• Aucun résultat trouvé

Modeling [11C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity studies and search for a suitable reference region

N/A
N/A
Protected

Academic year: 2022

Partager "Modeling [11C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity studies and search for a suitable reference region"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-03280093

https://hal.archives-ouvertes.fr/hal-03280093

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Modeling [11C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity

studies and search for a suitable reference region

Chloé Laurencin, Sophie Lancelot, Florent Gobert, Jérôme Redouté, Inés Mérida, Thibault Iecker, François Liger, Zacharie Irace, Elise Greusard,

Ludovic Lamberet, et al.

To cite this version:

Chloé Laurencin, Sophie Lancelot, Florent Gobert, Jérôme Redouté, Inés Mérida, et al.. Mod- eling [11C]yohimbine PET human brain kinetics with test-retest reliability, competition sen- sitivity studies and search for a suitable reference region. NeuroImage, Elsevier, 2021,

�10.1016/j.neuroimage.2021.118328�. �hal-03280093�

(2)

NeuroImage240(2021)118328

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Modeling [ 11 C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity studies and search for a suitable reference region

Chloé Laurencin

a,b,1

, Sophie Lancelot

a,b,c,1

, Florent Gobert

b

, Jérôme Redouté

c

, Inés Mérida

c

, Thibault Iecker

c

, François Liger

c

, Zacharie Irace

c,d

, Elise Greusard

b,c

, Ludovic Lamberet

b,c

, Didier Le Bars

b,c

, Nicolas Costes

a,c,1

, Bénédicte Ballanger

a,1,

aLyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon F-69000, France

bPierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France

cCERMEP, Lyon, France

dSiemens-Healthcare, SAS, Saint-Denis, France

a r t i c le i n f o

Keywords:

[ 11C]yohimbine 𝛼2-adrenoceptors

Positron emission tomography Human brain

Compartmental modeling

a b s t r a ct

Previousworkintroducedthe[11C]yohimbineasasuitableligandofcentral𝛼2-adrenoreceptors(𝛼2-ARs)for PETimaging.However,reproducibilityof[11C]yohimbinePETmeasurementsinhealthyhumansestimatedwith asimplifiedmodelingmethodwithreferenceregion,aswellassensitivityof[11C]yohimbinetonoradrenergic competitionwerenotevaluated.Theobjectivesofthepresentstudywerethereforetofillthisgap.Methods:

Thirteenhealthyhumansunderwenttwo[11C]yohimbine90-minutedynamicscansperformedonaPET-MRI scanner.Sevenhadarterialbloodsamplingwithmetaboliteassessmentandplasmaticyohimbinefreefraction evaluationatthefirstscantohavearterialinputfunctionandtestappropriatekineticmodeling.Thesecondscan wasasimpleretestfor6subjectstoevaluatethetest-retestreproducibility.Fortheremaining7subjectsthesecond scanwasachallengestudywiththeadministrationofasingleoraldoseof150μgofclonidine90minbeforethe PETscan.Parametricimagesof𝛼2-ARsdistributionvolumeratios(DVR)weregeneratedwithtwonon-invasive models:LogangraphicalanalysiswithReference(LREF)andSimplifiedReferenceTissueMethod(SRTM).Three referenceregions(cerebellumwhitematter(CERWM),frontalwhitematter(FLWM),andcorpuscallosum(CC)) weretested.Results:Weshowedhightest-retestreproducibilityofDVRestimationwithLREFandSRTMregardless ofreferenceregion(CC,CERWM,FLWM).ThebestfitwasobtainedwithSRTMCC(r2=0.94).Test-retestshowed thattheSRTMCCishighlyreproducible(meanICC>0.7),withaslightbias(-1.8%),whereasSRTMCERWMhadlower bias(-0.1%),andexcellentICC(mean>0.8).UsingSRTMCC,regionalchangeshavebeenobservedafterclonidine administrationwithasignificantincreasereportedintheamygdalaandstriatumaswellasinseveralposterior corticalareasasrevealedwiththevoxel-basedanalysis.Conclusion:Theresultsaddexperimentalsupportfor thesuitabilityof[11C]yohimbinePETinthequantitativeassessmentof𝛼2-ARsoccupancyinvivointhehuman brain.

TrialregistrationEudraCT2018-000380-82

1. Introduction

Investigationsofthenoradrenergicsystemfunctioninthebrainhave mainlyemergedfromanimalstudiessofar.Indeed,thelackofsuitable imagingtoolshashampereditsunderstandinginhuman.Nevertheless, wenowhavethepossibilitytoovercomethisdifficultyasinvivoimag-

Correspondingauthorat:CRNL-INSERMU1028-CNRSUMR5292,UCBL,CHLeVinatier– Bât.462– Neurocampus,95boulevardPinel,BronCedex69675, France

E-mailaddress:benedicte.ballanger@cnrs.fr(B.Ballanger).

1 Theseauthorscontributedequallytothiswork

ingofthenoradrenergicsystemhasrecentlybecomefeasiblewiththe developmentofanovelPETradiotracer:[11C]yohimbine(Nahimietal., 2015).Yohimbineisanantagonistofthe𝛼2-adrenoreceptors(𝛼2-ARs) andapartialagonistofthe5-HT1Areceptors(Millanetal.,2000).The radiotracer[11C]yohimbinebindswithhighselectivitytoall𝛼2-ARs subtypes(Jakobsenetal., 2006).This representsagreatopportunity

https://doi.org/10.1016/j.neuroimage.2021.118328.

Received16February2021;Receivedinrevisedform20May2021;Accepted30June2021 Availableonline3July2021.

