• Aucun résultat trouvé

The expected number of 3D visibility events is linear

N/A
N/A
Protected

Academic year: 2022

Partager "The expected number of 3D visibility events is linear"

Copied!
45
0
0

Texte intégral

(1)

a p p o r t

d e r e c h e r c h e

TH ` EMES 2 et 3

The expected number of 3D visibility events is linear

Olivier Devillers — Vida Dujmovi´c — Hazel Everett — Xavier Goaoc — Sylvain Lazard

— Hyeon-Suk Na — Sylvain Petitjean

N° 4671

D´ecembre 2002

(2)
(3)

OlivierDevillers

,Vida Dujmovic y

, Hazel Everett z

, Xavier Goaoc z

,Sylvain

Lazard z

, Hyeon-Suk Na x

, SylvainPetitjean z

Themes2et3|Genielogiciel

etcalcul symbolique |Interactionhomme-machine,

images,donnees,connaissances

ProjetsIsaet Prisme

Rapport derecherche n°4671 |Decembre2002|42pages

Abstract: Inthis paper,weshowthat,amongst nuniformlydistributed unit ballsin R 3

,

theexpectednumberofmaximalnon-occludedlinesegmentstangenttofourballsislinear,

considerablyimprovingthepreviouslyknownupperbound. Usingourtechniques weshow

alinearboundontheexpectedsizeofthevisibilitycomplex,adatastructureencodingthe

visibility information of a scene, providing evidence that the storage requirement for this

datastructureisnotnecessarilyprohibitive.

Ourresults generalizein various directions. We showthat thelinearbound ontheex-

pectednumberofmaximalnon-occludedlinesegmentsthatarenottooclosetotheboundary

of thescene and tangent to four unit balls extends to balls of various but bounded radii,

to polyhedra of bounded aspect ratio,and even tonon-fat 3Dobjectssuch aspolygonsof

bounded aspectratio. Wealsoprovethat ourresultsextendto otherdistributions such as

the Poisson distribution. Finally, weindicate howour probabilisticanalysis providesnew

insight on the expected size of other global visibility data structures, notably the aspect

graph.

Key-words: computationalgeometry,3Dvisibility,visibilitycomplex,visualevents,prob-

abilisticanalysis,expectedcomplexity

INRIA Sophia-Antipolis. Olivier.Devillers@inria.fr. http://www-sop.inria.fr/prisme/. Partiallysup-

portedbythe ISTProgrammeofthe EUasa Shared-costRTD(FETOpen) ProjectunderContractNo

IST-2000-26473(ECG-EectiveComputationalGeometryforCurvesandSurfaces).

y

SchoolofComputerScience,McGillUniversity;vida@cs.mcgill.ca. ResearchsupportedbyFCAR.

z

LORIA - INRIA Lorraine, CNRS, Univ. Nancy 2. feverett, goaoc, lazard, petitjeag@loria.fr.

http://www.loria.fr/feverett,goaoc,lazard, petitjeag/. Researchsupportedbythe McGill-ISAcollabo-

rativeINRIAproject.

x

HongKongUniversityofScienceandTechnology. hsnaa@cs.ust.hk. Thisauthor'sresearchwasdone

duringapost-doctoraltenureatLORIA-INRIALorraine.

(4)

Resume : Nous montrons que, pour une scene de R composee de n boules de rayon 1

uniformementdistribuees,lenombremoyendesegmentsdedroitesnonoccultes,maximaux

et tangents a quatre boules est lineaire. Nous montrons que la borne lineaire s'applique

egalementalataillemoyenneducomplexedevisibilite,unestructurededonneesencodant

l'informationdevisibilitedelascene,donnantapenserquel'espacememoirenecessaireau

stockagedecettestructurededonneesn'estpasnecessairementprohibitif.

Nousgeneralisonscesresultatsdansdierentesdirections. Nousmontrons quelaborne

lineairesur le nombre moyende segments de droites non occultes,maximaux et tangents

aquatre boulesunitessuÆsammenteloignees du bord de lascenes'applique egalement a

desscenescomposeesde boulesderayondierentmaisborne,de polyedres de proportion

bornee et aussi ades objetsnon epaiscomme despolygonesde proportion bornee. Nous

prouvonsegalementquenosresultatssegeneralisentad'autresdistributions,notammentla

distribution dePoisson. Enn, nousmontronscommentnosresultatsouvrentdenouvelles

perspectivesconcernantl'etudedelataillemoyenned'autresstructuresdevisibiliteglobale

commelegraphed'aspects.

Mots-cles : geometrie algorithmique, visibilite3D, complexe de visibilite, evenements

visuels,analyseprobabiliste,complexiteenmoyenne

(5)

1 Introduction

Visibilitycomputations arecentralin computergraphicsapplications. Computingthelim-

itsoftheumbraandpenumbracastbyanarealightsource,identifying thesetof blockers

between any two polygons and determining the view from a given point are examples of

visibility queriesthat are essentialfor the realisticrendering of 3D scenes. Inglobal illu-

mination algorithms, where theowof lightin ascene is simulated accordingto thelaws

ofgeometricaloptics,visibilitycomputationsareexcessivelycostly. Infact,morethanhalf

of the overall computation time can routinely be spent on visibility queries in radiosity

simulations[12].

Oneapproachtospeedinguprenderingistostoreglobalvisibilityinformationinadata

structurewhichcanthenbeeÆcientlyqueried. Thevisibilitycomplex,apartitionoftheset

ofmaximal freelinesegments, hasbeenproposedasaunieddata structureencodingthe

visibilityinformation ofascene [21] andhasbeenused forrenderingpurposes[10]. Other

relateddatastructuresincludePellegrini'sray-shootingstructure[18],theaspectgraph[20]

andthevisualhull[13];see[7]forarecentsurvey.

One problem with these typesof data structures which may prevent their application

in practiceis their potentiallyenormoussize; the size of thevisibilitycomplex of aset of

n triangles in R 3

is (n 4

) in the worst case [10], which is prohibitive even for scenes of

relatively modest size. Worst-case examples are somewhat articial and indeed Durand,

Drettakisand Puech [8] provideempirical evidence indicatingthat these worst-caseupper

boundsarelargelypessimisticinpracticalsituations;theyobserveaquadraticgrowthrate,

albeitforrathersmallscenes. In2D,whiletheworst-casecomplexityofthevisibilitycomplex

isquadratic,experimental resultsstronglysuggestthatthesizeofthevisibilitycomplexof

asceneconsistingofscatteredtrianglesislinear[3].

Ourgoalistoprovidetheoreticalevidencetosupporttheseobservations. Tothisendwe

investigatetheexpectedsizeofthevisibilitycomplex,orequivalently,theexpectednumberof

visibilityevents,occurringinscenesinR 3

. Avisibilityeventisacombinatorialchangeinthe

viewofamovingobserver;suchaneventoccurswhentheviewingdirectionbecomestangent

tosomeobjects. Forsetsof convexobjectsingeneralpositionin R 3

,theviewing direction

canbetangenttoat mostfourobjects. Visibilityeventsthus correspondto maximalnon-

occludedline segmentstangentto at mostfourobjects; combinatoriallydierentvisibility

eventscorrespondto thefacesof thevisibilitycomplex.

Inthispaperweprovethattheexpectednumberofmaximalnon-occludedlinesegments

tangenttofourballs,amongstnuniformlydistributedunitballsinR 3

,islinear,considerably

improving the result of Durand et al. [10] who proved a bound of O(n 8=3

) for the same

model. Theintuition behindourproof is that, given aline segmenttangentto four balls,

theprobabilitythatthissegmentisnotoccludedbyanyotherballistheprobabilitythata

cylinder-likevolumeofradius1aboutthesegmentisfreefromthecentersoftheotherballs.

Thisprobabilitydecaysroughlyexponentiallyfastwith thelengthofthesegment,yielding

theresult. Usingour techniques wethen show alinearbound onthe expected size ofthe

visibility complexofn uniformlydistributed unit ballsin R 3

. A simplecomputation then

providesuswiththesameresultforthePoisson distribution.

