• Aucun résultat trouvé

Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms

N/A
N/A
Protected

Academic year: 2021

Partager "Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms"

Copied!
24
0
0

Texte intégral

(1)

HAL Id: inria-00157741

https://hal.inria.fr/inria-00157741v2

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non,

MOP with Stochastic Search Algorithms

Oliver Schuetze, Carlos Coello Coello, El-Ghazali Talbi

To cite this version:

Oliver Schuetze, Carlos Coello Coello, El-Ghazali Talbi. Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms. 2007. �inria-00157741v2�

(2)

inria-00157741, version 2 - 23 Oct 2007

a p p o r t

d e r e c h e r c h e

9-6399ISRNINRIA/RR--????--FR+ENG

Thèmes COM et COG et SYM et NUM et BIO

Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms

Oliver Schütze1, Carlos A. Coello Coello2, and El-Ghazali Talbi1

1 INRIA Futurs, LIFL, CNRS Bât M3, Cité Scientifique e-mail: {schuetze,talbi}@lifl.fr

3CINVESTAV-IPN, Electrical Engineering Department e-mail: ccoello@cs.cinvestav.mx

N° ????

June 2007

(3)
(4)

Unité de recherche INRIA Futurs

OliverShütze

1

, CarlosA. CoelloCoello

2

, and El-GhazaliTalbi

1 1

INRIAFuturs, LIFL, CNRS Bât M3,Cité Sientique

e-mail: {shuetze,talbi}li.fr

3

CINVESTAV-IPN, EletrialEngineering Department

e-mail: oellos.investav.mx

ThèmesCOMetCOGet SYMetNUM etBIOSystèmesommuniantsetSystèmes

ognitifsetSystèmessymboliquesetSystèmesnumériquesetSystèmesbiologiques

ProjetsApiset Opéra

Rapportdereherhe ???? June200720pages

Abstrat: Inthisworkwedevelopaframeworkfortheapproximationof theentire setof

ǫ-eient solutionsof a multi-objetiveoptimization problem with stohasti searh algo- rithms. For this,weproposethesetofinterest,investigateitstopologyandstateaonver-

generesultforageneristohastisearhalgorithmtowardthissetofinterest. Finally,we

presentsomenumerialresultsindiatingthepratiabilityofthenovelapproah.

Key-words: multi-objetiveoptimization, onvergene,ǫ-eientsolutions,approximate solutions,stohastisearhalgorithms.

Partsofthismanusriptwillbepublishedintheproeedingsofthe6thMexianInternationalConferene

onArtiialIntelligene(MICAI2007).

(5)

Résumé: Pasderésumé

Mots-lés : Pasdemotlef

(6)

1 Introdution

Sinethenotionofǫ-eienyformulti-objetiveoptimizationproblems(MOPs)hasbeen introduedmorethantwodeadesago([7℄),thisonepthasbeenstudiedandusedbymany

researhers,e.g. to allow (or tolerate)nearlyoptimal solutions([7℄, [16℄), to approximate

thesetofoptimalsolutions([10℄),orinordertodisretizethisset([6℄,[14℄). ǫ-eientsolu-

tionsorapproximatesolutionshavealsobeenusedtotakleavarietyofrealworldproblems

inludingportfolioseletionproblems([17℄),aloationproblem([1℄),oraminimalostow

problem([10℄). Theexpliitomputationofsuhapproximatesolutionshasbeenaddressed

in severalstudies (e.g.,[16℄, [1℄, [3℄),in allof themsalarizationtehniqueshavebeenem-

ployed.

The sopeof this paper is to develop aframework for the approximationof the set of ǫ-

eient solutions (denote by Eǫ) with stohasti searh algorithms suh as evolutionary multi-objetive(EMO)algorithms. Thisallsforthedesignofanovelarhivingstrategyto

storethe`required'solutionsfoundbyastohastisearhproess(thoughtheinvestigation

ofthe set ofinterestwill bethemajorpartin this work). Oneinterestingfat isthat the

solutionset (the Pareto set) is inludedin Eǫ for all (small)values of ǫ, and thus the re-

sultingarhivingstrategyforEMOalgorithmsanberegardedasanalternativetoexisting

methodsfortheapproximationofthisset (e.g,[4℄,[8℄, [5℄,[9℄).

Theremainder ofthis paperisorganizedasfollows: in Setion 2,wegivetherequired

bakgroundfortheunderstandingofthesequel. InSetion 3,weproposeaset ofinterest,

analyzeits topology, andstate aonvergeneresult. Wepresentnumerialresultson two

examplesin Setion4and onludeinSetion 5.