1053-8119/© 2021TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

(3)

towardsthecollectionofmissingdatainthelivinghumanbrainbydi- rectquantificationofregional𝛼2-ARsavailability.Indeed,𝛼2-ARsplaya keyroleinregulatingnoradrenergicneurotransmission(Szabadi,2013) asalterednoradrenergic transmissionwithspecificlossof 𝛼2-ARsis currentlytheorizedtoplayacriticalrolein bothsymptomsandpro- gressionofsomeneurodegenerativeandmooddisorders(Marienetal., 2004;Ordwayetal.,2003).Humaninvivoimagingof𝛼2-ARsisthere- foreessential.Previousworkshowedthat[11C]yohimbinePETtissue datacanbedescribedbya1tissuecompartment(1-TCM),and𝛼2-ARs bindingpotentialcanbeestimatedusingthecorpuscallosum(CC)as referencetissue(Nahimietal.,2015).SimplifiedReferencetissuemeth- ods(SRTM)havebeenwidelyusedtoestimateneuroreceptorbinding potential becausethey eliminatetheinvasive arterialinput function (AIF)step.However,reproducibilityofnon-displaceablebindingpoten- tial(BPND) inhealthyhumans,aswellasdisplaceabilitywithan𝛼2- ARsagonist,werenotevaluated.Yet,demonstrationofareproducible [11C]yohimbinePEToutcomemeasureiscriticalandpreliminarytoac- curatelydeterminetheclinicalsignificanceofpharmacologicorpatho- physiologic𝛼2-ARschanges.

Theobjectivesofthepresentstudyweretherefore(1)toidentifyan optimal[11C]yohimbinePETfullkineticmodelingwithAIF,(2)assess thevalidityofnon-invasivekineticmodeling,(3)identifythebestref- erenceregion,(4)estimatethereproducibilityof[11C]yohimbinePET measurementswithtest-retestscansand(5)examinethesensitivityof [11C]yohimbinewithanoradrenergicpharmacologicalcompetitionus- ingacuteadministrationof clonidine, adrug knowntodecreaseNA releasethroughpre-synaptic𝛼2-ARsactivation.

2. Materialsandmethods

Allproceduresperformedinthisstudywereinaccordancewiththe ethicalstandardsoftheinstitutionalandnationalresearchcommittee andwiththeprinciplesofthe1964DeclarationofHelsinkianditslater amendmentsorcomparableethicalstandards.Thestudywasapproved by the Ethics Committee of Sud Mediterranée III (EudraCT: 2018–

000380–82)andpre-registeredbeforebeingconductedontheClinical- Trials.govdatabaseunderthetrialrecordnumberNCT03520543.The subjectsgavewritteninformedconsenttoparticipateinthestudy.

2.1. Participants

Oversixteenhealthymenincluded,twowerediscontinued,andfour- teencompletedthestudy.Themeanagewas25yearsold(standardde- viation,SD,3years)andthemeanweightwas74.4±7.2kg(range, 63–87).Allsubjectswerefreeofmedicalorneuropsychiatricillnessand noneofthemweresmokersorundermedication.Eachsubjectunder- wenttwo[11C]yohimbinePETscansseparatedbyanintervalof7to 21days.Forthefirstscan(test),anarterialcatheterwasinsertedinto theradialarteryaftercompletionoftheAllentestandinfiltration of theskinwith1%lidocaine.Forthesecondscan,7subjectshadare- peatedbaseline PET(retest),and7othersubjectshadasecond PET 74±11minafteradministrationofa150μgoraldoseofclonidine(chal- lenge).Forallsubjects,thissecondscanwasperformedwithoutblood sampling.SubjectswerealsogenotypedforthecytochromeP450(CYP) systemwithregardtotheCYP2D6isoform,asthislatterisinvolvedin themetabolismofyohimbineintheliver,yieldingtwometabolitesthat mayhavesomeactionat𝛼2-ARs(LeCorreetal.,1999).

2.2. PETprocedures

[11C]yohimbine was synthesized as previously described (Jakobsen et al., 2006). The radiochemical purities of syntheses

usedforthestudyweregreaterthan95%,withcorrespondingmolar activitiesof53.4±16.4GBq/μmolattheendofsynthesis.

Allsubjectsreceivedanintravenousbolusinjectionof370MBq± 10%of[11C]yohimbine(Table1).List-modePETdatawereacquired, during90minfromtheinjectionofthetracer,simultaneouslywith3T MRIdata(DixonT1,anatomicMPRAGET1,veinousandarterialTOF), onaSiemensmMRBiographsystem.

2.3. Inputfunctionmeasurement

AIF(Ca)andmetabolitelevelsintheplasmaweremeasuredfrom 25heparinizedarterialbloodsamplesmanuallycollectedwiththefol- lowingtiming:every5sforthefirstminute,every10suntilsecond minute,andattimes5,10,30,45,60,and90minpost-injection.Eight wholebloodaliquots(100μL),attimesof1,2,5,10,30,45,60,and 90minpostinjection,werecountedingammacounter(Perkin-Elmer) toevaluatewholebloodtoplasmaratio(fwb).Twenty-fivebloodsam- pleswerecentrifugedfor3min(4000g)andplasmaaliquots(100μL) werecountedingammacountertomeasureuncorrectedplasmacurve (Cp).Formetaboliteanalysis,otherplasmaaliquotswerefiltratedus- inga0.45μmmembranefilter.Twohundredmicromilliliterplasmafil- trateswereinjectedinHPLCsystemwithaC8CAPCELLPAKMFcolumn (OsakaSoda).Fractionswerecollectedandcountedforradioactivityin gammacounter.Theactivityof[11C]yohimbinewasdividedbythetotal activityrecoveredfromthegammacountertogivetheplasmaparent fractionof unmetabolized[11C]yohimbine(PPf).Plasma-freefraction of[11C]yohimbinefreelydiffusibletotissue(fp)wasmeasuredbyultra- filtrationat1,2,5,10,30,45,60,and90minpost-injectionasprevi- ouslydescribed(Mooreetal.,2003).Arterialbloodsampleswerecen- trifuged,and1mLofplasmawasplacedinultracentrifugationdevices (Centrifree®,Millipore)andspunfor10minat2000g.Onehundred micromilliliteraliquotsofwholeplasmaandultrafiltratewerecounted ingammacounter.Aftercounting,allsampleswereweighed,andcounts werecorrected.Thefpwasdeterminedfromtheratioofconcentrations in theultrafiltrateandwholeplasma.AIF wastheplasma curvecor- rectedfromtheplasmaparentfractioncurveAIF(t)=PPf(t).Cp(t).The whole bloodcurvewas determinedby themeanfwbandtheplasma curveCwb(t)=fwb.Cp(t).