(6)

Worst-case Expected

possiblyoccludedlinesamongstunit balls (n 4

) O(n

8

3

)[10]

freelinesamongstunitballs (n 2

)[1,?],O(n 3+

)[1] (n)[?]

freelines amongstdisjointhomotheticpolytopes (n 3

)[2] ?

freesegmentsamongstunit balls (n 2

)[1,?],O(n 4

) (n)[?]

freesegmentsamongstarbitrarysizedballs (n 3

)[5],O(n 4

) ?

visibilitycomplexofunitballs (n 2

)[?],O(n 4

) (n)[?]

Table 1. Knownbounds on the complexityof the set of lines, freelines ormaximalfree linesegments

tangentto4amongstnobjects.Theexpectedcomplexitiesarecalculatedfortheuniformdistribution.The

resultsreferencedby?areestablishedinthispaper.

Our results generalize in the following ways. We show that the linear bound on the

expected numberof visibility eventsoccurring not too close to theboundaryof the scene

also appliesto balls of various but bounded radii, to polyhedral objectsenclosed between

twoconcentricballsof xedradius,andevento non-fatobjectssuchaspolygons,enclosed

between two concentric circles of xed radius, whose centers and normals are uniformly

distributed.

Of courseobjectsingraphics scenesareseldomdistributed uniformlyoraccordingto a

Poissonpointprocess. Wechosethismodelbecauseitallowstractableproofsoftheoretical

results. Thisisimportantinacontextwheretherearefewrigorousresultseithertheoretical

orexperimental. The same model has also been used to study theaverage complexity of

rayshooting [23]and occlusionculling for2D urbanscenes[16]. Noothermodel hasbeen

widelyacceptedbythegraphics communityand, in fact,generating randomscenesusable

fortestingalgorithmsisamajorproblem.

Previousresultsonthistopicincludethosethatboundthenumberoflinesandthenum-

beroffree(i.e.,non-occluded)linesamongstdierentsetsofobjects. Theyaresummarized

in Table 1. Agarwal, Aronov and Sharir [1] showed an upper bound of O(n 3+

) on the

complexity ofthe space ofline transversals ofn balls bystudying the lowerenvelopeof a

setoffunctions. Astudyoftheupperenvelopeofthesamesetoffunctionsyieldsthesame

upper bound onthe numberof free lines tangent to four balls [5]. Agarwalet al. [1] also

showedalowerboundonthecomplexityofthespaceoflinetransversalsofnballsof(n 3

)

for arbitrarily sizedballs and (n 2

) for unit sized balls. The construction also showsthe

sameboundsforthenumberoflinestangenttofourballs. DeBerg,EverettandGuibas[2]

showeda(n 3

)lowerbound on thenumberoffreelines (andthus freesegments) tangent

tofouramongstndisjointhomotheticconvexpolyhedra. Recently,DevillersandRamos[5]

presentedasimple(n 3

)lowerboundonthenumberoffreesegmentstangentto4amongst

narbitrarilysizedballs,whichalsoholdsfornon-intersectingballs. Wealsopresentasimple

(n 2

)lowerboundonthenumberoffreesegmentstangentto4amongstnunit balls.

In the next section we carefully dene the problem and state our main results. In

Section3andSection4weprovetheexpectedupperandlowerlinearboundsonthenumber

(7)

of freesegmentstangentto four balls. In Section 5weextend this resultto the visibility

complex. Wepresentin Section6a(n 2

)worst-caselowerbound. InSection7wediscuss

extensionsofourresultstosomeothermodels. Weconcludein Section8.

2 Our model and results

Werstdescribeourobjectsandtheirdistribution. Letn2N andbeapositiveconstant.

AsamplesceneconsistsofnunitradiusballsB

1

;:::;B

n

whosecentersp

1

;:::;p

n

areinde-

pendentlychosenfromtheuniformdistributionoverauniversalballU ofradiusRcentered

at O. Since wedistribute thecenters p

i

overU, theballsB

i

mayintersect each otherand

arecontainedintheball,denotedU +

,whoseradiusisR+1andwhosecenteristhatofU.

WedenetheradiusRoftheuniversalballU tobeafunction ofnsatisfying

R 3

=n=: (1)

The constant reects the density of the balls in the sense that the expected number

of centers lying in any given solid of volume V in the universe is 3

4

V. (The model is

interesting onlyif n is asymptotically proportional to R 3

. Indeed, if n

R 3

tends to innity

when n tends to innity, then the universe gets entirelylled up with balls and visibility

eventsonlyoccurinU +

nU. Conversely,if n

R 3

tends tozerowhenntendstoinnity,then

theballsgetscattered sofarapartthat theprobabilitythatanyfour(or three)balls have

acommontangentgoesto zero.)

We now dene the visibility complex of a set of objects [21]. A free or non-occluded

segmentisalinesegmentthatdoesnotintersecttheinteriorofanyobject. Afreesegment

ismaximalifitisnotproperlycontainedinanotherone. Thus,theendpointsofamaximal

freesegmentareeither onanobjectorat innity. Wesaythattwomaximal freesegments

are similar if their endpoints lie on thesame objects(possibly at innity). The visibility

complexofacollectionofobjectsisroughlydenedasthepartitionofthespaceofmaximal

free segments into connected components of similar segments 1

. Its faces have dimension

between0 and4; when the objectsare in adequategeneralposition,ak-dimensional face

corresponds to a connectedset of similar maximal non-occluded line segmentstangent to

4 kobjects.

Inordertoboundthetotalnumberoffacesofthevisibilitycomplex,werstboundthe

numberof0-faces. Todothis,wecounttheT4-segments,whicharethefreesegmentstangent

to4ballswithendpointsontwoofthoseballs. Sincethereis aone-to-one correspondence

between 0-faces and T4-segmentswhen the objectsare in adequate generalposition, this

yieldsaboundontheexpectednumberofverticesofthevisibilitycomplex. Notethatsince

theballsarecontainedin U +

,theT4-segmentsarealsocontainedinU +

.

Ourmainresultisthefollowing.

1

Formally, weconsider the spaceof free segmentsquotiented bythe equivalencerelation that isthe

transitiveandreexiveclosureoftheinclusion. Inotherwords,twofreesegmentsareidentiediftheyare

bothcontainedinthesamemaximalfreesegment. Thisallowsthecellsofthepartitiontobeconnected.

(8)

Theorem1 TheexpectednumberofT4-segmentsamongstnuniformlydistributedunitballs

is(n).

Weextendthisresultto thehigherdimensionalfaces ofthecomplex.

Theorem2 Theexpectedsizeofthe visibilitycomplexof nuniformlydistributedunitballs

is(n).

Wealsopresentan(n 2

)worst-caselowerboundonthenumberofT4-segmentsamongst

n unit balls in R 3

(see Proposition 27). Infact the lower bound holds for the numberof

k-facesofthevisibilitycomplex,forallk between0and4.

3 The expected number of T4-segments is at most lin-

ear

Thegeneralidea behind theproof ofthe upperbound ofTheorem 1is thefollowing. For

anyorderedchoiceoffourballs,weboundfromabovetheprobabilitythatalineistangent

tothese ballsinthegivenorderandisnotoccludedin betweenitscontactpointswiththe

balls. Thenwesumtheseprobabilitiesoverallorderedquadruplesofballsandallpotential

tangentlinesto theseballs.

Foranytwopointspandq,andpositiverealnumber,letH (p;q;) denotetheunion

of allthe balls of radius centered on theline segmentpq (see Figure 1). Werst show

thatalineistangenttofourballsB

i ,B

j ,B

k andB

l

inthat orderonlyifp

j andp

k arein

H(p

i

;p

l

;2). Thus thevolumeof H( p

i

;p

l

;2)\U givesanupperbound onthe probability

thatalinetangenttothefourballs, inthegivenorder,exists.