2 Bakground

Inthefollowingweonsider ontinuousmulti-objetiveoptimizationproblems

xminR

n{F(x)}, (MOP)

where the funtion F is dened as the vetor of the objetive funtions F : Rn

R

k, F(x) = (f1(x), . . . , fk(x)), and where eah fi : Rn R is ontinuously dieren- tiable. Laterwewill restritthesearhtoaompatset QRn,thereadermaythink of

ann-dimensionalbox.

Denition2.1 (a) Letv, wRk. Then the vetorv islessthanw (v <pw), ifvi < wi

for alli∈ {1, . . . , k}. The relationp isdenedanalogously.

(b) yRnisdominatedbyapointxRn(xy)withrespetto(MOP)ifF(x)pF(y)

andF(x)6=F(y),elsey isalled nondominatedby x.

() xRn isalledaParetopointifthereisno yRn whih dominatesx.

(7)

(d) x Rn is weakly Pareto optimal if there does not exist another point y Rn suh

that F(y)<pF(x).

Wenowdeneaweakeroneptofdominane,alledǫ-dominane,whihisthebasisof

theapproximationoneptusedin thisstudy.

Denition2.2 Letǫ= (ǫ1, . . . , ǫk)Rk+andx, y Rn. xissaidtoǫ-dominatey(xǫy)

withrespetto(MOP )if F(x)ǫpF(y) andF(x)ǫ6=F(y).

Theorem2.3([11℄) Let(MOP)begivenandq:RnRnbedenedbyq(x) =Pk

i=1αˆi∇fi(x),

whereαˆ isasolutionof

α∈minRk (

k

k

X

i=1

αi∇fi(x)k22;αi 0, i= 1, . . . , k,

k

X

i=1

αi= 1 )

.

Then either q(x) = 0 or −q(x) is a desent diretion for all objetive funtions f1, . . . , fk

in x. Hene, eah x with q(x) = 0 fullls the rst-order neessary ondition for Pareto

optimality.

Inaseq(x)6= 0itobviouslyfollowsthatq(x)isanasentdiretionforallobjetives. Next,

weneedthefollowingdistanes betweendierentsets.

Denition2.4 LetuRn andA, BRn. The semi-distane dist(·,·)andthe Hausdor

distanedH(·,·)aredenedasfollows:

(a) dist(u, A) := inf

v∈Akuvk

(b) dist(B, A) := sup

u∈B

dist(u, A)

() dH(A, B) := max{dist(A, B),dist(B, A)}

DenotebyAthelosureofasetARn,by

Aitsinterior,andby∂A=A\

Atheboundary

ofA.

Algorithm 1givesaframework of ageneri stohasti multi-objetiveoptimization al-

gorithm,whih will be onsidered in this work. Here,QRn denotesthe domain ofthe

MOP,Pj theandidateset(orpopulation)ofthegenerationproessatiterationstepj,and Aj theorrespondingarhive.

Denition2.5 A set S Rn is alled notonnetedif there existopen sets O1, O2 suh

that S O1O2,SO1 6=, SO2 6=,and SO1O2 =. Otherwise, S isalled

onneted.

(8)

Algorithm1GeneriStohastiSearhAlgorithm

1: P0Qdrawnatrandom

2: A0=ArchiveU pdate(P0,∅)

3: forj= 0,1,2, . . .do

4: Pj+1=Generate(Pj)

5: Aj+1=ArchiveU pdate(Pj+1, Aj)

6: endfor

3 The Arhiving Strategy

Inthissetionwedenethesetofinterest,investigatethetopologyofthisobjet,andnally

stateaonvergeneresult.

Denition3.1 Let ǫ Rk+ and x, y Rn. x is said to −ǫ-dominate y (x−ǫ y) with

respetto(MOP) ifF(x) +ǫpF(y)andF(x) +ǫ6=F(y).

Thisdenitionisofourseanalogoustothe`lassial'ǫ-dominanerelationbutwithavalue

˜

ǫRk. However,wehighlightit heresineit willbeused frequently in thiswork. While

theǫ-dominaneisaweakeroneptofdominane,−ǫ-dominaneisastrongerone.

Denition3.2 ApointxQisalled−ǫweakParetopointifthereexistsnopointyQ

suhthatF(y) +ǫ <pF(x).

Nowweareabletodenethesetofinterest. Ideally,wewouldliketoobtainthe`lassial'

set

PQ,ǫc :={xQ|∃pPQ :xǫp}1, (1)

wherePQ denotestheParetoset(i.e.,thesetofParetooptimalsolutions)ofF

Q. Thatis,

everypointxPQ,ǫc is`lose'toatleastoneeientsolution,measuredinobjetivespae.