2.4. Imageprocessing

RawPETdataweremotioncorrected(Reilhacetal.,2018),thenre- binnedinto24-timeframes(variablelengthframes,8×15s,3×60s, 5×120s,1×300 s,7×600s)sinogramsfordynamicreconstruc- tion.Imageswerereconstructedusing3DordinaryPoisson-orderedsub- sets expectationmaximization (OP-OSEM3D), incorporatingthesys- tempointspreadfunctionusing3iterationsof21subsets.Sinograms were corrected for scatter, randoms, normalization and attenuation (Mérida etal., 2017). Reconstructionswere performed witha zoom of2,yieldingavoxelsizeof2.03×2.03×2.08mm3 inamatrixof 172×172voxelswitha4mm3Dpost-reconstructiongaussianfilter- ing.ThemeanPETimageofthesession2wascoregistered(rigidtrans- form)ontothemeanPETimageofthesession1.IndividualMRI T1 of thefirstsessionwasnormalizedtotheMNIspace(MontrealNeu- rological InstitutetemplateoftheInternationalConsortiumforBrain MappingProject)withtheSegmentfunctionofSPM12(Ashburnerand Friston,2005).Labelingofthestructuralbrainregionswasperformed usingthemulti-atlaspropagationwithenhancedregistration(MAPER) methodology(Heckemannetal.,2010),andthe83-regionHammers- smithatlas(Hammersetal.,2003).Afterprojectionoftheatlasonto thetwosessions,regionaltimeactivitycurves(TAC)wereextractedfor aselectionofbrainregionsincludingtheamygdala,cerebellum,corpus

(4)

C. Laurencin, S. Lancelot, F. Gobert et al. NeuroImage 240 (2021) 118328

Table1

DetailsoftheCYP2D6statusforeachsubjectandInjectedRadioactivityDose,MolecularActivity,Freefractioninplasma (fp),Plasmatowholebloodfraction(fwb).

Subject Gaedigk Activity Score Scan 1 Test Scan 2 ReTest Scan 2 Challenge MBq GBq/ 𝜇mol fp (%) f wb(%) MBq GBq/ 𝜇mol MBq GBq/ 𝜇mol

1 1.5 (E) 319 27 70.3 Not available

2 1.5 (E) 351 24 7.8 66.3 355 21

3 1 (I) 376 22 6.8 66.3 366 30

4 2 (E) 376 12 10.5 71.3 355 22

5 1 (I) 351 31 7.6 59.8 414 45

6 1.5 (E) 355 44 8.0 62.9 373 33

7 2 (E) 374 19 6.3 66.4 362 34

8 1 (I) 362 36 393 14

9 1 (I) 363 42 8.0 66.1 370 29

10 1 (I) 367 25 7.4 66.5 367 24

11 1.5 (E) 341 33 8.7 63.2 361 24

12 1 (I) 384 31 385 27

13 2 (E) 351 28 11.3 69.9 381 20

14 1.25 (E) 355 48 10.7 64.4 357 39

Mean ± SD 359 ± 17 30 ± 10 8.5 ± 1.7 66.1 ± 3.3 375 ± 22 31 ± 9 370 ± 13 25 ± 7

subjectsincludedinthekineticmodelinganalysis.CYP2D6activityscorecalculatedaccordingtoGaedigk’smethod(2008) (IandE=IntermediateandExtensivemetabolizersrespectively).

callosum,frontallobe,gyruscinguli,insula,occipitallobe,parietallobe, striatum,temporallobe,andthalamus.

2.5. Kineticmodeling

Modelingof thePET TACwasperformed withtheAIF corrected for metabolite andplasma free fraction usingthe TurkuPET center utilitieslibrary(TPCCLIB,https://gitlab.utu.fi/vesoik/tpcclib).Invasive modelsincludingthe1-TCM(fitk2),the2-TCM(fitk4),andtheLogan graphicalanalysis(LGA)(Logan,2000)wereusedtoestimatethevol- umeofdistribution(VT,mL.g1)acrossregions.Fittingaccuracywas evaluatedwiththeAkaikeinformationcriteria(AIC) (Akaike,1974).

ReferencetissuemodelingtechniqueswerealsoevaluatedusingSRTM (LammertsmaandHume,1996)andthenon-invasiveLoganreference tissuemodel(LREF)(Logan, 2000).TheCCwaschosen asreference regionbasedontherecommendationsofpreviouswork(Nahimietal., 2015).Inaddition,thecerebellarwhitematter(CERWM)andthefrontal lobewhitematter(FLWM)werealsotestedaspotentialreferencetissue becausewhitematterhaspreviouslybeenproposedtorepresentaregion ofnon-specificbinding(Landauetal.,2012).Thedistributionvolume ratio(DVR)wastheparameterof interestofthesimplifiedmodeling techniques:DVRSRTM,DVRLREF,andDVR1-TCM(DVRcomputedasthe ratiooftheVTofthetargetregiontotheVT inthereferenceregion, derivedfromthe1-TCMwithAIF).

Referencetissuemodelingwasalsoperformedatthevoxellevelto computeintra-cerebralDVRparametricmapswithSRTM(Gunnetal., 1997)andwithLREF(VargaandSzabo,2002).DVRparametricimages werethentransformedfromthesubject’sspacetotheMNIspaceusing thenonlineardeformationfieldsderivedfromthespatialnormalization oftheindividual’sMRimage. Finally,normalizedparametricimages weresmoothed usingan8×8×8-mm3fullwidthathalfmaximum isotropicgaussian kernel toaccount fortheinterindividual anatomy variability,normalizationuncertainties,andtoimprovethesensitivity oftheSPManalysis.Additionally,regionalmeanDVRvalueswerecom- putedfromtheparametricmapsinthesubject’sspace.