Wenextshowthat asegmenttangenttofourballsB

i ,B

j ,B

k andB

l

in thatorder,at

pointst

i ,t

j ,t

k andt

l

,respectively,isnotoccludedifandonlyifthecentersofallremaining

ballsare outsideor ontheboundaryofH(t

i

;t

l

;1). Thevolumeof UnH(t

i

;t

l

;1)givesan

upperboundontheprobabilitythat thetangentsegmentis notoccluded. Thus, togetan

upperbound onthat probability,weneedalowerbound onthevolumeofH(t

i

;t

l

;1)\U.

Tobound theprobability that aT4-segmentexists, weintegrate overthe distance be-

tweenp

i and p

l

, and over the distance from p

i

to the boundary of the universe U. This

integralissplit intothreepartscoveringthecaseswhere

(i)B

i andB

l

arecloseto oneanother,

(ii)atleastoneofB

i andB

l

is entirelyinsidetheuniverse,

(iii)B

i andB

l

arenotcloseto oneanotherandbotharepartiallyoutsidetheuniverse.

Ineachcaseweover-estimatethevolumeofH(p

i

;p

l

;2)\U andunder-estimatethevolume

ofH(t

i

;t

l

;1)\U.

3.1 Denitions

LetN bethesetofordered4-tuples(i;j;k;l)chosenfromf1;2;:::;ngsuchthati;j;k;lare

pairwisedistinct. Inourmodel,theprobabilitythatfourcentersarecollineariszero,sowe

(9)

ti

t

j

t

k

t

l p

l

pi

B

l

Bi

(b)H(ti;t

l

;1) ti

tj

t

k

tl p

l

pi

p

j

B

l Bj

B

i 1

2

(a)H(p

i

;p

l

;2)

1

Figure1.H( p

i

;p

l

;2)andH( t

i

;t

l

;1)areshownshaded.

mayassumethatanysetoffourballsadmitsat most12realcommontangentlines[4,14].

Moreover, the real common tangent lines correspond to the real solutions of a degree 12

systemof equations. Foranyset of four balls weorder arbitrarily the12 solutionsof the

associatedsystem.

GivenfourballsB

i ,B

j ,B

k andB

l

,wedenotebyL

!

i;j;k ;l

,for!inf1;:::;12g,theevent

thatthe! th

solutionofthesystemisreal,thatthecorrespondingrealtangentlineistangent

to thefour ballsB

i , B

j , B

k and B

l

in that order,and that p

i

is notcloserthan p

l tothe

boundary ofU. WheneverL

!

i;j;k ;l

occurs,wedenotethe pointsoftangencyof that lineon

B

i ,B

j ,B

k ,B

l byt

i ,t

j , t

k ,t

l

,respectively. LetÆ

!

i;j;k ;l

betheeventthatL

!

i;j;k ;l

occursand

theline segmentt

i t

l

is not occluded. Notice that ifÆ

!

i;j;k ;l

occurs,the balls B

i

;B

j

;B

k

;B

l

deneaT4-segment,andthataT4-segmentcorrespondstoauniqueÆ

!

i;j;k ;l .

Let x

i;l

be the random variable representing the distance from p

i to p

l , and y

i (resp.

y

l

)betherandomvariabledenotingthedistancefromp

i

(resp. p

l

)totheboundaryofthe

universe.

In the sequel,a random point pdenotes a point chosen from the uniform distribution

overU.

(10)

3.2 The Proof

There isaone-to-one correspondence betweentheT4-segmentsandthe events Æ

!

i;j;k ;l that

occur. Wethus havethefollowingstraightforwardlemma.

Lemma3 TheexpectednumberofT4-segmentsamongstnuniformlydistributedunitballs

is

X

(i;j;k ;l)2N 12

X

!=1 Pr(Æ

!

i;j;k ;l ):

Webound theprobabilityPr(Æ

!

i;j;k ;l

)byintegratingoverthedistance xbetweenp

i and

p

l

,andoverthedistancey from p

i

totheboundaryof theuniverseU. Theintegralissplit

into three partscoveringthecaseswhere (i)the ballsB

i and B

l

are closeto oneanother,

(ii)p

i

isatdistanceatleast1fromtheboundaryofU,and(iii)theballsB

i andB

l

arenot

closetooneanotherandp

i

isatdistancelessthan1fromtheboundaryofU. Notethat in

thelast case, if Æ

!

i;j;k ;l

occurs,then bothball centersp

i and p

l

are within distance 1from

theboundaryofU. Twoballsareconsideredclosetooneanotheriftheircenters arecloser

thansomesuÆcientlylargeconstant;fortechnicalreasonswhichareembeddedintheproof

ofProposition29,weactuallydeneclose tomeandistanceatmost6.

Lemma4 Pr(Æ

!

i;j;k ;l )6I

x66 +I

y>1 +I

x>6;y<1 ,where

I

x66

= Z

6

x=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x)Pr(x6x

i;l

<x+dx);

I

y>1

= Z

2R

x=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

>1)Pr(x6x

i;l

<x+dxjy

i

>1);

I

x>6;y<1

= Z

2R

x=6 Z

1

y=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i )

Pr((x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y)Pr(y6y

i

<y+dy):

Proof: BytheTotalProbabilityTheorem(see[17]),

Pr(Æ

!

i;j;k ;l )=

Z

2R

x=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x)Pr(x6x

i;l

<x+dx):

The integral can be split at x = 6, giving I

x66

. Then applying the Total Probability

Theoremonwhatremains,weget

Z

2R

x=6 Z

R

y=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y)Pr((x6x

i;l

<x+dx)jy

i

=y)Pr(y6y

i

<y+dy)

(2)

(11)

which canbesplit aty=1. Thepartcorrespondingtoy between1andR isequalto

Z

2R

x=6 Z

R

y=1 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

i

>1)

Pr((x6x

i;l

<x+dx)jy

i

=y; y

i

>1)Pr(y6y

i

<y+dy)

6 Z

2R

x=6 Z

R

y=0 Pr(Æ

!

i;j;k ;l

\(x6x

i;l

<x+dx)jy

i

=y; y

i

>1)Pr(y6y

i

<y+dy):

ApplyingtheTotalProbabilityTheoremagain,weget

Z

2R

x=6 Pr(Æ

!

i;j;k ;l

\(x6x

i;l

<x+dx)jy

i

>1)

whichislessthanI

y>1

. Considernowthepartof (2)fory between0and1. Ify

l

>y

i then

Æ

!

i;j;k ;l

doesnotoccur(bydenitionofL

!

i;j;k ;l

),thuswehave

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y)Pr((x6x

i;l

<x+dx)jy

i

=y)

=Pr(Æ

!

i;j;k ;l

\(x6x

i;l

<x+dx)jy

i

=y)

=Pr(Æ

!

i;j;k ;l

\(x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y)

=Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

)Pr((x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y):

Thus,thepartof (2)fory between0and1isequaltoI

x>6;y<1

. 2

Letdenote anyofthefollowingevents: (x

i;l

=x), (x

i;l

=x,y

i

>1), (x

i;l

=x; y

i

=

y; y

l 6y

i

). ThenextthreelemmasareusedtoboundPr(Æ

!

i;j;k ;l

j)appearinginthethree

integralsI

x66 ,I

y>1 andI

x>6;y<1 .

Lemma5 If a line is tangent to four balls B

i

;B

j

;B

k

;B

l

in that order at t

i

;t

j

;t

k

;t

l , re-

spectively,thenp

j

;p

k 2H(p

i

;p

l

;2). Also,the segment t

i t

l

isnotoccludedifandonlyif the

interiorofH(t

i

;t

l

;1) does notcontainthe center ofany other ball.

Proof: Segmentt

i t

l

iscontainedinH(p

i

;p

l

;1). Sincet

j andt

k

belongtothat segment,t

j

andt

k

arealsoinH( p

i

;p

l

;1). Thusp

j

;p

k

arebothin H( p

i

;p

l

;2). SeeFigure1(a).

Thesegmentt

i t

l

isoccludedifandonlyifsomeballB

,6=i;j;k;l,properlyintersects

it,thatisthecenterof B

liesin theinteriorofH(t

i

;t

l

;1). SeeFigure1(b). 2

Lemma6 Pr(p2H (p

i

;p

l

;2)j)6

(3x+8)

R 3

.