However,sinethissetisnoteasytoathnotethattheeientsolutionsareusedinthe

denition,wewillonsideranenlargedsetofinterest(seeLemma3.9):

Denition3.3 Denote by PQ,ǫ the set of points in QRn whih are not −ǫ-dominated

byany other pointin Q,i.e.

PQ,ǫ:={xQ| 6 ∃yQ:y−ǫx}2 (2)

Example3.4 (a) Figure1shows twoexamples forsetsPQ,ǫ,onefor the single-objetive ase(left), andonefor k= 2 (right). Inthe rstasewehave PQ,ǫ= [a, b][c, d].

1PQ,ǫc isloselyrelatedtosetE1onsideredin[16℄.

2PQ,ǫisloselyrelatedtosetE5onsideredin[16℄.

(9)

Figure1: Twodierentexamplesforsets PQ,ǫ. Left fork= 1 andinparameterspae,and

rightanexamplefork= 2inimagespae.

(b) Consider the MOP F :RR2, F(x) = ((x1)2,(x+ 1)2). For ǫ= (1,1) andQ

suiently large, say Q= [−3,3], we obtain PQ = [−1,1]and PQ,ǫ = (−2,2). Note

that the boundary ofPQ,ǫ,i.e. ∂PQ,ǫ =PQ,ǫ\PQ,ǫ = [−2,2]\(2,2) ={−2,2},isgiven

by −ǫ weak Pareto points whih are not inluded in PQ,ǫ (see also Lemma 1): for

x1 = −2 and x2 = 2 it is F(x1) = (9,1) and F(x2) = (1,9). Sine there exists no xQwithfi(x)<0, i= 1,2,thereisalsonopointxQwhereallobjetivesareless

than atx1 orx2. Further,sine F(−1) = (4,0) and F(1) = (0,4) there exist points

whih −ǫ-dominatethese points, andtheyarethusnot inludedinPQ,ǫ.

FirstwestudytheonnetednessofPQ,ǫ. Theonnetednessoftheset ofinterestisan importantproperty,inpartiularwhentaklingtheproblemwithloalsearhstrategies: in

thatase,theentiresetanpossiblybedetetedwhenstartingwithonesingleapproximate

solution. Example3.4(a)showsthattheonnetednessof PQ,ǫ annotbeexpetedinase

F(Q)isnotonvex. However,intheonvexasethefollowingholds.

Lemma3.5 LetǫRk+. If Qisonvexand allfi, i= 1, . . . , k areonvex,then PQ,ǫ and

F(PQ,ǫ)areonneted.

Proof: The proof is based on the fat that in this ase PQ is onneted (e.g., [2℄).

Assume that PQ,ǫ is not onneted, that is, there exist open sets O1, O2 Rn suh that PQ,ǫO1∪O2,PQ,ǫ∩O16=,PQ,ǫ∩O26=,andPQ,ǫO1∩O2=. SinePQisonneted,

itmustbeontainedinoneofthesesets,withoutlossofgeneralityweassumethatPQO1.

ByassumptionthereexistsapointxPQ,ǫO2,andhene,x6∈PQ. Further,thereexists

anelementpPQ suhthatF(p)pF(x). SineQisonvex,thefollowingpath γ: [0,1]Q

γ(λ) =λx+ (1λ)p (3)

(10)

PSfragreplaements

x p

O1 O2

γ([0,1])

PQ,ǫ

Figure2: ...

iswell-dened (i.e.,γ([0,1])Q). SineF isonvexand bythehoieofpitholdsforall λ[0,1]:

F(γ(λ)) =F(λx+ (1λ)p)λF(x) + (1λ)F(p)F(x), (4)

andthusthatγ(λ)PQ,ǫ,whihisaontraditiontothehoieofO1andO2.

The onnetedness of F(PQ,ǫ) follows immediately sine images of onneted sets under ontinuousmappingsareonneted,andtheproofis omplete.

ThenextlemmadesribesthetopologyofPQ,ǫinthegeneralase,whihwillbeneeded

fortheupomingonvergeneanalysis ofthestohasti searhproess.

Lemma3.6 (a) LetQRn beompat. Under the following assumptions

(A1) Letthere beno weak Pareto pointin Q\PQ,wherePQ denotes the setof Pareto

pointsofF|Q.