2.6. Test-retestreproducibilitystudy

2.6.1. Biasandvariability

Thetest-retestbiaswascalculatedasthedifferencebetweenthetest andretestDVRs,dividedbythemeanofthetestandretestvalues,and thevariabilityastheSDofthebias.Theseparameterswereexpressed aspercentage.

2.6.2. Reliability

The reliability of the measurements was assessed by the intraclass correlation coefficient (ICC) calculated as (BSMSS- WSMSS)/(BSMSS+WSMSS)whereBSMSS is themeansumof square betweensubjectsandWSMSSisthemeansumofsquarewithinsubjects (ShroutandFleiss,1979).This statisticestimatestherelativecontri- butionsofbetween-andwithin-subjectvariabilityandassumesvalues from−1(i.e.,BSMSS=0)to1(identitybetweentestandretest,i.e., WSMSS=0).

2.7. Test-challengestudy

Clonidineis highlyselectiveandexertspotentagonisticeffectsat pre-synaptic𝛼2-ARs(Delavilleetal.,2011).Regionalchangesinduced bythechallengewithclonidinewerecomputedastherelativedifference ofDVRbetweenscansinselectedROIs,expressedaspercentage.Binding changeswerealsoobservedatthevoxellevel.

2.8. Statisticalanalysis

Statistical analysis was performed using Rstudio (https://github.

com/rstudio/rstudio).PairedStudent’st-testswereusedtotestfordif- ferencesintheinjecteddoseandmolaractivityofthe[11C]yohimbine between Scan1and Scan2 andalso applied totestwhether DVRs afterretestorclonidinechallengesignificantlydifferedfrombaseline condition.Resultswithp<0.05wereconsideredstatisticallysignificant.

SPM12wasusedforvoxel-wisecomparisonwithspatiallynormalized smoothedDVRimages.Statisticalparametricmapsofthetstatisticwere computedwithathresholdofp<0.05uncorrectedatthevoxelleveland anextentvoxels thresholdthe“Expectednumber ofvoxel percluster”.

Significantclusterswereselectedatacorrectedclusterlevelofp<0.05 (‘‘Falsediscoveryrate”)(Polineetal.,1997).

3. Results

3.1. Subjectdemographics

Intotal,overthefourteensubjectsscanned,onlythirteencompleted thestudyaccordingtotheprotocol.Onesubject’sretestscan(subject 1) wasnotevaluatedbecauseofPETcamera malfunctionduringthe acquisitionandwasexcludedfromthetest-retestanalysis.Additionally, overthethirteensubjects,twosubjectsdidnothavearterialsampling inscan1butcompletedthestudy.Forthreesubjects,themetabolite datawerenon-exploitable.Attheend,forthemodelingstudy,seven 3

(5)

Fig. 1. Plasma parent fraction (PPf) of un- metabolized[11C]yohimbinecalculatedforthe group of intermediate metabolizers and the groupofextensivemetabolizers(meanandSD acrosssubjectsineachgroup).

datasetswereavailable(PETscan,AIF,metabolite functionandfree fraction),forthetest-retest,six datasets wereavailable(six subjects, twoPETscans),andforthetest-challengestudy,sevendatasetswere available(sevensubjects,twoPETscans)(Table1).Meanageforboth groupswasidentical(25±4yearsoldforthetest-retestgroupand25±2 forthetest-challengegroup).

3.2. Modelingstudy

Fig.1showsmetabolizationcurve(meanandSDplasmaparentfrac- tionsacrosssubjects)anditsmodelingdependingontheCYP2D6activ- ity.Thebestmodelingcurveofthemeanplasmaparentfractioncurve wasa3-exponentialsmodel:

𝑃𝑃𝑓(𝑡)=𝐴1.𝑒

(

𝑇𝑡1 )

+𝐴2.𝑒

(

𝑇2𝑡 )

+𝐴3.𝑒

(

𝑇3𝑡 )

with A1= 0.16, T1 = 0.41, A2= 0.27, T2 = 21.45, and A3= 0.57, T3=68.97forthegroupofintermediatemetabolizers,andwithA1= 0.30,T1=0.88,A2=0.09,T2=11.49,andA3=0.61,T3=65.77for thegroupofextensivemetabolizers.

Freeplasmafractionwasconstantovertimeandhadameanvalue of 8.5± 1.7%. Note thatintermediate metabolizers presented mean lowerfpvaluescompared toextensivemetabolizers(7.4±0.5%and 9.1±1.8%,respectively)notstatisticallysignificant(W=22,p=0.16).

Wholebloodtoplasmaratiowasconstantovertimewithameanvalue of66.1±3.3%(Table1)withoutsignificantdifferencesbetweenboth typesofgenotypes(W=21,p=0.46).Fig.2showsanexampleofAIF correctedformetabolitesandwholebloodconcentrationcurveforone subjectwithintermediateCYP2D6activityandonesubjectwithexten- siveprofile.

Overall,theAkaikeinformation(AIC)showedslightlylowervalues forthe2-TCM(225±21)comparedtothe1-TCM(244±18)approach, indicatingbetterfitsforthe2-TCM.However,aspreviouslyhighlighted (Nahimietal.,2015),the1-TCMapproachismuchmorerobustand producedlessnon-physiologicalestimatesofthekineticparameters.Ac- cordingly, the1-TCMwas judgedasthemost appropriatemodelfor analysisof[11C]yohimbineimagingdata. KineticparametersandVT using1-TCMandLGAintheinvestigatedbrainregionsarereportedin Table2.TheVT werehigherinalmostallthecorticalregions(>0.4).

LowerVTwereobservedinthecerebellumandthestriatum(<0.35)as wellasinthethreepotentialreferencetissues(CERWM,CC,FLWM).

