitude

H e r I const; Ec is the breakdown am- plitude, The plaama diffusion was assumed unessential for the discharge scales a8

8 whole but strong enough to suppress mall-scale ionization instability [6]

,

Under these assumptions the electric ba- l a c e equation

was solved together with the perabolic equation for a walovP field amplitude of the axissnrmetric ~araxial beam

Equations (21, (3) art written in dimen- sionles. variables:

1-3 a t ' E- E/ Ec ,

dinal scales of an unperturbed beam rcs- pectively

(kao>>>l),

k=to/c

,

is the field frequency, no= 2 2

a/k to , n,=m(w +3 )/4rt e2

is the critical dell- rfty,

3

is the electron collisional frequency,

n,

ie the initial density defined by the intensity of an-external ionizer,

l = $ a b o / ~

is the electro-

magnetic eignal delay parameter, Parabolic equation (3 ) holding when the sonditiona

k

Po>>

, n << kto

are uatisfied describes diffraction, refraction and absorption of a beam.

The boundary conditions for equa- tions (21, ( 3 ) are given based upon the fact that the unperturbed beam ie Gaus-

sian and focused at the distance Zg from the boundary

Em is the field at the centre of the focal apot. Far enough from the axis ( "t a 6) it was assumed that E = 0.

!Che initial conditiona are:n (t = 0)

,

=

n,

I const; E(t = O)=E1(*t,Z ), whe- re El is the solution ofeq,(3) with the

given boundary conditions for

n = n

7 so.

I

'

Numerical calculations were made for the values of the parameters

and for three values of parameter

$/u:O

0.02 and 3. The 3-layer ll-pointwhsme

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797106

(3)

of the higher order of accuracy was used.

Thescheme parameters were chosen in such a way that when integrating over the cha- racteriat ic

k= Z-t

the phase ratios were correct, The results are shown in Fig.1 as the plots of radial &d axial distributions of density

n

and field amplitude

(€1

for different values of time

t .

As it ia seen, a rapid (avalenche- -type) initial growth of the denaity for

tw{

stops due to the decrease of the field amplitude and the ionization maximum be- gins to propagate from the focus towards the lens (breakdown wave). For suff icien- tly large

t

the rates of the discharge evolution etrongly decrease and the field value exceeding the "breakdownu one beco- mes small (in qualitative agreement with the stationary model aeeumption [7] 1. For m a l l

$10

aiter the first ionization ma- ximum there occur secondary ones which are weaker and practically stop for large

t .

For

$10.

3 (in this case the beam refrac- tion in unessential and the field dynamics ia defined by absorption) the discharge quickly approaches the stationary state.

Radial profiles of density

n

( ^t ) and field

IEl

( '% ) are alwayw monotono- ue for

$/a

= 3. For a small

$ 1 ~

there are

gaps on the axis for eome

t

and

Z .

Based upon a qualitative analysis of eqa.(2), (3) which agree with numerical reaults obtained it is not difficult to show that the first maximum of electron density is of the order of magnitude (in dimenaion.ese variables )

n - 00 4

(5)

9 G n -, n - n,

nrnax

"4

(ka3t'

so that for sufficiently large

k

Qo the initial assumption

n <<n

is satisfied

max

c

even for

\)

= 0 and rather small

n, .

It should be emphasized that this result is correct only in the absence of small scale instability [6]

,

which makes the discharge evolution more complicated and result8 in its decay into clusters with density

n

N

nC .

References

1. Yu.P.Raizer. Laser Spark snd Dischar- ge Propogation. "Naykan, 1974.

2. P.Woskoboinikow, W.T.?dulligan,

H.C.Fraddaude. D.R.Cohnr A~~l.Phus.

- -

Lett.,

32,

52?, 1978.

3. A.V.Gurevich. Geomagn.Aeron,

12,

631, 1972.

5. A.D.~cDonald. Microwave Breakdown in Gases, J.Wiley, New York, 1966.

6 , V.D.Gil'denburg, A.V.Kim, ZhETF,

2,

141. 1978.

7. ~ . ~ ; ~ i i i denburg, S.V.Golubev, ZhETF,

a,

89, 1974.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The account of different types of in- homogeneities in the theoretical conside- ration of the electron beam interaction with plasma and wave propagation in plas- ma allows one

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des