Proof:

Pr(p2H (p

i

;p

l

;2)j)=

VolumeofH (p

i

;p

l

;2)\U

VolumeofU

j

6

VolumeofH (p

i

;p

l

;2)

VolumeofU j

:

(12)

Whenoccurs,x

i;l

=x andthevolumesof H(p

i

;p

l

;2) andU are 4

3

( 3x+8) and 4

3 R

3

,

respectively. Thus

Pr(p2H (p

i

;p

l

;2)j)6 3x+8

R 3

:

2

Lemma7 Pr(Æ

!

i;j;k ;l j)6

(3x+8) 2

R 6

Pr(p62H (t

i

;t

l

;1)jL

!

i;j;k ;l

; ) n 4

.

Proof: IfÆ

!

i;j;k ;l

occurs,thenL

!

i;j;k ;l

necessarilyoccurs,thus

Pr(Æ

!

i;j;k ;l

j)=Pr(Æ

!

i;j;k ;l

\L

!

i;j;k ;l

j)=Pr(L

!

i;j;k ;l

j)Pr(Æ

!

i;j;k ;l jL

!

i;j;k ;l

; ):

By Lemma 5, Pr(L

!

i;j;k ;l

j ) is bounded by the probability that p

j and p

k

belong to

H (p

i

;p

l

;2)given,andPr(Æ

!

i;j;k ;l jL

!

i;j;k ;l

)isequaltotheprobabilitythatforall6=i;j;k;l,

pointp

isoutsideH (t

i

;t

l

;1)given. Sinceallthepointsareindependentlyandidentically

drawnfrom theuniformdistributionoverU,Lemma6yields theresult. 2

WeconsiderthethreeintegralsI

x66 ,I

y>1 andI

x>6;y<1

inthefollowingsubsections,and

provethat each is bounded by O 1

n 3

. This will complete the proof of the upper bound

ofTheorem 1since, by Lemmas3and4,theexpected numberof T4-segmentsislessthan

12 n

4

(I

x66 +I

y>1 +I

x>6;y<1 ).

3.2.1 B

i

and B

l

are closeto one another

WeproveherethatI

x66 isO(

1

n 3

). WhenB

i andB

l

areclosetooneanother,theprobability

thatthereexisttwootherballs,B

j andB

k

,deningalinetangenttoB

i

;B

j

;B

k

;B

l in that

order,issmallenoughthatwedonotneedto considerocclusionsinordertogetthebound

wewant.

WerstboundthetermPr(x6x

i;l

<x+dx)appearingin theintegralI

x66 .

Lemma8 Pr(x6x

i;l

<x+dx)6 3x

2

R 3

dx.

Proof: Whenp

i

isgiven,p

l

mustbelongto asphericalshell betweentwospheresofcenter

p

i

andradiix andx+dx. TheprobabilityPr(x6x

i;l

<x+dx), ifp

i

isknown, isexactly

the volume of the part of the spherical shell inside U divided by the volume of U. The

volume of the part of the spherical shell inside U is bounded from above by the volume

of thesphericalshellwhich is4x 2

dx. Since thevolume of U is 4

3 R

3

weget theclaimed

bound. (TheexactvalueofPr(x6x

i;l

<x+dx)isactuallygivenin[15,22]buttheabove

approximateboundisenoughforourpurposes.) 2

Proposition 9 I

x66 isO(

1

n 3

).

(13)

Proof: Recallthat(seeLemma 4)

I

x66

= Z

6

x=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x)Pr(x6x

i;l

<x+dx):

ByLemma 7,

Pr(Æ

!

i;j;k ;l jx

i;l

=x)6

(3x+8) 2

R 6

Pr(p62H (t

i

;t

l

;1)jx

i;l

=x; L

!

i;j;k ;l )

n 4

6

(3x+8) 2

R 6

:

ItthusfollowsfromLemma 8that

I

x66 6

Z

6

x=0

(3x+8) 2

R 6

3x

2

R 3

dx=

3

n 3

Z

6

x=0 3x

2

(3x+8) 2

dx=O

1

n 3

:

2

3.2.2 B

i

is entirely insideU

FortheintegralI

y>1

, occlusionsmustbetakeninto account. Tothis aim, webound from

belowthevolumeofH (t

i

;t

l

;1)\U in thefollowinglemma.

Lemma10 When L

!

i;j;k ;l

occurs and y

i

>1, the volume of H (t

i

;t

l

;1)\U isgreaterthan

12 x

i;l .

Proof: LetKbetheballhavingdiameterp

i t

i

. NotethatKandp

l

arebothcontainedinU

andinH (t

i

;t

l

;1). Theconvexhullof p

l

andK isthus containedin H (t

i

;t

l

;1)\U,andits

volume islargerthan halfthe volumeof theballK,

12

,plusthevolumeofaconeofapex

p

l

,ofbaseadiskwhoseboundaryisagreatcircleofK,andofheightgreaterthanx

i;l 1.

Thevolumeofthatconeisat least 1

3

2 2

(x

i;l 1)=

12 x

i;l

12

. 2

We nowbound the probability that atangent line segmentt

i t

l

is notoccludedby any

of theother n 4balls, given that the line segmentt

i t

l

exists and theball B

i

is entirely

containedinU.

Lemma11 Pr p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

>1; L

!

i;j;k ;l

n 4

<55exp

x

16

.

Proof: Firstnoticethat

Pr(p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

>1; L

!

i;j;k ;l

=1

Volume ofH( t

i

;t

l

;1)\U

VolumeofU

j

xi;l=x;yi>1;L

!

i;j;k ;l :

By Lemma 10, the volume of H(t

i

;t

l

;1)\U is bounded from below by

12

x. Since the

volumeofU is 4

3 R

3

,weget

Pr p62H (t

i

;t

l

;1)jx

i;l

=x;y

i

>1; L

!

i;j;k ;l

n 4

<

1 x

16R 3

n 4

:

(14)

Forany06t61,wehave(1 t)6e t

thus

(1 t) n 4

6e t(n 4)

=e tn

e 4t

6e 4

e tn

<55e tn

:

Now06x62RandR>1sinceB

i

isentirelyinside U. Thus06 x

16R 3

6 1

8R 2

61and

Pr p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

>1; L

!

i;j;k ;l

n 4

<55exp

nx

16R 3

=55exp

x

16

:

2

Thefollowingpropositionnowbounds theintegralI

y>1 .

Proposition 12 I

y>1 isO(

1

n 3

).

Proof: Recallthat

I

y>1

= Z

2R

x=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

>1)Pr(x6x

i;l

<x+dxjy

i

>1):

ByLemmas7and11wehave

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

>1)6

(3x+8) 2

R 6

55exp

x

16

:

SimilarlyasinLemma8wehave

Pr(x6x

i;l

<x+dxjy

i

>1)6 3x

2

R 3

dx:

Thusweget

I

y>1 6

Z

2R

x=0

(3x+8) 2

R 6

55exp

x

16

3x

2

R 3

dx6

3

n 3

Z

+1

x=0 3x

2

(3x+8) 2

55exp

x

16

dx:

Changing x

16

byzwegetanintegralofthekind

Z

1

0 z

r

exp( z)dz

which isbounded byaconstantandthusI

y>1 isO

1

n 3

. 2

3.2.3 B

i

and B

l

are notclose to one anotherand B

i

ispartially outsideU

TheonlyremainingtaskistoboundtheintegralI

x>6;y<1

. Asinthepreviouscase,weneed

tobound frombelowthevolumeof H (t

i

;t

l

;1)\U. Here,however,thetangentt

i t

l canbe

entirelyoutsideU,sothebound ofLemma10doesnotapply andamoreintricateproofis

(15)

needed. Weneed to distinguish twocases depending on thedistance of segment t

i t

l from

O,thecenterofU.

Tothisaim, we introducetwonewtypesof events. Foranys2R, letF

!

i;j;k ;l

(s)(resp.

N

!

i;j;k ;l

(s)) betheeventthat L

!

i;j;k ;l

occurs and theline segmentt

i t

l

is at distancegreater

(resp. less) than R+1 s from O. For reasons that will become clear in the proof of

Lemma15,weconsider s=y 2

3

.