Although, theregressionbetweenVT values computedbythe1-TCM modelandVT valuescomputedwithLGAwereextremelywellcorre- lated(VT_LGA=0.99VT_1-TCM +0.04;r2=0.98;p<0.001),thislatter modelslightlybutsignificantlyoverestimatedVT inall regionscom- paredto1-TCM(p<0.0002).

3.3. Modelwithtissuereferenceregions

RegressionofDVRLREFandDVRSRTMtoDVR1-TCMforthethreetested reference regionsareshownin Table3.Regressioncoefficients were over 0.8 for all regressions, with the best fitobtained for SRTMCC (0.94).Regressionslopeswerecloseto1forbothmethods(rangingfrom 0.81forSRTMCERWMto1.13forSRTMCC).Interceptsrangedfrom0.03 (SRTMCC)to0.24(SRTMCERWM).

3.4. Test-reteststudy

Therewerenosignificantdifferencesbetweentestandretestscans inneithertheamountofradioactivityinjected(MBqmean±SD:Scan 1:361.8±12.6;Scan2:374.7±22.1;Student_t=−1.3;p=0.26)nor themolaractivityof[11C]yohimbine(GBq/𝜇molmean±SD:Scan1:

33.5±9.5;Scan2:30.8±9.2;Student_t=0.71;p=0.51).Thebiases, variabilitiesandICCvaluesofthe[11C]yohimbinebindingparameters arepresentedin Table3(rightpart)for bothcompartmentalmodels withthethreepotentialreferencetissues.Reliabilitywasverygood(>

0.74)forbothmodelsusingeithertheCCortheCERWMasreference region, whileitwasacceptablewhenusing theFLWM(around 0.5).

Themeanvaluesofbiaswerelow(<2%)forallmodels,andtheav- eragevariabilityrangedfrom3.8%fortheSRTMCERWMto6.3%forthe LREFCCmodel.TestandretestDVRvalueswerehighlycorrelated(R2>

0.98).Test-retestperformancebasedonaveragedvaluesacrosssubjects arepresentedindetail,regionbyregion,inTable4forthemostrepro- duciblemethods,namelytheLREFandtheSRTMwithCCandCERWM asreferenceregions.UsingtheCC,thetest-retestDVRreliabilitywas moderatetohigh,rangingfrom0.67(gyruscinguli)to0.93(cerebel- lum)withtheLREFandfrom0.52(striatum)to0.98(cerebellum)with theSRTM.UsingtheCERWM,thetest-retestDVRreliabilitywasalso moderatetohigh,rangingfrom0.59(frontallobe)to0.92(amygdala) with theLREFandfrom 0.70(cerebellum)to 0.92(amygdala)with theSRTM.Thetest-retestDVRvariabilitywasexcellentrangingfrom 2.6%(cerebellum)to7.1%(insula)usingtheSRTMwithCC,whilethis

(6)

C. Laurencin, S. Lancelot, F. Gobert et al. NeuroImage 240 (2021) 118328

Fig.2. Illustrationofarterialinput function (AIF),wholebloodplasma(Cwb),uncorrected plasma(Cp)curvesforoneintermediatemetab- olizersubject(PartA)andoneextensiveme- tabolizer(partB).fwb:plasmatowholeblood fraction.

Table2

KineticparametersandVTestimatedwith1-TCMandLGAin7healthyvolunteers.

1-TCM LGA

Regions V b(%) K 1(mL/cm 3/min) k 2(min 1) V T(mL/cm 3) V T(mL/cm 3) Amygdala 2.3 ± 0.8 0.007 ± 0.002 0.019 ± 0.004 0.39 ± 0.08 0.41 ± 0.08 Cerebellum 2.3 ± 0.9 0.010 ± 0.003 0.029 ± 0.004 0.34 ± 0.07 0.39 ± 0.07 Frontal Lobe 1.7 ± 0.8 0.011 ± 0.003 0.025 ± 0.004 0.42 ± 0.10 0.45 ± 0.10 Gyrus Cinguli 2.3 ± 0.8 0.011 ± 0.003 0.023 ± 0.005 0.45 ± 0.10 0.49 ± 0.10 Insula 2.4 ± 0.8 0.009 ± 0.003 0.022 ± 0.004 0.41 ± 0.10 0.45 ± 0.09 Occipital Lobe 2.0 ± 0.9 0.011 ± 0.003 0.025 ± 0.004 0.42 ± 0.10 0.46 ± 0.10 Parietal Lobe 2.0 ± 0.8 0.011 ± 0.003 0.025 ± 0.004 0.42 ± 0.10 0.46 ± 0.10 Striatum 1.6 ± 0.7 0.010 ± 0.003 0.029 ± 0.004 0.34 ± 0.09 0.37 ± 0.08 Temporal Lobe 1.9 ± 0.8 0.009 ± 0.003 0.023 ± 0.004 0.41 ± 0.10 0.45 ± 0.10 Thalamus 2.3 ± 0.9 0.010 ± 0.003 0.024 ± 0.005 0.42 ± 0.09 0.46 ± 0.09 Cerebellum White Matter (CERWM) 1.5 ± 0.6 0.008 ± 0.002 0.025 ± 0.004 0.31 ± 0.06 0.35 ± 0.06 Corpus Callosum (CC) 1.5 ± 0.6 0.005 ± 0.001 0.015 ± 0.002 0.32 ± 0.07 0.36 ± 0.07 Frontal Lobe White Matter (FLWM) 1.1 ± 0.5 0.007 ± 0.002 0.019 ± 0.003 0.34 ± 0.08 0.36 ± 0.08 Dataarepresentedasmeanvalues(±SD).

5

(7)

Table3

Validationandreproducibilityofthedistributionvolumeratio(DVR)computedwithmodelswithreferenceregion,againstgold standard1-TCMmodelwithAIF.

