• Aucun résultat trouvé

Presentation of a surface runoff susceptibility mapping method and test on the Lezarde catchment (Paris basin, France)

N/A
N/A
Protected

Academic year: 2021

Partager "Presentation of a surface runoff susceptibility mapping method and test on the Lezarde catchment (Paris basin, France)"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02605301

https://hal.inrae.fr/hal-02605301

Submitted on 16 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Presentation of a surface runoff susceptibility mapping method and test on the Lezarde catchment (Paris basin,

France)

L.R. Lagadec, Pierre Patrice, B. Chazelle, Isabelle Braud, L. Moulin, J. Dehotin, E. Hauchard, P. Breil

To cite this version:

L.R. Lagadec, Pierre Patrice, B. Chazelle, Isabelle Braud, L. Moulin, et al.. Presentation of a surface runoff susceptibility mapping method and test on the Lezarde catchment (Paris basin, France). EGU General Assembly, Apr 2016, Vienna, Austria. pp.1, 2016. �hal-02605301�

(2)

1 IRSTEA, HHLY, Hydrology-Hydraulic Department, Centre de Lyon-Villeurbanne, 5 rue de la Doua, 69626 Villeurbanne, France. 2 SNCF Réseau, Engineering and Project Direction, 6 avenue François Mitterrand, 93574, La Plaine Saint Denis, France.

3 Agglomeration community of Le Havre (CODAH), 19 rue Georges Braque 76085 Le Havre Cedex, France / UMR M2C 6143 CNRS Geology Department University of Rouen, France

EGU Vienna 18-22 April

2016

L-R. Lagadec

1,2

; P. Patrice

1

; B. Chazelle

2

; I. Braud

1

; L. Moulin

2

; J. Dehotin

2

; E. Hauchard

3

; P. Breil

1 Contact: lilly-rose.lagadec@irstea.fr

Contexte

Risks

Hazards Stakes

Evaluation method

1. Use of proxy data

• Two risk regulatory zoning maps for surface runoff flooding and soil

erosion

3. Related

correspondance indicators:

• Success ratio (SR) = 𝑇+ +(𝐹+)(𝑇+)

• Probability of detection (POD) = 𝑇+ +(𝐹−)(𝑇+) • False alarm ratio (FAR) = 𝑇+ +(𝐹+)(𝐹+)

Observed event

Yes No

IRIP Forecast

Yes True positives

(T+) False positives (F+) No False negatives (F-) True negatives (T-) 2. Contingency table

• Geolocalized impacts of surface runoff on roads and railway

sections Indicators ranging from 0 to 1 SR + FAR = 1 A B C E

Photo credits: Google Street View Hydraulic structures protect

the network from floodwater

Drainage ditches can protect roads and not all of them are

referenced

DEM coarse resolution does not detect that the road is

elevated regarding the nearby field and thus

protected

Roads cutting talwegs transversally can be flooded

over a spread section whereas IRIP only detects

the intersection point Example of comparison for roads

• Promising probabilities of detection • False alarm ratios should be

reduced considering hydraulic protective structures and the vulnerability of road and railway

infrastructures

With respect to a buffer area of 25 meters both sides of the network - Not taking into account isolated pixels

Roads Railways Probability

of detection 0.73 0.80 False alarm

ratio 0.77 0.92

Are the IRIP maps relevant?

• Success ratio of 0.91 using a 50 meters buffer area aroud the regulatory

zoning and considering pixels with an IRIP susceptibility level of 5

• 0.82 using a 25m buffer; 0.64 without buffer

• Success ratio of 0.92 using a 50 meters buffer area aroud the regulatory zoning

and considering pixels with an IRIP susceptibility level of 4 and 5

• 0.89 using a 25 m buffer; 0.72 without buffer

1. Surface runoff zoning 2. Soil erosion zoning

1

Intense surface runoff occurs quickly and is difficult to measure

on large territories, only limited observations are available

 How to better know and

understand the surface runoff hazard?

 How to evaluate the relevance

of the hazard representation method?

Challenge

2

The IRIP method

« Indicator of Intense Pluvial Runoff »

(French acronym)

Provides 3 susceptibility maps of 3 surface runoff stages 1/ generation 2/ transfer 3/ accumulation

Susceptibility levels ranging from 0 to 5

3

• 210 km²

• Large plateaux/ narrow valleys • Short permanent river

network/ dense talweg network

• Silt and clay with flint stones • Oceanic climate

The study area

4

GENERATION TRANSFER

Global high generation susceptibility (levels 3 & 4)

and locally very high for urban areas (5)

Very high transfer

susceptibility on the valley sides and low susceptibility

on the plateaux

Very high accumulation

susceptibility in the talwegs and the rivers and low susceptibility

on the valley sides

Application of IRIP

ACCUMULATION

5

6

7

8

• Input data accuracy

• Indicator combination and computation method • The IRIP “yes” forecast

thresholded at ≥ 4 • Presence of natural

sinkhole not taken into account

The IRIP method

• Exhaustiveness • Representativeness

• Biases in

measuring and collecting the data • Location accuracy

The comparison data

• Standard verification

indicators only assess a small part of the IRIP information • Indirect relationship between

susceptibility maps and surface runoff impacts: Rainfall patterns, exposure

and vulnerability

The evaluation method

Origins of discrepancies

9

Conclusion

• IRIP, a simple and robust method to a have global view of the susceptibility of territories to intense surface runoff hazards.

• Vulnerability of the transportation network to surface runoff must be characterized to better assess sections the most susceptible to be impacted.

10

Are the IRIP maps able to

detect impacted network

Références

Documents relatifs

the slope of the even- ness line, U R , the index of uneven rainfall distribution (i.e. the sum of square of the distances of the actual cumulated rainfall points from the

Surface runoff frequency at observation sites with the following characteristics are reported on the same graph: high initial water content, low soil permeability, low soil

The temporary loudness shift (TLS) of a 1000-Hz, 55-dB test tone w a s established by estimates of loudness (numbers), and also by adjustments of the teat-tone level in

One of them is to define the principal circulation path and the physical-chemical-biological properties (temperature, salinity, oxygen, nutrients, dissolved

La densité du liquide est dépendante de la température et de sa composition (donc dépendante de la cristallisation fractionnée). Par cette double dépendance, compositionnelle

Avec au départ des prototypes, puis de plus en plus des instruments commerciaux, l’analyse élémentaire par fluores- cence X (pXRF) et par LIBS (« laser-induced breakdown

Ainsi, la très grande majorité des molécules détectées dans la phase gazeuse sont conjecturées pour être issues de réactions en phase solide au sein des manteaux de

The selection of the species- diversity dependent ESS was based on three factors: (1) the ESS delivery is linked to species diversity (based on Lavorel et al. 2011 ), (2) the ESS