ThenextvelemmasareusedtoboundthersttermoftheintegralI

x>6;y<1 .

Lemma13 ForanyrandompointpinU,Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

)isequal to

Pr

F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

)

n 4

+Pr

N

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

:

Proof: Æ

!

i;j;k ;l

impliesL

!

i;j;k ;l

whichcanbesplitintoF

!

i;j;k ;l (y

2

3

),N

!

i;j;k ;l (y

2

3

),andtheevent

thatL

!

i;j;k ;l

occursandthelinesegmentt

i t

l

isat distanceexactlyR+1 y 2

3

fromO. This

latereventoccurswithprobability0,thus

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y;y

l 6y

i )=

Pr(Æ

!

i;j;k ;l

\F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i )

+Pr(Æ

!

i;j;k ;l

\N

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i );

which canbeexpandedinto

Pr(F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i )

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

))

+Pr(N

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i )

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)):

WhenF

!

i;j;k ;l (y

2

3

)occurs,theprobability

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

))

istheprobabilitythatthetangentisnotoccluded,thatis,p

doesnotbelongtoH (t

i

;t

l

;1)

forallthen 4valuesof6=i;j;k;l. ThesameargumentholdsforN

!

i;j;k ;l (y

2

3

). Sincethe

p

areindependent,wegettheresult. 2

(16)

InordertoboundthetwotermsinLemma 13,

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

)

n 4

and

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

;

weneedtoboundthevolumeofH (t

i

;t

l

;1)\U from below.

Lemma14 When x

i;l

>6, y

l 6y

i 61, L

!

i;j;k ;l

occurs andsegment t

i t

l

isatdistanceless

thanR+1 s,06s61,fromthe center ofU,thenthe volumeof H (t

i

;t

l

;1)\U islarger

than 1

6 p

2 (x

i;l 5)s

p

s.

Proof: Wegiveheretheideaof theproof; fulldetails canbefoundin Appendix A. Lett

betheclosestpointonsegmentt

i t

l

from O, andD beaunitradiusdisk centeredat tin a

planecontainingO,thecenter ofU. Wedeneaquadrilateralwith verticesa;b;a 0

;b 0

such

that aanda 0

aretheclosestand thefarthest points,respectively,in D\U from O, and b

and b 0

are the points of intersection of @D and the perpendicular bisectorof segmentaa 0

(seeFigure2). LetvbeequaltoR+1minusthedistancefromOtosegmentt

i t

l

. Weprove

that the convex hull of a;b;a 0

;b 0

and p

l

, which is included in H (t

i

;t

l

;1)\U, has volume

greaterthan 1

6 p

2 (x

i;l

5)min (2 p

2;v p

v). It followsthat, for any 06s 61,ifsegment

t

i t

l

isat distancelessthanR+1 s fromO,thenv>sand thevolumeofH (t

i

;t

l

;1)\U

isgreaterthan 1

6 p

2 (x

i;l 5)s

p

s. 2

@U t

b

b 0

a D

a 0

O

v R+1 v

R

R v

Figure2. ForthesketchoftheproofofLemma14(v2(0;1)).

Lemma15 Forany random pointpinU,x>6and06y61,

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)y 2

8 p

2

(17)

and

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)y

8 p

2

:

Furthermore, ifx>6 p

Rthen

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)

8 p

2

:

Proof: Let x

i;l

= x, y

i

= y and suppose rst that event F

!

i;j;k ;l (y

2

3

) occurs. Since p

i is

at distanceR y fromO, thesegmentt

i t

l

isat distance lessthanR+1 y from O, and

thus,byLemma14,thevolumeofH(t

i

;t

l

;1)\U isgreaterthan 1

6 p

2

(x 5)y p

y,whichis

biggerthan 1

6 p

2

(x 5)y 2

since06y 61(webound y p

y from belowbyy 2

only sothat

wecanactuallycomputetheintegralI

1

intheproofofProposition20). Wenowfollowthe

proofof Lemma 11, exceptthat thevolumeof H( t

i

;t

l

;1)\U is nowbounded from below

by 1

6 p

2

(x 5)y 2

insteadof

12

x. Weget

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)y 2

8 p

2

:

WhenN

!

i;j;k ;l (y

2

3

)occurs,the segmentt

i t

l

is at distanceless thanR+1 y 2

3

from O,

andthus, byLemma14, thevolumeof H( t

i

;t

l

;1)\U isbounded frombelowby 1

6 p

2 (x

5)y 2

3 q

y 2

3

= 1

6 p

2

(x 5)y. Then, asbefore,weget

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)y

8 p

2

:

Now,ifx>6 p

R ,thelengthofthetangentt

i t

l

isat least6 p

R 2. Sincex>6,R>3

andasimplecomputationshowsthat6 p

R 2isbiggerthan2 p

2R+1whichisthelengthof

thelongestlinesegmentthatmayentirelylieinsideU +

nU. Thusdist(O;t

i t

l

)6R=R+1 s

with s =1 and, by Lemma 14, thevolume of H (t

i

;t

l

;1)\U is greater than 1

6 p

2

(x 5).

Then,asbefore,weget

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

<55exp

(x 5)

8 p

2

:

2

Lemma16 Pr(N

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i )6

(3x+8) 2

R 6

.

(18)

Proof: TheeventN

!

i;j;k ;l (y

2

3

)occursonlyifL

!

i;j;k ;l

occurs. Theresultthusfollowssince,by

Lemmas5and6,Pr(L

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i )6

(3x+8) 2

R 6

. 2

Lemma17 If y<1,then Pr

F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y

681 2

(x+6) 2

y 2

R 6

.

Proof: A\far"tangentt

i t

l

isatdistanceatleastR+1 y 2

3

fromthecenterOofU. Sucha

segmentalsoliesinH (p

i

;p

l

;1). LetE bethepartofH (p

i

;p

l

;1)lyingoutsideofthesphere

ofradiusR+1 y 2

3

andcenterO. SeeFigure 3(a). Now, bothp

j and p

k

mustbeinthe

regioninsideU andwithindistance 1fromE. Denotethis regionbyK. Then

Pr

F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

6

VolumeofK

VolumeofU

2

:

By Proposition 32, which weprovein Appendix B, the volume of K is bounded from

aboveby 12 2

(x+6)y, which yields the result. Here we givethe intuition of the proof.

RefertoFigure3. Firstnoticethat the\length"ofK isatmostx+4. SinceKisenclosed

inbetweenasphereofradiusRandoneofradiusR y 2

3

,its\height"isatmosty 2

3

. Forthe

\width",considerFigure3(b)whichshowsacross-sectionofKtakenwithaplanethrough

O and perpendicular to p

i p

l

. The \width" of K is no morethan 2 times the \width" of

E. The\height"of Ecanbeboundedbysomeconstanttimesy 2

3

;thusits\width"canbe

bounded bysomeconstanttimes q

y 2

3

=y 1

3

. Thus, intuitively,thevolumeofK is smaller

than(x+4)y 2

3

y 1

3

=(x+4)y,uptoaconstant,andtheresultfollows. 2

WenowboundthetwolasttermsoftheintegralI

x>6;y<1 .

Lemma18 Pr(y6y

i

<y+dy)6 3dy

R .

Proof: Theevent(y6y

i

<y+dy)occursonlyifp

i

liesinthesphericalshelldelimitedby

thetwospherescenteredat Oof radiiR y andR y dy whosevolumeis smallerthan

4R 2

dy. DividingbythevolumeofU provestheresult. 2

Lemma19 For66x62R andy61, wehave

Pr((x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y)6

6xydx

R 3

:

Proof: TheprobabilityPr((x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y)isequalto thevolume

oftheregion(shownin greyinFigure4)which istheintersectionoftheregioninbetween

thetwospherescenteredatp

i

andofradiixandx+dx,andtheregioninbetweenthetwo

spherescenteredat O and ofradiiR andR y, dividedbythevolumeofU. Weprovein

(19)

p

i

;p

l E

R y 2

3 K

y 2

3

y 1

3 x+2

pi

pl E

R+1 y 2

3

R

R y

(a)

(b)

R+1 y 2

3

R

R y

K

Figure3.ForthesketchoftheproofofLemma17.