Mean Regression parameters over DVR 1-TCM Mean Test-Retest reproducibility parameters

Slope Intercept R 2 ICC Bias (%) VAR (%) Slope Intercept R 2 DVR LREF CC 1.07 ± 0.13 0.16 ± 0.16 0.84 ± 0.06 0.75 ± 0.08 1.2 6.3 0.96 0.05 0.99

CERWM 0.94 ± 0.14 0.06 ± 0.15 0.81 ± 0.07 0.75 ± 0.10 0.8 4.1 0.97 0.05 0.99 FLWM 0.98 ± 0.12 0.14 ± 0.14 0.82 ± 0.07 0.56 ± 0.22 0.7 4.3 0.97 0.05 0.99 DVR SRTM CC 1.13 ± 0.05 0.03 ± 0.08 0.94 ± 0.04 0.74 ± 0.12 1.8 4.9 0.94 0.06 0.98 CERWM 0.81 ± 0.09 0.24 ± 0.10 0.85 ± 0.07 0.82 ± 0.07 0.1 3.8 0.93 0.09 0.98 FLWM 0.94 ± 0.08 0.14 ± 0.10 0.92 ± 0.05 0.45 ± 0.31 0.1 4.2 0.95 0.06 0.98 Dataarepresentedasmeanvalues(±SD).

Table4

MeanregionalDVRtest-retestreproducibilityandtest-challengevariations.

Test-Retest Study Challenge Study

Model Structures DVR Test DVR Retest ICC Bias (%) VAR (%) DVR Test DVR Challenge Change (%) LREF CC Amygdala 1.23 ± 0.08 1.23 ± 0.08 0.71 0.14 4.82 1.30 ± 0.16 1.36 ± 0.13 5.2 ± 5.9

Cerebellum 1.30 ± 0.15 1.28 ± 0.20 0.93 1.88 4.74 1.36 ± 0.19 1.39 ± 0.13 2.5 ± 8.3 Frontal Lobe 1.49 ± 0.13 1.47 ± 0.17 0.70 1.57 7.94 1.61 ± 0.14 1.56 ± 0.15 2.5 ± 5.1 Gyrus Cinguli 1.56 ± 0.13 1.54 ± 0.16 0.67 1.58 7.80 1.64 ± 0.15 1.63 ± 0.15 0.7 ± 3.0 Insula 1.41 ± 0.14 1.39 ± 0.13 0.73 1.55 6.97 1.47 ± 0.13 1.48 ± 0.13 0.5 ± 4.5 Occipital Lobe 1.47 ± 0.10 1.44 ± 0.14 0.78 2.23 5.44 1.53 ± 0.18 1.55 ± 0.15 1.7 ± 6.7 Parietal Lobe 1.49 ± 0.11 1.48 ± 0.16 0.68 0.90 7.21 1.58 ± 0.14 1.56 ± 0.15 1.1 ± 3.4 Striatum 1.27 ± 0.11 1.26 ± 0.11 0.68 0.57 7.10 1.31 ± 0.10 1.32 ± 0.11 1.0 ± 3.6 Temporal Lobe 1.40 ± 0.12 1.37 ± 0.14 0.80 1.80 5.76 1.46 ± 0.15 1.48 ± 0.14 1.4 ± 4.6 Thalamus 1.43 ± 0.13 1.43 ± 0.14 0.83 0.01 5.32 1.55 ± 0.19 1.55 ± 0.17 0.6 ± 3.2 SRTM CC Amygdala 1.23 ± 0.06 1.21 ± 0.06 0.82 1.38 2.72 1.28 ± 0.16 1.36 ± 0.12 6.3 ± 7.9 Cerebellum 1.14 ± 0.14 1.13 ± 0.15 0.98 1.56 2.60 1.19 ± 0.16 1.23 ± 0.13 4.5 ± 9.7 Frontal Lobe 1.48 ± 0.11 1.45 ± 0.11 0.79 1.90 5.10 1.58 ± 0.14 1.57 ± 0.14 0.9 ± 6.1 Gyrus Cinguli 1.54 ± 0.11 1.51 ± 0.12 0.73 2.37 5.89 1.61 ± 0.15 1.62 ± 0.14 0.4 ± 4.4 Insula 1.38 ± 0.13 1.33 ± 0.10 0.64 3.37 7.13 1.43 ± 0.12 1.44 ± 0.11 0.8 ± 5.2 Occipital Lobe 1.44 ± 0.08 1.39 ± 0.09 0.79 3.64 4.02 1.48 ± 0.17 1.51 ± 0.14 2.7 ± 8.7 Parietal Lobe 1.45 ± 0.09 1.44 ± 0.11 0.68 0.85 5.35 1.53 ± 0.12 1.53 ± 0.14 0.4 ± 6.4 Striatum 1.19 ± 0.08 1.19 ± 0.08 0.52 0.33 6.21 1.20 ± 0.08 1.25 ± 0.11 4.4 ± 6.5 Temporal Lobe 1.39 ± 0.10 1.35 ± 0.11 0.81 3.16 4.45 1.44 ± 0.14 1.48 ± 0.14 2.4 ± 6.0 Thalamus 1.36 ± 0.10 1.37 ± 0.10 0.67 0.23 5.32 1.45 ± 0.18 1.49 ± 0.14 3.0 ± 5.4 LREF CERWM Amygdala 1.13 ± 0.10 1.15 ± 0.10 0.92 1.94 3.20 1.13 ± 0.10 1.16 ± 0.07 2.7 ± 6.8 Cerebellum 1.18 ± 0.03 1.18 ± 0.06 0.71 0.01 2.85 1.18 ± 0.02 1.17 ± 0.04 0.3 ± 2.0 Frontal Lobe 1.36 ± 0.07 1.36 ± 0.07 0.59 0.51 4.49 1.41 ± 0.25 1.33 ± 0.08 4.5 ± 11.1 Gyrus Cinguli 1.42 ± 0.10 1.43 ± 0.09 0.77 0.48 4.52 1.44 ± 0.16 1.39 ± 0.07 2.9 ± 8.3 Insula 1.29 ± 0.09 1.29 ± 0.08 0.66 0.46 5.30 1.29 ± 0.11 1.26 ± 0.06 2.1 ± 5.9 Occipital Lobe 1.34 ± 0.08 1.34 ± 0.07 0.76 0.29 3.59 1.33 ± 0.07 1.32 ± 0.06 1.1 ± 3.8 Parietal Lobe 1.36 ± 0.07 1.37 ± 0.07 0.65 1.14 4.35 1.38 ± 0.14 1.32 ± 0.06 3.3 ± 8.2 Striatum 1.15 ± 0.11 1.17 ± 0.09 0.88 1.55 4.00 1.14 ± 0.12 1.12 ± 0.07 1.4 ± 6.6 Temporal Lobe 1.27 ± 0.09 1.28 ± 0.08 0.79 0.18 4.50 1.28 ± 0.10 1.26 ± 0.08 1.2 ± 6.6 Thalamus 1.30 ± 0.08 1.33 ± 0.08 0.73 2.09 4.06 1.35 ± 0.06 1.32 ± 0.06 1.9 ± 6.1 SRTM CERWM Amygdala 1.14 ± 0.08 1.16 ± 0.09 0.92 2.13 2.82 1.14 ± 0.10 1.17 ± 0.09 3.0 ± 8.6