(A2) Lettherebeno −ǫweak Pareto pointinQ\PQ,ǫ,

(A3) DeneB:={xQ|∃yPQ:F(y) +ǫ=F(x)}. LetB ⊂

Q andq(x)6= 0for all x∈ B,whereq isasdenedin Theorem 2.3 ,

itholds:

PQ,ǫ={xQ| 6 ∃yQ:F(y) +ǫ <pF(x)}

PQ,ǫ={xQ| 6 ∃yQ:F(y) +ǫpF(x)}

∂PQ,ǫ={xQ|∃y1PQ :F(y1) +ǫpF(x)∧ 6 ∃y2Q:F(y2) +ǫ <pF(x)}

(5)

(b) Letinaddition tothe assumptionsmade abovebeq(x)6= 0∀x∂PQ,ǫ. Then

PQ,ǫ=PQ,ǫ (6)

(11)

Proof: Dene W := {x Q| 6 ∃y Q : F(y) +ǫ <p F(x)}. We show the equality PQ,ǫ = W by mutual inlusion. W PQ,ǫ follows diretly by assumption (A2). To see

theother inlusion assumethat there existsan xPQ,ǫ\W. Sinex6∈W there existsan y Q suh that F(y) +ǫ <p F(x). Further, sineF is ontinuous there exists further a

neighborhoodU of xsuhthat F(y) +ǫ <pF(u), ∀uU. Thus, y is−ǫ-dominatingall

uU (i.e.,UPQ,ǫ=),aontraditiontotheassumptionthat xPQ,ǫ. Thus, wehave

PQ,ǫ=W aslaimed.

Nextweshowthat theinteriorofPQ,ǫ isgivenby

I:={xQ| 6 ∃yQ:F(y) +ǫpF(x)}, (7)

whih we doagainby mutualinlusion. Toseethat

PQ,ǫ I assumethat there existsan xPQ,ǫ \I. Sinex6∈I wehave

∃y1Q: F(y1) +ǫpF(x). (8)

Sine x

PQ,ǫ there exists noy Q whih −ǫ-dominatesx, and hene,equality holds in

equation(8). Further,byassumption(A1) itfollowsthat y1 mustbeinPQ. Thus,wean

reformulate(8)by

∃y1PQ: F(y1) +ǫ=F(x) (9)

Sine x PQ,ǫ there exists a neighborhood U˜ of x suh that U˜ PQ,ǫ . Further, sine

q(x)6= 0byassumption(A1),thereexistsapointx˜U˜ suhthatFx)>pF(x). Combining

thisand(9)weobtain

F(y1) +ǫ=F(x)<pF(˜x), (10)

andthusy1−ǫx˜U˜

PQ,ǫ, whihis aontradition. Itremainstoshowthat I

PQ,ǫ:

assumethereexistsanxI\PQ,ǫ . Sinex6∈PQ,ǫ thereexistsasequenexiQ\PQ,ǫ, iN,

suh that limi→∞xi =x. That is, there exists asequene yi Qsuhthat yi −ǫ xi for

all i N. Sine all the yi are inside Q, whih is a bounded set, there exists a subse-

quene yij, j N, and an y Q suh that limj→∞yij = y (Bolzano-Weierstrass). Sine

F(yij) +ǫp F(xij), ∀jN, itfollowsfor thelimitpoints thatalso F(y) +ǫp F(x),

whih isaontraditiontoxI. Thus, wehave

PQ,ǫ=Iasdesired.

Fortheboundaryweobtain

∂PQ,ǫ=PQ,ǫ\

PQ,ǫ

={xQ|∃y1Q:F(y1) +ǫpF(x)and 6 ∃y2Q:F(y2) +ǫ <pF(x)}

(11)

Sineby(A1)thepointy1 in(11)mustbeinPQ,weobtain

∂PQ,ǫ={xQ|∃y1PQ:F(y1) +ǫpF(x)and 6 ∃y2Q:F(y2) +ǫ <pF(x)} (12)

Références

Documents relatifs

We establish a correspondence between the invariant subsets of a non-degenerate symmetric set-theoretical solution of the quantum Yang-Baxter equation and the parabolic subgroups of

Relaxed formulation for the Steklov eigenvalues: existence of optimal shapes In this section we extend the notion of the Steklov eigenvalues to arbitrary sets of finite perime- ter,

Time evolution of each profile, construction of an approximate solution In this section we shall construct an approximate solution to the Navier-Stokes equations by evolving in

The resulting set of exact and approximate (but physically relevant) solutions obtained by the optimization algorithm 1 leads in general to a larger variety of possibilities to the

Using the Laplace transform, the problem is reduced to an integral equation defining the unknown temperature at the left end point as function of time.. An approximation of the

Among this class of methods there are ones which use approximation both an epigraph of the objective function and a feasible set of the initial problem to construct iteration

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

While the con- tact mechanics analysis is simplified, they are nevertheless commonly accepted and experimentally validated models for calculating contact pressure distributions (P˜