Proposition37inAppendixCthatthevolumeofthatregionisatmost8xydx. Roughly

speaking, thevolumeboundedbythefourspheresisat most8xydx because,its\thick-

ness"isdx, its\height"is y andits\radius"isx. DividingbythevolumeofU provesthe

result. 2

R y

x

x+dx p

i

O

Figure4.FortheproofofLemma19.

(20)

WecannowboundtheintegralI

x>6;y<1

ofLemma 4.

Proposition 20 I

x>6;y<1 isO

1

n 3

.

Proof: Recallthat

I

x>6;y<1

= Z

2R

x=6 Z

1

y=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i )

Pr((x6x

i;l

<x+dx)\(y

l 6y

i )jy

i

=y)Pr(y6y

i

<y+dy):

ByLemmas18and19, weget

I

x>6;y<1 6

Z

2R

x=6 Z

1

y=0 Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i )

6xydx

R 3

3dy

R :

ByLemma 13, Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i

)isequalto

Pr

F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; F

!

i;j;k ;l (y

2

3

)

n 4

+Pr

N

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

Pr

p62H (t

i

;t

l

;1)jx

i;l

=x; y

i

=y; y

l 6y

i

; N

!

i;j;k ;l (y

2

3

)

n 4

:

Wesplit theintegralatx=6 p

R . Whenx>6 p

R ,thedistancefrom O tothetangent

t

i t

l

is lessthanR (seetheproofof Lemma15), which islessthanR+1 y 2

3

forany y in

(0;1). Thus, foranyx>6 p

R andy2(0;1),

Pr

F

!

i;j;k ;l (y

2

3

)jx

i;l

=x; y

i

=y; y

l 6y

i

=0:

Itthenfollowsfrom Lemmas15,16and17thatI

x>6;y<1 6I

1 +I

2 +I

3 with

I

1

= Z

6 p

R

x=6 Z

1

y=0 81

2 (x+6)

2

y 2

R 6

55exp

(x 5)y 2

8 p

2

6xydx

R 3

3dy

R

;

I

2

= Z

6 p

R

x=6 Z

1

y=0

(3x+8) 2

R 6

55exp

(x 5)y

8 p

2

6xydx

R 3

3dy

R

;

I

3

= Z

2R

x=6 p

R Z

1

y=0

(3x+8) 2

R 6

55exp

(x 5)

8 p

2

6xydx

R 3

3dy

R :

ComputingtheseintegralswithMaple gives(assuming>0),whenR tendstoinnity,

I

1 +I

2 +I

3

=O

1

R 9

:

(21)

SinceR 3

=n=,wegetI

x>6;y<1 2O(

1

n 3

). 2

We can now conclude the proof that the expected number of T4-segments is O(n),

because, by Lemmas 3, 4, and Propositions 9, 12, and 20, the expected number of T4-

segmentsissmallerthan

X

(i;j;k ;l)2N 12

X

!=1

O

1

n 3

+O

1

n 3

+O

1

n 3

=O(n):

4 The expectednumber of T4-segments is at least linear

In this section, we provethat the expected number of T4-segmentsamongst n uniformly

distributed unit balls is (n). Todothis, webound from belowthe probability that four

given balls have a given T4-segment. The key step is to givea condition on the relative

positionsoffour unit ballsthat guaranteesthat theyhaveexactlytwelvecommontangent

lines. Weuseherethenotationasdenedin Section3.1.

Lemma21 Let e be a real number satisfying 4

p

2

3

< e <2 and let the radius R of U be

strictlygreaterthane. Thereexistsan>0suchthatfor anypointp2U,thereexistthree

balls

1 (p),

2 (p),

3

(p)of radius containedinU and satisfyingthe following conditions:

ˆ pandthe centersofthe

i

(p) formaregulartetrahedron withedges of lengthe,and

ˆ for any triple ofpoints(p

1

;p

2

;p

3 ), p

i

takenfrom

i

(p), the four unitballs centeredatp,

p

1 ,p

2 andp

3

have exactly12 distincttangentlines.

Proof: Macdonald, Pach and Theobaldproved [14, Lemma 3] that 4 unit balls centered

ontheverticesofaregulartetrahedronwithedges oflengthe, 4

p

2

3

<e<2,haveexactly

12distinct realcommontangentlines. Moreover,these12 tangent linescorrespond tothe

12 realroots of asystem of equationsof degree 12, thus each tangentline corresponds to

a simple root of that system of equations. It thus follows that for any suÆciently small

perturbationofthe4ballcenters, the4perturbed ballsstillhave12real commontangent

lines. Let>0besuch that the4ballcenterscanmovedistance in anydirection while

keeping12distinctcommontangents.

Now,foranypointp2U,consideraregulartetrahedronwithedgelengthehavingpas

avertexandsuchthattheotherverticesareatdistanceat leastfrom theboundaryofU;

forexample,wecanchoosetheotherthreeverticesonaplaneperpendiculartothesegment

Op. Let

1 (p),

2

(p), and

3

(p) be the ballsof radius centered at the vertices, distinct

from p,of that tetrahedron. Bythe previousreasoning,for anyq 2

1

(p), r2

2

(p), and

s2

3

(p),thefourunit ballscenteredatp,q, randshaveexactlytwelvetangents. 2

Now,byLemma 3,theexpectednumberofT4-segmentsis

X

(i;j;k ;l)2N 12

X

!=1 Pr(Æ

!

i;j;k ;l ):

(22)

Thusweonlyneedto bound frombelowtheprobabilitythattheeventÆ

!

i;j;k ;l

occurs.

Lemma22 Pr(Æ

!

i;j;k ;l )=

1

n 3

.

Proof: Assume that n >8 sothat the radius R = 3 p

n=of U is largerthan 2and let

T(p)betheset

1 (p)

2 (p)

3

(p)where

i

(p)andearedened asinLemma21. First,

notethat

Pr(Æ

!

i;j;k ;l

)>Pr(Æ

!

i;j;k ;l

\(p

i

;p

j

;p

k )2T(p

l ))

=Pr((p

i

;p

j

;p

k )2T(p

l

))Pr(Æ

!

i;j;k ;l j(p

i

;p

j

;p

k )2T(p

l )):

Since

1 (p

l ),

2 (p

l ),and

3 (p

l

)arethree ballsofradiusentirelycontainedin U,wehave

Pr((p

i

;p

j

;p

k )2T(p

l ))=

4

3

3

4

3 R

3 3

=

3

9

n 3

:

By Lemmas 5 and 21, the event (Æ

!

i;j;k ;l j (p

i

;p

j

;p

k

) 2 T(p

l

)) occurs if and only if the

interiorofH(t

i

;t

l

;1)\U doesnotcontainthecenterofanyball. Notethatthevolumeof

H(t

i

;t

l

;1)\U isatmostthevolumeofH(t

i

;t

l

;1),whichisatmost 4

3

+(2+e+2)since

thelengthoft

i t

l

isatmoste+2+2. Itfollowsthat

Pr(Æ

!

i;j;k ;l j(p

i

;p

j

;p

k )2T(p

l ))>

1 (

4

3

+2+e+2)

Volume(U) n

4

:

Sincee<2,weget,after someelementarycalculations,that

Pr(Æ

!

i;j;k ;l j(p

i

;p

j

;p

k )2T(p

l ))>

1

(6+2)

n

n 4

: (3)

Wethushave

Pr(Æ

!

i;j;k ;l )>

3

9

n 3

1

(6+2)

n

n 4

:

Since

1

(6+2)

n

n 4

tendstoe

(6+2)

whenntendstoinnity, weget

Pr(Æ

!

i;j;k ;l )=

1

n 3

:

2

This completes the proof of the lowerbound of Theorem 1 sincethe expected numberof

T4-segmentsamongstnuniformlydistributedunit ballsis,byLemmas3and22,

X

(i;j;k ;l)2N 12

X

!=1 Pr(Æ

!

i;j;k ;l )=

X

(i;j;k ;l)2N 12

X

!=1

1

n 3

=(n):

(23)

5 The expected size of the visibility complex is linear

InthissectionweproveTheorem2,thattheexpectedsizeofthevisibilitycomplexofaset

ofnuniformlydistributedunit ballsislinear.