Cerebellum 1.16 ± 0.03 1.15 ± 0.05 0.70 0.63 2.62 1.15 ± 0.02 1.15 ± 0.04 0.1 ± 2.1 Frontal Lobe 1.39 ± 0.07 1.38 ± 0.10 0.79 0.90 3.82 1.44 ± 0.25 1.35 ± 0.08 4.9 ± 10.9 Gyrus Cinguli 1.45 ± 0.11 1.44 ± 0.12 0.87 0.58 3.93 1.46 ± 0.16 1.40 ± 0.07 3.6 ± 8.0 Insula 1.30 ± 0.09 1.30 ± 0.09 0.74 0.50 5.02 1.31 ± 0.11 1.27 ± 0.06 2.6 ± 6.2 Occipital Lobe 1.36 ± 0.08 1.34 ± 0.09 0.81 1.63 3.83 1.34 ± 0.07 1.33 ± 0.07 1.4 ± 3.8 Parietal Lobe 1.38 ± 0.08 1.38 ± 0.10 0.78 0.02 4.03 1.40 ± 0.15 1.34 ± 0.07 3.7 ± 8.1 Striatum 1.17 ± 0.10 1.18 ± 0.09 0.87 0.92 4.19 1.17 ± 0.10 1.14 ± 0.06 1.7 ± 6.5 Temporal Lobe 1.30 ± 0.10 1.29 ± 0.11 0.87 1.23 4.15 1.30 ± 0.10 1.28 ± 0.08 1.6 ± 6.4 Thalamus 1.30 ± 0.08 1.32 ± 0.10 0.80 1.22 4.03 1.34 ± 0.06 1.32 ± 0.06 1.9 ± 5.7 Dataarepresentedasmeanvalues(±SD).Datainboldindicatesignificantdifferencesbetweensessions(p<0.05).

variabilitywasslightlyhigher,rangingfrom4.7%(cerebellum)to7.9%

(frontallobe)withtheLREF.UsingtheCERWMasreferenceregion,the test-retestDVRvariabilityrangedfrom2.8%(cerebellum)to5.3%(in- sula)withtheLREFandfrom2.6%(cerebellum)to5%(insula)withthe SRTM.ThemeanbiasacrossallROIswastrivial(<4%).Ofnote,using SRTMmethod,theR1parameterinanyROIwasnotsignificantlydif- ferentbetweentestandretestusingtheCCortheCERWMasreference tissue(p=1andp=0.97respectively).

3.5. Challengestudy

There wereno significantdifferences between testandchallenge scansinneithertheamountofinjectedradioactivity(Scan1:362±14

MBq;Scan2:370±13 MBq;Student_t6= −0.98;p=0.367)northe molecularactivityof[11C]yohimbine(Scan1:27.7±10.9GBq/𝜇mol;

Scan2:25.3±7.4GBq/𝜇mol;Student_t6=0.47;p=0.652).Themean systolicanddiastolicarterialbloodpressureswere120and76mmHg, respectivelyatthetimeofadministration.Ninetyminutesafteradmin- istration,clonidineproducedatransient24%decreaseonlyinthemean diastolicbloodpressure(𝜒2(6)=17.81,p=0.007).Thiseffectofcloni- dineonthecardiovascularsystemisingoodagreementwiththelitera- ture(Talkeetal.,2001).Attheanatomicalregionallevel,resultsofthe challengestudyaregiveninTable4(rightpart).Significantincrease ofDVRinthechallengecomparedtothebaselineconditionwasonly observedintheamygdala(+6%)andstriatum(+4%)withSRTMCC.Im-

(8)

C. Laurencin, S. Lancelot, F. Gobert et al. NeuroImage 240 (2021) 118328

Fig.3.MRIoverlaidwitht-statisticmapscomparingDVRvalueswithCCasreferenceregionandSRTMmethod(a),LREFmethod(b),andwithCERWMasreference regionandSRTMmethod(c),LREFmethod(d)andobtainedfromSPMcomparingtestandchallengeminustestandreteststudiesusingheightthresholdofP<0.05 uncorrectedatthevoxellevelandanextentvoxelsthresholdthe“Expectednumberofvoxelpercluster” (246,427,260and294voxelsrespectivelyfor(a),(b)(c)and (d)maps).

portantly,usingSRTMmethod,theR1parameterinanyROIwasnot significantlydifferentbetweentestandchallengeusingtheCCorthe CERWMasreferencetissue(p=0.99andp=0.91respectively.

3.5.1. Statisticalparametricmapping

Statisticalparametricmapspresenttheresults of thecomparison betweenchallenge andtestconditions,forthechallenge group,with respecttothesamecomparisonintest-retestcontrolgroup(tcontrast ofconditioneffect:(DVR2-DVR1)Challenge– (DVR2-DVR1)control).Fig.3 showsthethresholdedmapsfortheSRTMCC(3a),theLREFCC(3b),and theSRTMCERWM(3c),andtheLREFCERWM(3d).

Table5givestheclusterparametersthateliciteddifferencesaccord- ingtotheparametricimagingmethod (SRTM orLREF) andtheref- erenceregion(CCorCERWM).UsingSRTMandtheCC,twoclusters showedsignificantactivitiesincludingbilaterallythetemporalandoc- cipitalfusiformgyrus,thecerebellum,thelateralpartoftheoccipital cortex,themiddletemporalgyrus,aswellastherightoccipitalpole,in- feriortemporalgyrusandangulargyrus.SamecontrastwithSRTMand theCERWMreferenceregionorwiththeLREFmodeldidnotshowany significantcluster.Yet,thesecontrastsshowedactivitiesmainlylocated intheposteriorpartofthebrainencompassingthetemporalandoccip- italcortexaswellasthecerebellum,asobservedsignificantlyusingthe SRTMCCimagingmethod.

4. Discussion

Theregional distributionof [11C]yohimbine binding corresponds withtheknowndistributionof 𝛼2-ARs inpost mortemhumanbrain studies(Ordwayetal.,1993;Vosetal.,1992).Themostprominentup- takeofthetracerwasseenincorticalbrainregions,especiallyinthe cingulum,frontal,parietalandoccipitalcorticeswhereas uptakewas lessprominentinthestriatumandthecerebellum(Fig.4).

4.1. Thekineticmodelingstudy

Inordertoevaluateareliableandsuitablemethodfor𝛼2-ARsquan- tification,wecomparedvariousinvasiveandnon-invasivemodels,often usedforbrainreceptorquantification.

UsinginvasivemodelsanddirectfittingofthePETkineticswithtis- suecompartmentalmodelandAIF,the1-TCMwasfoundtobesufficient fordescribingthetracerkineticsof[11C]yohimbineinthehealthyhu- manbrain(Nahimietal.,2015).TestingtheLGAalternativeto1-TCM asasimplerresolutionmethodfromanalgorithmicpointofviewledto

resultsquitesimilardespiteaverylimitedhigherVTvaluesfoundwith LGA(around12%).Thismightbeattributedtothefactthatbloodvol- ume,Vb,isnottakenintoaccountinLGAmodel.However,sinceVbis fairlystableovertheregions,thisoverestimationdoesnotexcludethe useofLGAasanalternativemethodto1-TCMforareliableestimateof thevolumeofdistribution.

With non-invasive models, our findings show,for the first time, thefeasibilityofusingasimpleacquisitionprotocolforkineticmod- elingavoidingarterialbloodsampling.Inparticular,DVRestimatedus- ingnon-invasivekineticmodels(LREFandSRTM)showedanexcellent correlationtotheinvasive1-TCMwhateverthereferenceregion(CC, CERWMorFLWM)withthebestfitobtainedforSRTMCC(R2=0.94).Of note,theresultsindicatedaslighttendencytowardanoverestimation withCC(slopeequalto1.07usingLREFand1.13withSRTM).How- ever,sincethecorrelationwiththe1-TCMisexcellentandstableacross brainregions,theinducedbiascanbepredictedandshouldnothavean impactoncomparativestudies.Inparallel,tendencytowardaslightun- derestimationwasreportedwithCERWMandFLWM,whichwasmore pronouncedwithSRTM(slopeequalto0.81and0.94respectively)than LREF(slopeequalto0.94and0.98respectively).Usingreferencetissue methodswithcerebralregions,underestimationofDVRvaluescanbe explainedbyapossiblespecificbindingwithinthereferenceregionas wellasspill-overeffect(Salinasetal.,2015).Nonetheless,CERWMor FLWMarevaluablereferenceregionsintheeventoftheimpossibility ofusingtheCCduetolesionofthiszoneinapatient,forinstance.

4.2. Test-Retestreproducibility

Inadditiontotheaccuracyofthereferencetissuemethods,weeval- uatedtheirtest-retestperformance.UsingFLWM asreferenceregion, our results showed poor test-retest reliabilityof DVRmeasurements withbothparametricimagingmethods.However,theSRTMwiththe CERWMasreferenceregionshowedexcellenttest-retestreproducibility ofDVRmeasurements,withvariabilityrangingfrom2.6%to5.0%and asmallnegativebias(−0.1%).UsingtheSRTMwiththeCC,test-retest reproducibilityofDVRmeasurementswereabitmorespread,witha slightly highervariabilityrangingfrom 2.6%to7.0% andaslightly highernegativebias(2%).Ofimportance,whateverthereferencere- gion,R1values,alsocomputedwithSRTM,didnotdifferbetweentest andretestacrossallROIs.Inaddition,theLREFmethodshowedcompa- rableverygoodtest-retestreliabilityofDVRmeasurements(ICC=0.75) forbothreferenceregionwithaslightlylowervariabilitywhenusing theCERWM(~ 4%)comparedtotheCC(~ 6%).Thisdemonstrationof 7

Références

Documents relatifs

In order to reduce these effects, without decreasing too much the absorption, we use a near resonant probe and enable the cloud to spread transversally during a small time of flight

The present study examined change in posttraumatic stress disorder (PTSD) frequency and perceived physical and mental health in a cohort of Kosovar Albanians over 6 years

The minimum divergence of the order and modal total numbers is the criterion of the basis completeness, that all the necessary propagation vector constants of the

The second element of the micro-macro strategy is the use of the so-called LATIN method, a non- incremental iterative computational strategy applied on the entire time interval

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

rétinite nécrosante (patients sous traitement immunosuppresseur), Varicelle, Zona

OUZZIF Ez zohra * Dermatologie Hématologie O.R.L Biophysique Chirurgie - Pédiatrique Chirurgie Cardio - Vasculaire Chirurgie Cardio - Vasculaire

At low temperatures (including room temperature), the mechanical behavior of metallic glasses [ 10 , 11 ] is dominated by a runaway process of free volume generation, with