We saythat the balls arein generalposition if any k-dimensional face of thevisibility

complexisaconnectedsetofmaximalfreesegmentstangenttoexactly4 kballs. Wecan

assumethattheballsareingeneralpositionsincethisoccurswithprobability1. Wegivea

boundontheexpectednumberofk-faces, fork=0;:::;4.

Lemma23 The expectednumberof0-facesis(n).

Proof: A0-faceofthevisibilitycomplexisamaximalfreeline segmenttangentto4balls.

Each maximal free line segment tangent to 4 balls contains a T4-segment and each T4-

segmentiscontainedinonemaximalfreelinesegment. Thus, byTheorem1,theexpected

numberof0-facesislinear. 2

Todealwiththefaces ofdimensionk>1,wedivide themintotwoclasses. Ak-faceis

open ifitisincident toat leastone(k 1)-face,otherwiseitisclosed. Whentheballsare

ingeneralposition,thenumberofk-facesincidenttoa(k 1)-faceisconstant. Intheproof

ofthefollowinglemmas, anyconstantcanbeused. However,for completeness,wewilluse

theexactvalues,butwithoutjustifyingthem.

Lemma24 The expectednumberof1-facesis(n).

Proof: Note that a0-face corresponds to amaximal free segment tangent to 4balls and

itisincident tothose1-facescorrespondingtofreesegmentstangentto3amongstthose 4

balls. So,a0-faceisincidenttoexactlysix1-faces,whichimpliesthatthenumberofopen

1-facesis 6timesthenumberof0-faces,andisthus(n)bythepreviouslemma.

Provingthat theexpected number ofclosed 1-facesis O(n)canbedonein awayvery

similar to theproof of theupperbound in Theorem 1. The dierenceis that weconsider

nowonlythreeballsandthusinallproofs,weforgetballB

k

. Wehavetoconsideronly n

3

triplesof balls insteadof n

4

quadruples, but weremovefrom theintegralthe probability

Pr(p

k 2H (p

i

;p

l

;2)jx

i;l

=x)6 3x+8

R 3

. Since n

R 3

=,thisamountstodividingthetermsover

which weintegrateby (3x+8)which doesnotchangethe generalshapeofthe integrals

(apolynomialmultipliedby anexponential) which areconvergent. Noticethat B

i , B

j ,B

l

and! nowdeneaset ofsegmentst

i t

l

, ratherthanjust asinglesegment. However,those

segmentsdeneaclosed1-faceonlyifnoneofthemisoccludedbyoneofthen 3remain-

ingballs. Anyparticular choiceof atangentt

i t

l

in the1-facewill givearelevantcylinder

H (t

i

;t

l

;1)to usein theproofs. 2

Lemma25 The expectednumberof2-facesis(n).

(24)

Proof: Sincea1-facehasveincident2-faces,thetightlinearbound onthenumberof 1-

facesgivesatightlinearboundonthenumberofopen2-faces. Theclosedcaseissolvedsimi-

larlytotheproofoftheupperboundinTheorem1. Wenowconsider n

2

pairsofballsB

i

;B

l

andweremovefromtheintegralstheprobabilityPr(p

j

;p

k 2H (p

i

;p

l

;2)jx

i;l

=x)6 3x+8

R 3

2

which givesanO(n)boundonthenumberofclosed2-faces. 2

Lemma26 The expectednumbersof 3-facesand4-faces are(n).

Proof: A3-face,correspondingto linestangentto aball,canonlybeclosedifn=1. The

numberofopen 3-facesislinearby thefact thatin general position a2-faceis incidentto

four3-faces. Thenumberof4-facesislinearsincea3-faceisincidenttothree4-faces. 2

6 Worst-case lower bound

We provide herea(n 2

)lowerbound on the numberof k-faces in thevisibilitycomplex.

Recall that for the case of n arbitrarily sized balls, Devillers and Ramos [5] presented a

simple(n 3

)lowerboundonthenumberoffreesegmentstangentto 4balls,which isalso

thenumberofverticesin thevisibilitycomplex. Theirlowerbound (seeFigure 5)consists

of (i) n

3

balls such that the viewfrom theoriginconsists of n

3

disjoint diskscentered on a

circle,(ii) n

3

ballssuchthat the viewfrom theoriginconsistsof n

3

disks whoseboundaries

are concentric circles intersecting (in projection) allthe disks of (i), and (iii) n

3

tiny balls

centered aroundtheoriginsuch that from anypointonthese n

3

tiny ballsthe viewofthe

ballsin(i)and(ii)istopologicallyinvariant. Notethat ndinga(n 3

)lowerboundonthe

numberoffreesegmentstangentto4balls,amongstnballsofboundedradii,istothebest

ofourknowledge,open.

Proposition 27 The number ofk-faces in the visibilitycomplex of n disjoint unitballsin

R 3

is(n 2

)for allk between 0and4.

Proof: Werstobservethat thesize ofthevisibility complexofnunit balls cantrivially

bequadraticbyhavingtheballssparselydistributedinthespacesuchthatanypairofballs

denesaclosed2-face.

Getting aquadratic numberof freelines tangentto four balls amongst aset of nunit

ballscanbedonebytakingballsB

i

centeredat(2i;0;0)for16i6 n

2

andballsB 0

j

centered

at(2j;10;0)for16j6 n

2

. Then,foranyiand j,thelinethroughthepoints(2i+1;0;1)

and (2j+1;10;1) is free and can be moved down sothat it comes into contact with the

four balls B

i , B

i+1 , B

0

j and B

0

j+1

. This argument provesthat the numberof k-faces, for

06k62,canbequadratic.

The free segment (2i;1;0)(2j;9;0) belongs to the 4-face consisting of maximum free

segmentswithendpointsonB

i andB

0

j

. Thusthere isaquadraticnumberof 4-faces. The

boundalsoappliesto3-facesbyconsideringlinestangenttoB

i

andstabbingB 0

j .

(25)

Figure5.Quadraticviewfromtheorigin[5].

Intheaboveconstruction,theballscanbepushedtogether(theywillintersect)so that

theytinside asphericaluniverseof radius 3 p

n=withoutchangingtheresult. Notealso

thattheaboveconstructioncanbeslightlyperturbedto obtainthesameresultforasetof

nunitballs,disjointornot,withno4centerscoplanar. 2

7 Generalizations

Inthissectionweprovideseveralgeneralizationsofourresults.

7.1 Poisson distribution

Consider a set of unit balls whose centers are drawn by a 3-D Poisson point process of

parameter in the universe U. By aPoisson point process of parameter in U [11], we

meanthatwegenerateX randompointsinside U sothat

Pr(X =k)=

(Volume(U) ) k

exp( Volume(U))

k!

(4)

and for any disjoint subsetsM andM 0

of U, thenumber ofthe points inside M and the

numberofpointsinsideM 0

areindependentrandomvariables. NotethatEquation(4)yields

thattheexpectednumberofpointsinsideU isVolume(U)= 4

3 n.

The following simpleargument showsthat ourresultsextend to this distribution. Let

X betherandomvariable representingthenumberof centers ofunit balls generatedby a

(26)

PoissonpointprocesswithparameterinU,andletY betherandomvariablerepresenting

thenumberofT4-segmentsamongstthoseballs. TheexpectednumberofT4-segmentsis

E(Y)= 1

X

k =0

E(YjX=k)Pr(X =k):

Theorem1givesE(YjX=k)=(k)and

Pr(X=k)= (

4

3 n)

k

exp(

4

3 n)

k!

:

Thus

E(Y)=

4

3

n exp(

4

3 n)

P

1

k =1 (

4

3 n)

k 1

(k 1)!

=(n exp(

4

3

n) exp(

4

3

n))=(n):

ThereforetheexpectednumberofT4-segmentsamongstnballswhosecentersaregenerated

byaPoissonpointprocesswithparameterin U is(n). Similarlythisboundextends to

theexpectedsizeofthevisibilitycomplex.

Wenowinvestigatevariousmodelsin which wechangetheshapeoftheuniverseorthe

natureoftheobjects.

7.2 Smooth convex universe

Our results can be generalized to the case where the universe is no longer a ball, but a

homothet ofasmoothconvexset withhomothetyfactor proportionalto 3 p

n. This canbe

achievedbyconsidering theradius ofcurvatureoftheboundaryoftheuniverse,insteadof

R ,in theproofsofthelemmasdealingwithtangentsoutsidetheuniverse.

7.3 Other objects

Letr

min andr

max

be twostrictly positivereal constants. Inthe following, we bound the

expectednumberofT4-segmentsamongstballswhoseradiivaryintheinterval[r

min

;r

max ],

amongstpolyhedra eachenclosedbetweentwoconcentricballs ofradiir

min andr

max ,and

amongstpolygonseachenclosedbetweentwoconcentriccirclesofradiir

min andr

max . The

centersoftheconcentricballsorcirclesarecalledthecentersofthepolyhedraorpolygons,

respectively. In each case a T4-segment is called outer if the centers of the twoextremal

objects it is tangent to are farther apart than 6r

max

and are both at distance less than

2r

max

fromtheboundaryofU. OtherwisetheT4-segmentiscalled inner.

Forthese models, the proof of the (n) lowerbound on the expected number of T4-

segments(Section4) generalizesdirectlybecause,forthekindofobjectsweconsider,there

alwaysexistplacementsoffourofthemsuchthat theyadmit atleastonecommontangent

linewithmultiplicityone.

(27)

7.3.1 Balls of various radii

Wehaveconsideredamodelwherealltheballshavethesameradius. Ifweallowtheradiito

varyin theinterval[r

min

;r

max

], thentheproofof thelinearupperbound ontheexpected

number of inner T4-segments generalizes almost immediately by considering the volumes

H (p

i

;p

l

;2r

max

)andH (t

i

;t

l

;r

min

)insteadofH (p

i

;p

l

;2)andH (t

i

;t

l

;1).

Section3.2.1generalizesimmediatelytoprovethattheexpectednumberofT4-segments

tangentto fourballs B

i ,B

j ,B

k and B

l

inthat ordersuchthat p

i andp

l

arecloserto one

anotherthan6r

max

isO(n). TheonlydiÆculttaskforextendingSection3.2.2istheproof

ofthefollowinganalogofLemma10.

Lemma28 Whenx

i;l

>6r

max ,y

i

>2r

max andL

!

i;j;k ;l

occurs,thevolumeofH (t

i

;t

l

;r

min )

\U isgreaterthan

24 r

2

min (x

i;l 6r

max ).

Proof: Theproof is similar to the proof of Lemma 10. Refer to Figure 6. Letm bethe

midpointofsegmentt

i t

l

andKbethesphereofdiameterr

min

centeredonthepointclying

onsegmentt

i p

i

atdistance 1

2 r

min fromt

i

. ThesphereKisentirelyinsideH (t

i

;t

l

;r

min )\U,

mliesin H (t

i

;t

l

;r

min

)andastraightforwardcomputation showsthatm isin U sincet

i is

in U at distance at least r

max

from its boundaryand t

l

is at distance at most r

max from

U. Thus H (t

i

;t

l

;r

min

)\U containstheconvexhullof K and m which contains thecone

ofapexm,ofbaseadiskwhoseboundaryisagreatcircleofK,andofheightthedistance

frommto thecenter cofK. Now

x

i;l

=jp

i p

l j6jp

i

cj+jcmj+jmt

l j+jt

l p

l j

6r

max

+jcmj+ 1

2 jt

i t

l j+r

max

62r

max

+jcmj+ 1

2 (x

i;l +2r

max ):

Thusjcmj>

1

2 x

i;l 3r

max

andthevolumeoftheconeisatleast 1

3 (

r

min

2 )

2

( 1

2 x

i;l 3r

max )=

24 r

2

min (x

i;l 6r

max

). 2

t

i

p

i

m c

t

l p

l K

Figure6.FortheproofofLemma28.

(28)

TherestofSection3.2.2generalizeseasilyforprovingthattheexpectednumberofT4-

segments tangent to four balls B

i , B

j , B

k and B

l

in that order such that p

i and p

l are

farther apart than 6r

max and p

i

is farther than 2r

max

from the boundary of U, is O(n).

HencetheexpectednumberofinnerT4-segmentsisO(n).

Ourproofcannotbeextendedtoprovidealinearupperboundontheexpectednumberof

outerT4-segments.Thisisbecause,ifballsB

i andB

l

areofradiusr

max

thenalinesegment

t

i t

l

tangent to B

i and B

l

mightbe outside U and at distance greater than r

min

from its

boundary. ThenH (t

i

;t

l

;r

min

)doesnotintersectU andwecannotboundH (t

i

;t

l

;r

min )\U

frombelowbyapositiveconstantasinLemma14,whichiscrucialfortheproofofLemma15

andthusforProposition20.

However,bynottakingintoaccounttheocclusionintheproofofProposition20,weget

thattheexpectednumberofouterT4-segmentsisO(n 2

). RefertotheproofofProposition20

andconsiderI

x>6rmax;y<2rmax

,theanalogofI

x>6;y<1

forthiscase. TheanalogsofLemmas6

and7yieldthat

Pr(Æ

!

i;j;k ;l jx

i;l

=x; y

i

=y; y

l 6y

i )6

(3xr 2

max +8r

3

max )

2

R 6

:

Lemma18still holdsandwecaneasilyprovetheanalogofLemma 19. Both resultsimply

that

I

x>6rmax;y<2rmax 6

Z

2R

x=6r

max Z

2r

max

y=0

(3xr 2

max +8r

3

max )

2

R 6

6xydx

R 3

3dy

R

2O

1

R 6

=O

1

n 2

:

Hence the expectednumber ofinner T4-segmentsisO(n)and theexpected numberof

outerT4-segmentsisO(n 2

). ThisstillimprovestheresultofDurandetal.[10]whoproved

aboundofO(n 8=3

)forthesamemodel.

In this section wehaveassumed that the spherecenters are uniformly distributed but

wehavemadenoassumption onthedistribution oftheradii ofthespheresin theinterval

[r

min

;r

max

],whicharethusassumedto beworstcase. Theadditionofsomehypothesison

theradiidistributionmayyieldbetterresultsonthenumberofouterT4-segments.

7.3.2 Polyhedraof boundedaspect ratio

Considerpolyhedra of constant complexity, each enclosed betweentwoconcentric balls of

radiir

min andr

max

whosecentersareuniformlydistributedinU. Insuchacase,asforballs

ofvariousradii,theO(n)boundontheexpectednumberofinnerT4-segmentsimmediately

appliesaswellas theO(n 2

)bound ontheexpectednumberofouterT4-segments.

Références

Documents relatifs

In veterinary medicine, disease detection is not really challenging when it concerns sick animals expressing clinical signs of disease, particularly when the

The method of vari- ating the number of the defect cells is just a discrete vari- ational problem, which can be easily transformed to an EI optimization task. A pitfall of the

when the intensity λ of the underlying Poisson point process is a function λ(R) of the radius which goes to infinity when R → 0.. Let V λ,R be the total visibility associated with

Section 3.4 specializes the results for the expected number of earthquake occurrences, transition functions and hitting times for the occurrence of the strongest earthquakes..

Definition: The 3D visibility complex is the partition of the maximal free segments of 3D space into connected components according to the objects they touch.. The 4-faces of

In this paper we describe a unified data-structure, the 3D Vis- ibility Complex which encodes the visibility information of a 3D scene of polygons and smooth convex objects.. This

right) vertex of the first (resp. last) face of the walk, but we just have to sweep them before (resp. after) the walk). We also see that vertices incident to f are swept correctly

It is estimated by a three-step processing of the pair of left and right stereo images: segmentation of the roadway on each image using color information, registration between